JP3625103B2 - Method for electrolytic treatment of lithographic printing plate support - Google Patents

Method for electrolytic treatment of lithographic printing plate support Download PDF

Info

Publication number
JP3625103B2
JP3625103B2 JP14052496A JP14052496A JP3625103B2 JP 3625103 B2 JP3625103 B2 JP 3625103B2 JP 14052496 A JP14052496 A JP 14052496A JP 14052496 A JP14052496 A JP 14052496A JP 3625103 B2 JP3625103 B2 JP 3625103B2
Authority
JP
Japan
Prior art keywords
electrolytic
width direction
flow rate
counter electrode
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14052496A
Other languages
Japanese (ja)
Other versions
JPH09248977A (en
Inventor
睦 松浦
彰男 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP14052496A priority Critical patent/JP3625103B2/en
Publication of JPH09248977A publication Critical patent/JPH09248977A/en
Application granted granted Critical
Publication of JP3625103B2 publication Critical patent/JP3625103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Printing Plates And Materials Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、平版印刷版支持体の電解処理方法に関する、特に電解液をアルミニウムウエブと対極との間に供給する方法に関するものである。
【0002】
【従来の技術】
印刷版支持体、特に平版印刷版支持体としては、アルミニウム板が用いられ、ユーザーの多様化からアルミニウム板も純アルミニウムに近いものから、マンガンを添加し強度を上げたものまで多様化している。
そしてその様なアルミニウム板を平版印刷版支持体として使用するためには、感光材との適度な接着性と保水性を有していることが必要である。このためには、アルミニウム板の表面を均一かつ緻密な砂目を有するように粗面化しなければならない。
この粗面化処理は、実際に印刷を行ったとき、版材の汚れ性能などの印刷性能に著しい影響を及ぼすので、その良否は版材製造上重要な要素となっている。
【0003】
印刷版用アルミニウム支持体の粗面化方法としては、機械的な砂目立て法、電気化学的な砂目立て法などがあり、又それらを適時組合わせた形で粗面化を行っている。
機械的な砂目立て法としては、例えばボールグレイン,ワイヤーグレイン,ブラッシグレイン,液体ホーニング法などがある。また電気化学的砂目立て方法としては、交流電解エッチング法が一般的に使用されており、電流としては普通の正弦波交流電流あるいは矩形波など、特殊交番電流が用いられている。またこの電気化学的砂目立ての前処理として、苛性ソーダなどでエッチング処理をしても良い。
【0004】
その中で交流電解エッチング方法においては、直流電流によって生じる現象と異なり、炭素や金属などによる対極が非常に劣化し易いという問題があった。例えば炭素を対極とすると極性変化のため酸化還元の反応が繰返され、バインダーの劣化が激しく長時間安定稼働が非常に難しい。
このような課題に対して、特公昭61−48596号公報には、主体極に接続された回路に補助対極に対する回路を並列に連結すると共に、アノード電流の主対極における流れを制御するこめのダイオード又はダイオード的作用をなす機構を補助対極に対する回路に設けたことを特徴とする電解処理装置が開示されている。
【0005】
例えば、図4に示すように、被処理材である金属ウエブ1がドラムローラ2の内周で支持され、対向する主対極3a,3bとの間に、電解液供給口4から金属イオンを含む電解処理液5を補給し電解液排出口6から排出することによって満し、主対極3a,3bには交流電源7より交番電流を供給して、電気化学的処理を施す電解処理装置であって、金属ウエブ1との対極を主対極3a,3bと補助対極8によって形成し、主対極3a,3bに接続された回路に補助対極8に対する回路を並列に連結し、アノード電流の主対極における回路を並列に連結し、アノード電流の主対極における流れを制御するためのダイオード9又はダイオード的作用をなす機構を補助対極8に対する回路に設けて電流を流す電解処理装置である。
この際主対極3a,3bはお互いに反対の極性をもつもので、電源7には互いに反対側に結線されており、更に主対極3a,3bは夫々多数本の(例えばn=10〜14本)の小電極(3a,3a,3a・・・3a)(3b,3b,3b・・・3b)がお互いに絶縁体10を境として構成されたもので電流効率をあげるために工夫されている。
【0006】
従来は電解液供給口4は1ケ所であったため、ここから補給された電解液は金属ウエブ1と電極3a,3bとの間の定められた狭い空間の間(例えば10mm)を通ってドラムローラ3の反対側に流れ、電解液排出口6に出て行くので、流路における電解によって次第に電解液が疲労し主対極の初めと、終りでは電解液が疲労してその成分に差が出て来て充分な電解効率が得られず、また液の入口と出口との温度差が大きくなり所望の砂目が得られなかった。
上記の欠点を改善するため本出願人は先に電解液供給口を対極間に2ケ所以上設けることを特徴とする電解処理装置として特開平2−15198号公報を開示した。
【0007】
【発明が解決しようとする課題】
しかしながら、前記特開平2−15198号公報に記載の装置を用いても、電解処理での面質ムラの改善は充分とは言えず、より一層の改善が望まれていた。
【0008】
本発明の目的は、前記問題点を解消し、面質ムラの改善と、安定したハニカム状ピットの砂目が得られる電解処理方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明のかかる目的は、金属イオンを含む硝酸又は塩酸を主体とする電解処理液中で、アルミニウムウエブと対極との間に交番電流を供給し、連続的に電気化学的処理を施す電解処理方法において、前記電解液を前記アルミニウムウエブの進行方向に対向して供給し、該電解液の流速を500〜4000mm/secに、且つ前記電解液の電解槽内巾方向の流速分布を、前記巾方向に摩擦抵抗を増加させるためのガイドベーンを前記巾方向で中央部程密に設けることで、平均流速±50%以内に夫々規定することを特徴とする平版印刷版支持体の電解処理方法によって達成される。
【0010】
【発明の実施の形態】
本発明において、電解液の流速を500〜4000mm/secにするということは、500mm/sec未満の流速だと砂目に巨大ピットが生成するので好ましくなく、又流速がそれより遅くなるとウロコ状の水素ガスムラが発生するので面質上好ましくなく、流速が4000mm/secより速いと全体的に砂目が大きくなり不均一で未エッチ部分が多く発生して好ましくない。流速としては1000〜3000mm/secがより好ましい。
ウエブのスピードとしては5〜200m/minの範囲であるが、30m/min以上で効果が大きい。電流密度は5〜200A/dmであり、より好ましくは15〜100A/dmである。電極とウエブとの間隔は5〜50mmで電力コスト上は5〜20mmが望ましい。
【0011】
又、本発明において巾方向流速分布が平均流速±30%よりも大きくなってしまうと巾方向での砂目立て性が大きく変化してしまい、印刷性能差が発生したり、ベース濃度(高感度可視光センサーによる測定)に60mV以上の濃度差が発生し、インキプリセッティング適正(刷版の絵柄面積を測定し、インキ供給量を調整する装置に対する適性「デミア適性」とも言う)が悪くなってしまうためである。特に平均流速±30%以内が望ましい。
本発明において巾方向流速分布を平均流速±50%以内に規定するためには、巾方向に摩擦抵抗を増加させるためのガイドベーンを巾方向に適当に間隔を違えて挿入する方法等が用いられる。
【0012】
本発明の実施態様について図を用いて説明する。図2は本発明の特徴をフラット型セルに適用した1実施例であり、支持体1は図上左から右に進み、電解液供給口4のスリットは支持体進行方向に対向する方向に向いて開口しており、該電解液の流速を500〜4000mm/secにすることが示される。
図1はラジアル型セルと特開平2−15198号公報との組み合わせの一実施例である。1は金属ウエブであり、2はウエブを支えるラジアルドラムローラであり、ウエブと主対極3a,3bとのクリアランスは一定に保って走行している。クリアランスは通常5〜50mm程度が適当である。又電解液供給口は4a,4bと2つである。この場合主対極の損耗を防ぐため特公昭61−48596号公報に記載のように補助対極とダイオードを用いることも出来る。主対極と補助対極の比は、求める電解エッチング条件により異なる。7は交流電源であり、通常0.1Hz〜500Hzの交流電源が使用される。周波数については求めるエッチング形態によって変化させるが、3a,3bの主対極の劣化が15Hz以下であると大きく、特にカーボンの場合顕著である。波形としては、いろいろあるが、特公昭56〜19280号,特公昭55−19191号各公報に記載の特殊交番波形を用いることも出来る。ダイオードを用いた場合、これにより補助対極に流れる電流を制御する。補助対極の材料としては、劣化に強い白金及び磁性酸化鉄の焼結体を用いることが好ましい。
本発明の電解液供給口4としては例えば従来のものを4aとすると、主体極3a,3bの間に絶縁体10を挟んで電解液供給口4bを設けることが出来る。各電解液供給口では電解処理液5は供給管11より電解液供給口4内に入り、ディストリビュータ12によりドラムローラの幅方向全体に均一に分布するようキャビティ13に入り、金属ウエブの進行方向に対向したスリット14より電解槽15の巾に噴出される、電解槽15内の流速は500〜4000mm/secに保たれる。
本発明の請求項2の特徴を図3で示すと、図3は図2の平面図に相当し、巾方向の均一性を増加させるためには、供給口4においては、巾方向のディストリビューター12を巾方向の中心部の抵抗を増やすべく電解槽と同様に密にとり、電解槽15においてもガイドベーン17が中央部程密に設ける様に設置しなければならない。これは図1においても同様の考え方で処理をする。
これによって電解槽の中の電解液温度の均一性及び攪拌効果が良くなり電解効率が上昇するのである。
【0013】
【実施例】
(実施例−1,−2,−3)
図1に示すラジアル型セルを用いて電解液流速の実験を行った。アルミニウムエブ進行速度としては40m/分,電極とウエブ間の距離20mmにして電流密度50A/dmで電気量250c/dmを流し、電解液流速条件を500,2,000,4,000mm/secの三条件に変えて流した。
【0014】
(比較例−1,−2)
電解液流速を除く以外の条件は実施例−1〜−3と同様で、流速400m/secを比較例−1、流速5,000mm/secを比較例−2として
前記流速5条件に対し、面質及び砂目形状の効果を表1とした。
【0015】
【表1】

Figure 0003625103
【0016】
表1より比較例−1の流速400mm/secは面質不良であり、砂目形状も巨大ピットが存在し不良であった。比較例−2の流速5000mm/secでは面質は一応良かったが、砂目形状に未エッチング部が多くマクロピットであり、好ましくなかった。
一方流速500mm/sec〜4,000mm/secの範囲は面質も良好であり、砂目形状も均一であった。
電解液流速が500mm/secより4000mm/secに速くなるとピットの径も比較的に大きくなる
【0017】
(実施例−4,−5と比較例−3)
JISA1050−H16アルミニウム圧延板をブラシグレインにて機械的粗面化を行い、ついで25重量%の苛性ソーダ水溶液中に50℃でエッチング10g/m行い、アルミニウム板の表面に付着した水酸化アルミニウムを主体としたスマットを1.5重量%の硝酸でデスマットを行い、次に硝酸1.5重量%含有する水溶液中、40℃,電流速度20A/dm,電気量200C/dmで電解粗面化処理を行い、電解粗面化で生成したピットのエッジに相当する部分のエッチングを苛性ソーダ水溶液25重量%,40℃で,1g/mエッチングを行い、このようにして得られたアルミニウム板の表面に付着した水酸化アルミニウムを主体としたスマットを硫酸400g/リットル、液温60℃の水溶液中10秒間浸漬して除去し、以上のようにして得られたアルミニウム板に酸化皮膜量が2.5g/mとなるように硫酸200g/リットル含有する水溶液30℃で陽極酸化処理をおこなった。
その際、実施例−4,−5としてそれぞれ±30%,±50%の巾方向流速分布で電解粗面化を行ったものと、比較例−3として±55%流速分布のものを行なった結果を表2に示す。
【0018】
【表2】
Figure 0003625103
【0019】
砂目形状とベース濃度分布についてセンター部とエッジ部について観察した結果、分布±30%と±50%のものは製品として合格範囲であったが、±55%のものについてはエッジ部が未エッチングの状態であり、ベース濃度もバラツキが多く、製品として不合格であった。
【0020】
【発明の効果】
本発明の電解液供給の方向をウエブに対向させ、電解液流速を500〜4000mm/secにすることより、又、巾方向流速分布±50%以内にすることにより、電気化学的処理工程の面質が従来より一層良化し、砂目形状も安定的にハニカム状ピットが得られるようになった。
又電解槽内の巾方向の砂目立てが均一化されるため、アルミニウム支持体の巾方向による印刷性能差がなくなり、又巾方向ベース濃度差が少なくなるためデミア適性が良くなる。
【図面の簡単な説明】
【図1】本発明を適用するラジアル型セルの一例の側面図。
【図2】本発明を適用するフラットセルの一例の側面図。
【図3】本発明の巾方向の流速分布を平均流速の±50%以内に規定する実施例の平面図。
【図4】従来の電解処理装置の側面図。
【符号の説明】
1 金属ウエブ
2 ラジアルドラムローラ
3,3a,3b 主対極
4,4a,4b 電解液供給口
5 電解処理液
6 電解液排出口
7 交流電源
8 パスローラ
9 給電ローラ
10 絶縁体
11 供給管
12 ディストリビュータ
13 キャビティ
14 スリット
15 電解槽
16 電解液流速
17 ガイドベーン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic treatment method for a lithographic printing plate support, and more particularly to a method for supplying an electrolytic solution between an aluminum web and a counter electrode.
[0002]
[Prior art]
Aluminum plates are used as printing plate supports, in particular lithographic printing plate supports, and from the diversification of users, aluminum plates are diversified from those close to pure aluminum to those with increased strength by adding manganese.
In order to use such an aluminum plate as a lithographic printing plate support, it is necessary to have appropriate adhesiveness and water retention with a photosensitive material. For this purpose, the surface of the aluminum plate must be roughened so as to have a uniform and fine grain.
This roughening treatment has a significant effect on printing performance such as the stain performance of the plate material when printing is actually performed. Therefore, the quality is an important factor in the production of the plate material.
[0003]
As a roughening method for the aluminum support for printing plates, there are a mechanical graining method, an electrochemical graining method, and the like, and the surface is roughened by combining them in a timely manner.
Examples of the mechanical graining method include ball grain, wire grain, brush grain, and liquid honing. As an electrochemical graining method, an AC electrolytic etching method is generally used, and as a current, a special alternating current such as a normal sine wave AC current or a rectangular wave is used. Further, as a pretreatment for this electrochemical graining, an etching process may be performed with caustic soda.
[0004]
Among them, the alternating current electrolytic etching method has a problem that, unlike a phenomenon caused by direct current, a counter electrode due to carbon or metal is very easily deteriorated. For example, when carbon is used as the counter electrode, the redox reaction is repeated due to the change in polarity, and the binder is deteriorated so that stable operation for a long time is very difficult.
In response to such a problem, Japanese Patent Publication No. 61-48596 discloses a diode for controlling a flow of an anode current in a main counter electrode while connecting a circuit for an auxiliary counter electrode in parallel to a circuit connected to a main electrode. Alternatively, there is disclosed an electrolytic treatment apparatus characterized in that a mechanism that functions as a diode is provided in a circuit for an auxiliary counter electrode.
[0005]
For example, as shown in FIG. 4, a metal web 1 that is a material to be treated is supported on the inner periphery of the drum roller 2 and contains metal ions from the electrolyte supply port 4 between the opposing main counter electrodes 3a and 3b. An electrolytic processing apparatus that fills the electrolytic processing solution 5 and discharges it from the electrolytic solution discharge port 6, supplies an alternating current from the AC power source 7 to the main counter electrodes 3a and 3b, and performs an electrochemical treatment. The counter electrode with the metal web 1 is formed by the main counter electrodes 3a and 3b and the auxiliary counter electrode 8, the circuit connected to the main counter electrodes 3a and 3b is connected in parallel to the circuit for the auxiliary counter electrode 8, and the circuit at the main counter electrode of the anode current Are connected to each other in parallel, and a diode 9 for controlling the flow of anode current in the main counter electrode or a mechanism that functions as a diode is provided in the circuit for the auxiliary counter electrode 8 to flow current.
At this time, the main counter electrodes 3a and 3b have opposite polarities, are connected to the power source 7 on the opposite sides, and the main counter electrodes 3a and 3b have a large number (for example, n = 10 to 14). ) Small electrodes (3a 1 , 3a 2 , 3a 3 ... 3a n ) (3b 1 , 3b 2 , 3b 3 ... 3b n ) are configured with the insulator 10 as a boundary, and current efficiency It is devised to raise.
[0006]
Conventionally, the electrolytic solution supply port 4 has been provided at one location, so that the electrolytic solution replenished from here passes through a defined narrow space (for example, 10 mm) between the metal web 1 and the electrodes 3a and 3b. 3 and flows out to the electrolyte outlet 6 so that the electrolyte gradually becomes fatigued due to electrolysis in the flow path, and the electrolyte is fatigued at the beginning and end of the main counter electrode, resulting in a difference in the components. As a result, sufficient electrolysis efficiency could not be obtained, and the temperature difference between the liquid inlet and the outlet became so large that the desired grain was not obtained.
In order to improve the above-mentioned drawbacks, the present applicant has previously disclosed Japanese Patent Application Laid-Open No. 2-15198 as an electrolytic processing apparatus characterized in that two or more electrolytic solution supply ports are provided between counter electrodes.
[0007]
[Problems to be solved by the invention]
However, even if the apparatus described in Japanese Patent Laid-Open No. 2-15198 is used, it cannot be said that the improvement of the surface unevenness by the electrolytic treatment is sufficient, and further improvement has been desired.
[0008]
An object of the present invention is to provide an electrolytic treatment method that solves the above-mentioned problems, improves surface quality unevenness, and provides stable honeycomb grain pits.
[0009]
[Means for Solving the Problems]
An object of the present invention is to provide an electrolytic treatment method in which an alternating current is supplied between an aluminum web and a counter electrode in an electrolytic treatment solution mainly composed of nitric acid or hydrochloric acid containing metal ions to continuously perform electrochemical treatment. The electrolytic solution is supplied to face the traveling direction of the aluminum web, the flow rate of the electrolytic solution is set to 500 to 4000 mm / sec, and the flow rate distribution of the electrolytic solution in the width direction in the electrolytic cell is set to the width direction. This is achieved by an electrolytic treatment method for a lithographic printing plate support, characterized in that guide vanes for increasing frictional resistance are provided closer to the center in the width direction so that the average flow velocity is regulated within ± 50%, respectively. Is done.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, setting the flow rate of the electrolyte to 500 to 4000 mm / sec is not preferable because a huge pit is generated in the sand if the flow rate is less than 500 mm / sec, and if the flow rate is slower than that, a scale-like shape is formed. Since hydrogen gas unevenness occurs, it is not preferable in terms of surface quality, and when the flow rate is faster than 4000 mm / sec, the entire surface becomes large and uneven and many unetched portions are generated. The flow rate is more preferably 1000 to 3000 mm / sec.
The web speed is in the range of 5 to 200 m / min, but the effect is great at 30 m / min or more. The current density is 5 to 200 A / dm 2 , more preferably 15 to 100 A / dm 2 . The distance between the electrode and the web is 5 to 50 mm, and 5 to 20 mm is desirable in terms of power cost.
[0011]
Further, in the present invention, if the width direction flow velocity distribution becomes larger than the average flow velocity ± 30%, the graining property in the width direction is greatly changed, resulting in a difference in printing performance or a base concentration (high sensitivity visible). A density difference of 60 mV or more occurs in the measurement by the optical sensor), and the ink pre-setting (appropriate for the device that measures the image area of the printing plate and adjusts the ink supply amount is also called “demia aptitude”) becomes worse. Because. In particular, an average flow rate within ± 30% is desirable.
In the present invention, in order to define the width direction flow velocity distribution within the average flow velocity ± 50%, a method of inserting guide vanes for increasing the frictional resistance in the width direction at appropriate intervals in the width direction is used. .
[0012]
Embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows an embodiment in which the features of the present invention are applied to a flat type cell. The support body 1 proceeds from the left to the right in the figure, and the slit of the electrolyte supply port 4 faces in the direction opposite to the traveling direction of the support body. It is shown that the flow rate of the electrolyte is 500 to 4000 mm / sec.
FIG. 1 shows an example of a combination of a radial type cell and Japanese Patent Laid-Open No. 2-15198. Reference numeral 1 denotes a metal web, and reference numeral 2 denotes a radial drum roller that supports the web. The web and the main counter electrodes 3a and 3b run with a constant clearance. A clearance of about 5 to 50 mm is usually appropriate. There are two electrolyte supply ports 4a and 4b. In this case, an auxiliary counter electrode and a diode can be used as described in Japanese Patent Publication No. 61-48596 in order to prevent wear of the main counter electrode. The ratio between the main counter electrode and the auxiliary counter electrode varies depending on the required electrolytic etching conditions. Reference numeral 7 denotes an AC power supply, and an AC power supply of 0.1 Hz to 500 Hz is usually used. Although the frequency is changed depending on the etching form to be obtained, the deterioration of the main counter electrode of 3a and 3b is large when the frequency is 15 Hz or less, particularly remarkable in the case of carbon. Although there are various waveforms, special alternating waveforms described in JP-B-56-19280 and JP-B-55-19191 can be used. When a diode is used, this controls the current flowing through the auxiliary counter electrode. As a material for the auxiliary counter electrode, it is preferable to use a sintered body of platinum and magnetic iron oxide which are resistant to deterioration.
As the electrolyte supply port 4 of the present invention, for example, if the conventional one is 4a, the electrolyte supply port 4b can be provided by sandwiching the insulator 10 between the main electrodes 3a and 3b. At each electrolytic solution supply port, the electrolytic treatment solution 5 enters the electrolytic solution supply port 4 from the supply pipe 11, enters the cavity 13 by the distributor 12 so as to be uniformly distributed in the entire width direction of the drum roller, and moves in the traveling direction of the metal web. The flow velocity in the electrolytic cell 15 that is ejected from the facing slit 14 to the width of the electrolytic cell 15 is maintained at 500 to 4000 mm / sec.
The features of claim 2 of the present invention are shown in FIG. 3. FIG. 3 corresponds to the plan view of FIG. 2. In order to increase the uniformity in the width direction, the distributor 4 in the width direction is used in the supply port 4. In order to increase the resistance of the central portion in the width direction, 12 should be made dense like the electrolytic cell, and also in the electrolytic cell 15, the guide vanes 17 should be installed so as to be densely arranged in the central part. This is processed in the same way in FIG.
As a result, the uniformity of the electrolyte temperature in the electrolytic cell and the stirring effect are improved, and the electrolysis efficiency is increased.
[0013]
【Example】
(Example-1, -2, -3)
Using the radial type cell shown in FIG. The aluminum web travel speed is 40 m / min, the distance between the electrode and the web is 20 mm, the current density is 50 A / dm 2 , the electric quantity is 250 c / dm 2 , and the electrolyte flow rate condition is 500, 2,000, 4,000 mm / Changed to three conditions of sec.
[0014]
(Comparative Examples-1 and -2)
The conditions other than the electrolyte flow rate were the same as those of Examples-1 to -3. The flow rate was 400 m / sec as Comparative Example-1 and the flow rate was 5,000 mm / sec as Comparative Example-2. Table 1 shows the effects of quality and grain shape.
[0015]
[Table 1]
Figure 0003625103
[0016]
From Table 1, the flow rate of 400 mm / sec in Comparative Example-1 was poor in surface quality, and the grain shape was also poor due to the presence of huge pits. Although the surface quality was good at a flow rate of 5000 mm / sec in Comparative Example-2, it was not preferable because the grain shape had many unetched portions and macropits.
On the other hand, in the range of flow velocity of 500 mm / sec to 4,000 mm / sec, the surface quality was good and the grain shape was uniform.
When the electrolyte flow rate is increased from 500 mm / sec to 4000 mm / sec, the pit diameter also becomes relatively large.
(Examples-4 and -5 and Comparative Example-3)
JIS A 1050-H16 aluminum rolled plate is mechanically roughened with brush grains, then etched at 50 ° C. in a 25% by weight aqueous solution of caustic soda at 10 g / m 2 , mainly consisting of aluminum hydroxide adhering to the surface of the aluminum plate This smut was desmutted with 1.5% by weight of nitric acid, and then electrolytically roughened in an aqueous solution containing 1.5% by weight of nitric acid at 40 ° C., a current rate of 20 A / dm 2 , and an electric quantity of 200 C / dm 2. The surface of the aluminum plate obtained in this way was etched by etching at a portion corresponding to the edge of the pit generated by electrolytic surface roughening at a caustic soda solution of 25% by weight at 40 ° C. and 1 g / m 2. The smut mainly composed of aluminum hydroxide adhering to the surface is removed by immersing it in an aqueous solution of 400 g / l sulfuric acid and 60 ° C. for 10 seconds. And it was subjected to anodic oxidation in an aqueous solution 30 ° C. containing sulfuric acid 200 g / liter as weight of the anodized layer on the aluminum plate obtained as described above is 2.5 g / m 2.
At that time, Examples 4 and -5 were subjected to electrolytic surface roughening with a width direction flow velocity distribution of ± 30% and ± 50%, respectively, and Comparative Example 3 was subjected to a flow rate distribution of ± 55%. The results are shown in Table 2.
[0018]
[Table 2]
Figure 0003625103
[0019]
As a result of observing the center portion and the edge portion of the grain shape and the base concentration distribution, the products with distributions of ± 30% and ± 50% were acceptable as products, but those with ± 55% were not etched in the edge portions. In this state, the base concentration was varied and the product was rejected.
[0020]
【The invention's effect】
By making the electrolyte supply direction of the present invention opposite to the web and setting the electrolyte flow rate to 500 to 4000 mm / sec, and to make the width direction flow rate distribution within ± 50%, the surface of the electrochemical treatment process The quality has been improved more than before, and honeycomb-like pits can be obtained stably with a grainy shape.
Further, since the graining in the width direction in the electrolytic cell is made uniform, there is no difference in printing performance due to the width direction of the aluminum support, and the difference in the base concentration in the width direction is reduced, so that the demia suitability is improved.
[Brief description of the drawings]
FIG. 1 is a side view of an example of a radial cell to which the present invention is applied.
FIG. 2 is a side view of an example of a flat cell to which the present invention is applied.
FIG. 3 is a plan view of an embodiment in which the flow velocity distribution in the width direction of the present invention is defined within ± 50% of the average flow velocity.
FIG. 4 is a side view of a conventional electrolytic treatment apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal web 2 Radial drum roller 3, 3a, 3b Main counter electrode 4, 4a, 4b Electrolyte supply port 5 Electrolytic process liquid 6 Electrolyte discharge port 7 AC power supply 8 Pass roller 9 Feed roller 10 Insulator 11 Supply pipe 12 Distributor 13 Cavity 14 Slit 15 Electrolytic tank 16 Electrolyte flow rate 17 Guide vane

Claims (1)

金属イオンを含む硝酸又は塩酸を主体とする電解処理液中で、アルミニウムウエブと対極との間に交番電流を供給し、連続的に電気化学的処理を施す電解処理方法において、
前記電解液を前記アルミニウムウエブの進行方向に対向して供給し、該電解液の流速を500〜4000mm/secに、且つ前記電解液の電解槽内巾方向の流速分布を、前記巾方向に摩擦抵抗を増加させるためのガイドベーンを前記巾方向で中央部程密に設けることで、平均流速±50%以内に夫々規定することを特徴とする平版印刷版支持体の電解処理方法。
In an electrolytic treatment liquid mainly composed of nitric acid or hydrochloric acid containing metal ions, an alternating current is supplied between the aluminum web and the counter electrode, and an electrochemical treatment is performed continuously.
The electrolytic solution is supplied to face the traveling direction of the aluminum web, the flow rate of the electrolytic solution is set to 500 to 4000 mm / sec, and the flow rate distribution of the electrolytic solution in the width direction in the electrolytic cell is rubbed in the width direction. A method for electrolytically treating a lithographic printing plate support, characterized in that guide vanes for increasing the resistance are provided closer to the center in the width direction so that the average flow velocity is within ± 50%.
JP14052496A 1996-01-12 1996-06-03 Method for electrolytic treatment of lithographic printing plate support Expired - Fee Related JP3625103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14052496A JP3625103B2 (en) 1996-01-12 1996-06-03 Method for electrolytic treatment of lithographic printing plate support

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP410796 1996-01-12
JP8-4107 1996-01-12
JP14052496A JP3625103B2 (en) 1996-01-12 1996-06-03 Method for electrolytic treatment of lithographic printing plate support

Publications (2)

Publication Number Publication Date
JPH09248977A JPH09248977A (en) 1997-09-22
JP3625103B2 true JP3625103B2 (en) 2005-03-02

Family

ID=26337825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14052496A Expired - Fee Related JP3625103B2 (en) 1996-01-12 1996-06-03 Method for electrolytic treatment of lithographic printing plate support

Country Status (1)

Country Link
JP (1) JP3625103B2 (en)

Also Published As

Publication number Publication date
JPH09248977A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
US6143158A (en) Method for producing an aluminum support for a lithographic printing plate
JPH05195300A (en) Electrolytic treating device
JPH07423B2 (en) Method for producing aluminum support for printing plate
EP0129338B1 (en) Electrolytic treatment method
US4597837A (en) Method and apparatus for electrolytic treatment
JPH0524377A (en) Method for anodic oxidation of substrate for lithographic printing form
JP3625103B2 (en) Method for electrolytic treatment of lithographic printing plate support
JPH05125597A (en) Anodic oxidation device andan0dic oxidation method for planographic printing base
JP2549557B2 (en) Electrolytic treatment equipment
JP2001262395A (en) Anodic oxidation method of aluminum material and manufacturing method of lithographc printing plate
EP0349983B1 (en) Electrolytic treatment apparatus
JPH03267400A (en) Production of lithographic printing plate supporting body
JP2767699B2 (en) Electrolytic treatment equipment
EP0520354B1 (en) Apparatus and method for anodizing supports for lithographic printing plate
JPH05148687A (en) Device for continuously forming electrolytic metallic foil
JPH11115340A (en) Manufacture of aluminum support for lithographic printing plate
JPH08253900A (en) Method for electrolyzing lithographic printing plate substrate
JP3705527B2 (en) Electrolytic treatment equipment for lithographic printing plate support
JPH09195100A (en) Electrolytic polishing device for stainless steel strip and method therefor
JPH1111035A (en) Manufacture of aluminum supporting body for planographic printing plate
JPH02240299A (en) Electrolytically treating device
JPH01310000A (en) Electrolytic method
JPH01252800A (en) Electrolytic treatment equipment
JP2004332049A (en) Electrolytic treatment apparatus and method for manufacturing support for lithographic printing plate
JPH04157198A (en) Method for power feeding to continuous coloring device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees