JP3625058B2 - Semiconductor wafer thickness measuring device and semiconductor wafer flatness measuring device - Google Patents

Semiconductor wafer thickness measuring device and semiconductor wafer flatness measuring device Download PDF

Info

Publication number
JP3625058B2
JP3625058B2 JP2001169906A JP2001169906A JP3625058B2 JP 3625058 B2 JP3625058 B2 JP 3625058B2 JP 2001169906 A JP2001169906 A JP 2001169906A JP 2001169906 A JP2001169906 A JP 2001169906A JP 3625058 B2 JP3625058 B2 JP 3625058B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
thickness
wafer
flatness
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001169906A
Other languages
Japanese (ja)
Other versions
JP2002039711A (en
Inventor
純一朗 東
ロバート・ケイ・グラウプナー
Original Assignee
コマツ電子金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コマツ電子金属株式会社 filed Critical コマツ電子金属株式会社
Priority to JP2001169906A priority Critical patent/JP3625058B2/en
Publication of JP2002039711A publication Critical patent/JP2002039711A/en
Application granted granted Critical
Publication of JP3625058B2 publication Critical patent/JP3625058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、半導体ウェーハの厚さ測定装置および半導体ウェーハの平坦度測定装置に関する。
【0002】
【従来の技術】
半導体素子の基板には主として高純度のシリコン単結晶が用いられているが、このシリコン単結晶の製造方法の一つにチョクラルスキー法(以下CZ法という)がある。CZ法においては、半導体単結晶製造装置のチャンバ内に設置した石英るつぼにシリコン多結晶を充填し、前記石英るつぼの周囲に設けたヒータによってシリコン多結晶を加熱溶解して融液とした上、シードチャックに取り付けた種子結晶を前記融液に浸漬し、シードチャックおよび石英るつぼを同方向または逆方向に回転しつつシードチャックを引き上げてシリコン単結晶を成長させる。このとき、前記石英るつぼと融液との反応により融液中に酸素が溶けだすため、引き上げたシリコン単結晶中には1018atm/cm程度の酸素が含まれている。これらの酸素は結晶格子間に存在し、単結晶の冷却中に酸素ドナーが発生する。
【0003】
シリコン単結晶インゴットはスライスおよび研磨工程を経た後、熱処理を行って酸素ドナーを消去する。また、一部のウェーハについては研磨後イントリンシックゲッタリングのための熱処理を行う。これらのドナーキラー処理工程を経た上、ウェーハの厚さおよび平坦度を測定している。
【0004】
【発明が解決しようとする課題】
ドナーキラー処理を施していないウェーハについて、静電容量式平坦度測定器を用いて平坦度を測定すると、1ロッド当たり数%〜数十%の割合で良品を不良品と判定する誤測定が起こっている。ドナーキラー処理を施していないウェーハにおいてはウェーハ内部に格子間酸素が不均一に存在し、ドナーとして作用するため、実際のウェーハ厚さよりも厚くまたは薄く検出され、これらの検出値に基づいて平坦度を算出することがその原因と考えられる。静電容量式平坦度測定器の場合、厚さが同一のウェーハであっても電気抵抗が異なれば、実際の厚さより厚く表示したり、薄く表示したりする。その一例として、電子マイクロメータなどの測定器で同一厚さであることを確認した電気抵抗の異なる2枚のウェーハを静電容量式平坦度測定器で測定すると、電気抵抗値の高いウェーハの方が電気抵抗値の低いウェーハよりも薄く表示される。
【0005】
p型アズグロウンウェーハで、特に格子間酸素濃度むらの顕著なものは、図4に示すようにウェーハ内に電気抵抗の高い部分(電気的には中性)と低い部分とが存在しているような状態であるため、実際には均一な厚さであるにもかかわらず図5に示したように厚い、または薄いという誤測定をしてしまう。従って、ドナーキラー処理を経た上でないと正確な平坦度データが得られない。しかし、元来平坦度の規格を外れた不良品をドナーキラー処理を施した上で摘出するとなると、ドナーキラー処理は無駄な工程ということになる。また、製品の仕様によってはドナーキラー処理を必要としないウェーハがあるが、これに対しても平坦度をチェックするためにわざわざドナーキラー処理を施さなければならず、やはり無駄な工程である。本発明は上記従来の問題点に着目してなされたもので、ドナーキラー処理を施していないウェーハであっても、平坦度の良否を正確に判定することができるようなウェーハの厚さ測定装置および平坦度測定装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
そこで、本発明の第1発明では、
静電容量式の厚さ測定器を用いて半導体ウェーハの厚さを測定する半導体ウェーハの厚さ測定装置において、
前記半導体ウェーハの表面に、前記半導体ウェーハを構成する材料のバンドギャップ以上のエネルギーの光を照射する光源を具え、
前記光源と前記静電容量式の厚さ測定器を用いて前記半導体ウェーハの厚さを測定するようにしたことを特徴としている。
【0007】
また、本発明の第2発明では、
静電容量式の厚さ測定器を用いて半導体ウェーハの厚さを測定する半導体ウェーハの厚さ測定装置において、
前記半導体ウェーハの表面に、前記半導体ウェーハを構成する材料のバンドギャップ以上のエネルギーの光を照射する光源を具えるとともに、
前記静電容量式の厚さ測定器は、
前記半導体ウェーハを挟むように対向する位置に設けられた両電極と、
前記両電極間を流れる電流の値を測定する電流値測定手段と、
前記測定した電流値に対応する前記半導体ウェーハの厚さを計測する厚さ計測手段とから成り、
前記光源と前記静電容量式の厚さ測定器を用いて前記半導体ウェーハの厚さを測定するようにしたことを特徴としている。
【0008】
また、本発明の第3発明では、上記第2発明において、
前記厚さ測定装置は、前記測定した電流値と前記半導体ウェーハの厚さとの間のキャリブレーションを行うキャリブレーション手段をさらに具えるようにしたことを特徴としている。
【0009】
また、本発明の第4発明では、
静電容量式の平坦度測定器を用いて半導体ウェーハの各部の厚さを測定し、測定した半導体ウェーハの各部の厚さの変位から当該半導体ウェーハの平坦度を測定する半導体ウェーハの平坦度測定装置において、
前記半導体ウェーハの表面に、前記半導体ウェーハを構成する材料のバンドギャップ以上のエネルギーの光を照射する光源を具え、
前記光源と前記静電容量式の平坦度測定器を用いて前記半導体ウェーハの平坦度を測定するようにしたことを特徴としている。
【0010】
【作用】
さきに述べた誤測定の原因について、静電容量式平坦度測定器の測定方式の面から推察すると、次の通りである。すなわち、静電容量式平坦度測定器はウェーハ内の比誘電率εを一定と考え、高周波電流Iの変化をウェーハ表面と静電容量式平坦度測定器のセンサ電極との距離dの変化として算出する。これを被測定ウェーハの上下のセンサにより算出し、センサ間距離から差し引いた値をその部分の厚さとする。しかし、比誘電率εが一定でないウェーハの場合、低抵抗で導体に近似する部分はεが大きくなるため高周波電流Iが大きくなり、現在の測定ロジックではdが小さいと判断する。また逆に、電気的に中性な部分に電界がかかると、誘電分極が大きく、εは小さくなるため、電気量Qが小さくなり、上記内容に従ってdが大きいと判断する。従って、低抵抗の部分を厚く、高抵抗の部分を薄いと判断してしまう。
【0011】
本発明では、静電容量式平坦度測定器のプローブ近傍に所定の波長の光源を設け、被測定ウェーハの表面に少なくとも15万ルクスの光を照射することとした。ウェーハに光を照射するとバルク内に光が入り、一定の割合で吸収された後、波長依存性にもよるがウェーハの裏面に達する。ここで、プランク定数をh、振動数をνとすると、hνが励起エネルギーに変化し、この励起エネルギーが禁止帯幅(バンドギャップ)Egを越えることができる程度に大きいときは価電子から自由電子になる。
【0012】

Figure 0003625058
以上により、波長1129nm以下の光をウェーハに照射すれば、シリコンの価電子を伝導電子化することができる。赤外線の波長は1.0×10−3〜8.1×10−7m、可視光線の波長は8.1×10−7〜3.8×10−7mであるから、赤外域から十分に励起できるため、広域波長帯をもつハロゲンランプの照射を行うと、バルク内部も表面と同様な現象が起こるものと推定される。また、ウェーハの上下面にバルク内部まで入らない短い波長の光を照射した場合も、本測定は可能である。
【0013】
p型半導体の場合、図2に示すようにドーパント(+)と酸素ドナー(−)とは電気的に中性であるが、光を照射すると図3に示すように、ドーパントや酸素ドナー以上にシリコンから発生した自由電子または正孔が非常に多くなり、金属のような状態となる。つまり、ウェーハのどの部分も均一に電子が分布する。このような状態で静電容量式平坦度測定器を用いてウェーハの下面または上面を測定すると、比誘電率εはどの場所でも一定(Siから放出された伝導電子の濃度が非常に高く、かつ均一)であるため、センサが検出する電気量Qの変化はすべてセンサ電極とウェーハ表面との距離dの変化として測定できることになる。ただし、ウェーハの厚さは半導体としての比誘電率εより大きいためdを小さいと誤測し、実際より厚いと表示する。しかし、厚さの変位(平坦度)を測定する場合その影響はほとんどなく、ドナーキラー処理後の平坦度と等しい。厚さ測定を正確に行うには、光を照射しながらキャリブレーションを行えばよいと考えられる。
【0014】
【実施例】
以下に本発明に係るウェーハの厚さ測定装置および平坦度測定装置の実施例について、図面を参照して説明する。図1は本発明による平坦度測定装置の部分説明図で、静電容量式平坦度測定器のプローブ1、2は被測定ウェーハ3を挟むように対向する位置に設けられている。プローブ1の近傍には前記被測定ウェーハ3の表面を照射する波長1129nm以下のハロゲンランプ4が設置されている。ハロゲンランプ4は1個ないし2個設置するものとし、その照度は20万ルクスとした。
【0015】
ドナーキラー処理を施していないウェーハの平坦度を従来の静電容量式平坦度測定器を用いて測定し、TTV、LTVのいずれかについて不良と判断した24枚のウェーハを、本発明による平坦度測定装置を用いて再測定した。更に、前記24枚のウェーハにドナーキラー処理を施した上、従来の静電容量式平坦度測定器を用いて再測定した。これらの3種類のデータを比較した結果は下記の通りであった。
【0016】
(1)ドナーキラー処理を施していないウェーハを、静電容量式平坦度測定器を用いた従来の装置で測定すると、TTV、LTVのいずれかまたは両方とも不良と判定されたものが24枚あった。
【0017】
(2)上記24枚のウェーハを、本発明による平坦度測定装置を用いて再測定したところ、TTV、LTVのいずれかまたは両方とも不良と判断されたものは11枚で、残りの13枚は良品であった。
【0018】
(3)上記24枚のウェーハにドナーキラー熱処理を施した上、従来の装置で再測定したところ、(2)の判定と完全に一致した。
【0019】
この結果から、本発明による平坦度測定装置を用いれば、ドナーキラー処理を施していないウェーハであってもドナーキラー熱処理を施したウェーハの場合と全く同一の正確な良否判定ができることが立証された。
【0020】
【発明の効果】
以上説明したように本発明によれば、静電容量式平坦度測定器のプローブ近傍に1129nm以下の波長の光源を設け、ドナーキラー処理を施していないウェーハの表面に少なくとも15万ルクスの光を照射することとしたので、この光がバルク内に入って励起エネルギーに変化し、価電子を伝導電子化することにより、ドナーキラー処理を施していないウェーハであっても平坦度を正確に測定することができる。本発明の適用により、平坦度不良のウェーハについてドナーキラー処理前にこれを摘出、排除することが可能となるとともに、ドナーキラー処理を必要としないウェーハに対しては無用の熱処理をせずに平坦度の良否判定ができるので、ウェーハの生産能率が著しく向上する。
【図面の簡単な説明】
【図1】本発明による平坦度測定装置の部分説明図である。
【図2】ドナーキラー処理を施していないウェーハにおいて、ドーパントと酸素ドナーとの存在を模式的に示す説明図である。
【図3】図2のウェーハに所定の波長の光を照射した状態を模式的に示す説明図である。
【図4】ドナーキラー処理を施していないウェーハにおいて、電気抵抗の異なる部分が存在することを模式的に示す説明図である。
【図5】図4のウェーハの平坦度を、静電容量式平坦度測定器で測定した場合に起こる誤測定の状態を模式的に示す説明図である。
【符号の説明】
1,2 プローブ
3 被測定ウェーハ
4 ハロゲンランプ[0001]
[Industrial application fields]
The present invention relates to a semiconductor wafer thickness measuring device and a semiconductor wafer flatness measuring device.
[0002]
[Prior art]
A high-purity silicon single crystal is mainly used for a substrate of a semiconductor element. One of the methods for producing this silicon single crystal is a Czochralski method (hereinafter referred to as CZ method). In the CZ method, a silicon crucible placed in a chamber of a semiconductor single crystal manufacturing apparatus is filled with silicon polycrystal, and the silicon polycrystal is heated and melted with a heater provided around the quartz crucible to form a melt. A seed crystal attached to the seed chuck is immersed in the melt, and the seed chuck is pulled up while rotating the seed chuck and the quartz crucible in the same direction or in the reverse direction to grow a silicon single crystal. At this time, oxygen is dissolved in the melt by the reaction between the quartz crucible and the melt, so that the pulled silicon single crystal contains about 10 18 atm / cm 3 of oxygen. These oxygens exist between crystal lattices, and oxygen donors are generated during cooling of the single crystal.
[0003]
After the silicon single crystal ingot is subjected to a slicing and polishing process, a heat treatment is performed to erase the oxygen donor. Some wafers are subjected to a heat treatment for intrinsic gettering after polishing. After passing through these donor killer processing steps, the thickness and flatness of the wafer are measured.
[0004]
[Problems to be solved by the invention]
For wafers that have not been subjected to donor killer treatment, when measuring the flatness using a capacitance flatness measuring instrument, an erroneous measurement occurs in which a non-defective product is judged as defective at a rate of several percent to several tens of percent per rod. ing. In wafers that have not been subjected to donor killer treatment, interstitial oxygen exists non-uniformly inside the wafer and acts as a donor. The reason is considered to be calculated. In the case of the capacitance type flatness measuring device, even if the thickness of the wafer is the same, if the electrical resistance is different, the thickness is displayed thicker or thinner than the actual thickness. As an example, when two wafers with different electrical resistances, which have been confirmed to have the same thickness by a measuring instrument such as an electronic micrometer, are measured with a capacitance flatness measuring instrument, Is displayed thinner than a wafer having a low electrical resistance value.
[0005]
In the p-type as-grown wafer, particularly the one with remarkable interstitial oxygen concentration unevenness, there are a high electric resistance portion (electrically neutral) and a low portion in the wafer as shown in FIG. In such a state, although it is actually a uniform thickness, it is erroneously measured as being thick or thin as shown in FIG. Accordingly, accurate flatness data cannot be obtained unless the donor killer process is performed. However, if a defective product that originally deviates from the standard of flatness is extracted after being subjected to donor killer processing, the donor killer processing is a useless process. Although there are wafers that do not require donor killer processing depending on the product specifications, it is also a wasteful process because the donor killer processing must be applied to check the flatness. The present invention has been made paying attention to the above-mentioned conventional problems, and even if it is a wafer which has not been subjected to donor killer processing, it can accurately determine whether the flatness is good or bad. And it aims at providing a flatness measuring device.
[0006]
[Means for Solving the Problems]
Therefore, in the first invention of the present invention,
In a semiconductor wafer thickness measuring device that measures the thickness of a semiconductor wafer using a capacitance type thickness measuring instrument,
A light source for irradiating light on the surface of the semiconductor wafer with energy higher than the band gap of the material constituting the semiconductor wafer;
The thickness of the semiconductor wafer is measured using the light source and the capacitance-type thickness measuring instrument.
[0007]
In the second invention of the present invention,
In a semiconductor wafer thickness measuring device that measures the thickness of a semiconductor wafer using a capacitance type thickness measuring instrument,
The surface of the semiconductor wafer is provided with a light source that irradiates light having energy higher than the band gap of the material constituting the semiconductor wafer,
The capacitance type thickness measuring instrument is:
Both electrodes provided at opposing positions so as to sandwich the semiconductor wafer;
Current value measuring means for measuring the value of the current flowing between the electrodes;
A thickness measuring means for measuring the thickness of the semiconductor wafer corresponding to the measured current value;
The thickness of the semiconductor wafer is measured using the light source and the capacitance-type thickness measuring instrument.
[0008]
In the third invention of the present invention, in the second invention,
The thickness measuring apparatus further includes calibration means for performing calibration between the measured current value and the thickness of the semiconductor wafer.
[0009]
In the fourth invention of the present invention,
Measuring the thickness of each part of the semiconductor wafer using a capacitance type flatness measuring device, and measuring the flatness of the semiconductor wafer from the measured displacement of the thickness of each part of the semiconductor wafer In the device
A light source for irradiating light on the surface of the semiconductor wafer with energy higher than the band gap of the material constituting the semiconductor wafer;
The flatness of the semiconductor wafer is measured using the light source and the capacitance type flatness measuring device.
[0010]
[Action]
The cause of the erroneous measurement described above is estimated as follows from the aspect of the measurement method of the capacitance type flatness measuring device. That is, the capacitance type flatness measuring device considers the relative dielectric constant ε in the wafer to be constant, and changes in the high-frequency current I as changes in the distance d between the wafer surface and the sensor electrode of the capacitance type flatness measuring device. calculate. This is calculated by the upper and lower sensors of the wafer to be measured, and the value subtracted from the distance between the sensors is the thickness of that portion. However, in the case of a wafer whose relative dielectric constant ε is not constant, a portion that approximates to a conductor with a low resistance has a large ε, so that the high-frequency current I increases, and it is determined that d is small in the current measurement logic. Conversely, when an electric field is applied to an electrically neutral portion, the dielectric polarization increases and ε decreases, so the quantity of electricity Q decreases, and it is determined that d is large according to the above contents. Therefore, it is determined that the low resistance portion is thick and the high resistance portion is thin.
[0011]
In the present invention, a light source having a predetermined wavelength is provided in the vicinity of the probe of the capacitance type flatness measuring instrument, and the surface of the wafer to be measured is irradiated with light of at least 150,000 lux. When the wafer is irradiated with light, the light enters the bulk and is absorbed at a certain rate, and then reaches the back surface of the wafer depending on the wavelength dependence. Here, when the Planck constant is h and the frequency is ν, hν changes to excitation energy, and when this excitation energy is large enough to exceed the forbidden band width (band gap) Eg, valence electrons to free electrons. become.
[0012]
Figure 0003625058
As described above, if the wafer is irradiated with light having a wavelength of 1129 nm or less, the valence electrons of silicon can be converted into conduction electrons. The infrared wavelength is 1.0 × 10 −3 to 8.1 × 10 −7 m, and the visible light wavelength is 8.1 × 10 −7 to 3.8 × 10 −7 m. Therefore, it is estimated that when a halogen lamp having a wide wavelength band is irradiated, a phenomenon similar to that of the surface occurs in the bulk. This measurement is also possible when the upper and lower surfaces of the wafer are irradiated with light having a short wavelength that does not enter the bulk.
[0013]
In the case of a p-type semiconductor, the dopant (+) and the oxygen donor (-) are electrically neutral as shown in FIG. 2, but when irradiated with light, as shown in FIG. The number of free electrons or holes generated from silicon increases so much that it becomes like a metal. That is, electrons are uniformly distributed in any part of the wafer. When the lower or upper surface of the wafer is measured using a capacitance flatness measuring instrument in such a state, the relative permittivity ε is constant everywhere (concentration of conduction electrons emitted from Si is very high, and Therefore, all changes in the electric quantity Q detected by the sensor can be measured as changes in the distance d between the sensor electrode and the wafer surface. However, since the thickness of the wafer is larger than the relative dielectric constant ε as a semiconductor, d is mistakenly measured as being small, and is displayed as being thicker than the actual thickness. However, when measuring the thickness displacement (flatness), there is almost no influence, which is equal to the flatness after the donor killer treatment. In order to accurately measure the thickness, it is considered that calibration should be performed while irradiating light.
[0014]
【Example】
Embodiments of a wafer thickness measuring apparatus and a flatness measuring apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a partial explanatory view of a flatness measuring apparatus according to the present invention. Probes 1 and 2 of a capacitance type flatness measuring device are provided at positions facing each other so as to sandwich a wafer 3 to be measured. In the vicinity of the probe 1, a halogen lamp 4 having a wavelength of 1129 nm or less for irradiating the surface of the wafer 3 to be measured is installed. One or two halogen lamps 4 were installed, and the illuminance was 200,000 lux.
[0015]
The flatness of wafers not subjected to donor killer treatment was measured using a conventional capacitance flatness measuring instrument, and 24 wafers judged to be defective for either TTV or LTV were measured according to the present invention. Re-measurement was performed using a measuring device. Further, the 24 wafers were subjected to donor killer treatment, and then remeasured using a conventional electrostatic capacitance type flatness measuring device. The results of comparing these three types of data were as follows.
[0016]
(1) When a wafer that has not been subjected to donor killer processing is measured with a conventional apparatus using a capacitance type flatness measuring device, there are 24 wafers that are judged to be defective for either TTV or LTV or both. It was.
[0017]
(2) When the above 24 wafers were re-measured using the flatness measuring device according to the present invention, 11 or both of TTV and LTV were judged to be defective, and the remaining 13 wafers It was a good product.
[0018]
(3) The 24 wafers were subjected to donor killer heat treatment and re-measured with a conventional apparatus, which completely matched the determination of (2).
[0019]
From this result, it was proved that the flatness measuring apparatus according to the present invention can perform the same exact pass / fail judgment as in the case of the wafer subjected to the donor killer heat treatment even if the wafer is not subjected to the donor killer treatment. .
[0020]
【The invention's effect】
As described above, according to the present invention, a light source having a wavelength of 1129 nm or less is provided in the vicinity of the probe of the capacitance type flatness measuring instrument, and light of at least 150,000 lux is applied to the surface of the wafer that has not been subjected to donor killer treatment. Since it was decided to irradiate, this light enters the bulk and changes to excitation energy, and by converting the valence electrons into conduction electrons, the flatness can be accurately measured even for wafers that have not undergone donor killer treatment. be able to. The application of the present invention makes it possible to extract and eliminate a wafer with poor flatness before the donor killer process, and to flatten the wafer that does not require the donor killer process without unnecessary heat treatment. Since the quality can be judged, the wafer production efficiency is remarkably improved.
[Brief description of the drawings]
FIG. 1 is a partial explanatory view of a flatness measuring apparatus according to the present invention.
FIG. 2 is an explanatory view schematically showing the presence of a dopant and an oxygen donor in a wafer not subjected to donor killer treatment.
3 is an explanatory view schematically showing a state in which the wafer of FIG. 2 is irradiated with light of a predetermined wavelength. FIG.
FIG. 4 is an explanatory view schematically showing that portions having different electric resistance exist in a wafer not subjected to donor killer processing.
5 is an explanatory view schematically showing a state of erroneous measurement that occurs when the flatness of the wafer of FIG. 4 is measured by a capacitance-type flatness measuring device.
[Explanation of symbols]
1, 2 Probe 3 Wafer to be measured 4 Halogen lamp

Claims (4)

静電容量式の厚さ測定器を用いて半導体ウェーハの厚さを測定する半導体ウェーハの厚さ測定装置において、
ドナーキラー処理を施していない半導体ウェーハの表面に、前記半導体を構成する材料のバンドギャップ以上のエネルギーの光を、少なくとも15万ルクス照射する光源を具え、
前記光源と静電容量式の厚さ測定器を用いて前記半導体ウェーハの厚さを測定すること
を特徴とする半導体ウェーハの厚さ測定装置。
In a semiconductor wafer thickness measuring apparatus that measures the thickness of a semiconductor wafer using a capacitance type thickness measuring instrument,
A light source for irradiating at least 150,000 lux of light having energy higher than the band gap of the material constituting the semiconductor on the surface of the semiconductor wafer not subjected to donor killer treatment;
A semiconductor wafer thickness measuring apparatus that measures the thickness of the semiconductor wafer using the light source and a capacitance type thickness measuring instrument.
静電容量式の厚さ測定器を用いて半導体ウェーハの厚さを測定する半導体ウェーハの厚さ測定装置において、
ドナーキラー処理を施していない半導体ウェーハの表面に、前記半導体を構成する材料のバンドギャップ以上のエネルギーの光を、少なくとも15万ルクス照射する光源を具えるとともに、
前記静電容量式の測定器は、
前記半導体ウェーハを挟むように対向する位置に設けられた両電極と、
前記両電極間を流れる電流の値を測定する電流値測定手段と、
前記測定した電流値に対応する前記半導体ウェーハの厚さを測定する厚さ計測手段とから成り、
前記光源と前記静電容量式の厚さ測定器を用いて前記ウェーハの厚さを測定すること
を特徴とする半導体ウェーハの厚さ測定装置。
In a semiconductor wafer thickness measuring apparatus that measures the thickness of a semiconductor wafer using a capacitance type thickness measuring instrument,
Provided with a light source that irradiates at least 150,000 lux of light of energy higher than the band gap of the material constituting the semiconductor on the surface of the semiconductor wafer not subjected to donor killer treatment
The capacitance type measuring instrument is:
Both electrodes provided at opposing positions so as to sandwich the semiconductor wafer;
Current value measuring means for measuring the value of the current flowing between the electrodes;
A thickness measuring means for measuring the thickness of the semiconductor wafer corresponding to the measured current value,
A thickness measuring apparatus for a semiconductor wafer, wherein the thickness of the wafer is measured using the light source and the capacitance type thickness measuring device.
前記厚さ測定装置は、前記測定した電流値と前記半導体ウェーハの厚さとの間のキャリブレーションを行うキャリブレーション手段をさらに具えたことを特徴とする請求項2記載の半導体ウェーハの厚さ測定装置。3. The semiconductor wafer thickness measuring apparatus according to claim 2, further comprising calibration means for performing calibration between the measured current value and the thickness of the semiconductor wafer. . 静電容量式の平坦度測定器を用いて半導体ウェーハの各部の厚さを測定し、測定した半導体ウェーハの各部の厚さの変位から当該半導体ウェーハの平坦度を測定する半導体ウェーハの平坦度測定装置において、
ドナーキラー処理を施していない半導体ウェーハの表面に、前記半導体ウェーハを構成する材料のバンドギャップ以上のエネルギーで、バルク内部まで入らない短い波長の光を照射する光源を具え、
前記光源と静電容量式の平坦度測定器を用いて前記半導体ウェーハの平坦度を測定すること
を特徴とする半導体ウェーハの平坦度測定装置。
Measuring the thickness of each part of the semiconductor wafer using a capacitance type flatness measuring instrument, and measuring the flatness of the semiconductor wafer from the measured displacement of the thickness of each part of the semiconductor wafer In the device
A light source that irradiates the surface of a semiconductor wafer that has not undergone donor killer treatment with light of a short wavelength that does not enter the bulk with an energy equal to or higher than the band gap of the material constituting the semiconductor wafer,
A flatness measuring apparatus for a semiconductor wafer, wherein the flatness of the semiconductor wafer is measured using the light source and a capacitance type flatness measuring device.
JP2001169906A 2001-06-05 2001-06-05 Semiconductor wafer thickness measuring device and semiconductor wafer flatness measuring device Expired - Fee Related JP3625058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001169906A JP3625058B2 (en) 2001-06-05 2001-06-05 Semiconductor wafer thickness measuring device and semiconductor wafer flatness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001169906A JP3625058B2 (en) 2001-06-05 2001-06-05 Semiconductor wafer thickness measuring device and semiconductor wafer flatness measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31056298A Division JP3221606B2 (en) 1998-10-30 1998-10-30 Donor killer untreated semiconductor wafer thickness measurement method and donor killer untreated semiconductor wafer flatness measurement method

Publications (2)

Publication Number Publication Date
JP2002039711A JP2002039711A (en) 2002-02-06
JP3625058B2 true JP3625058B2 (en) 2005-03-02

Family

ID=19011922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001169906A Expired - Fee Related JP3625058B2 (en) 2001-06-05 2001-06-05 Semiconductor wafer thickness measuring device and semiconductor wafer flatness measuring device

Country Status (1)

Country Link
JP (1) JP3625058B2 (en)

Also Published As

Publication number Publication date
JP2002039711A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
US5418172A (en) Method for detecting sources of contamination in silicon using a contamination monitor wafer
TW200845257A (en) Evaluation method of silicon wafer
JP3625058B2 (en) Semiconductor wafer thickness measuring device and semiconductor wafer flatness measuring device
JP5099024B2 (en) Epitaxial wafer manufacturing method and semiconductor device manufacturing method
JP2010040793A (en) Wafer for heat treat furnace evaluation, heat treatment furnace evaluation method, and semiconductor wafer manufacturing method
JP3221606B2 (en) Donor killer untreated semiconductor wafer thickness measurement method and donor killer untreated semiconductor wafer flatness measurement method
JP6605386B2 (en) Metal contamination concentration analysis method
JP5504634B2 (en) Lifetime evaluation method
JP2931943B2 (en) Wafer flatness measuring method and flatness measuring apparatus
US6002262A (en) Method of and apparatus for measuring flatness of semiconductor wafers that have not been subjected to donor-killer treatment
JP3736749B2 (en) Method for measuring resistivity of semiconductor wafer
JP5928363B2 (en) Evaluation method of silicon single crystal wafer
JP4353121B2 (en) Method for evaluating dopant contamination of semiconductor wafers
JP2006216825A (en) Evaluation method of dopant contamination of member or fixture used in heat treatment process of semiconductor wafer
JPH06345598A (en) Cdte crystal for radiation detecting element and its production
JP2010048795A (en) Detection method of crystal defect of silicon monocrystal wafer
JP2010177269A (en) Method of measuring resistivity of n type semiconductor wafer
JP3788606B2 (en) Surface photovoltaic measurement method
JPH08339946A (en) Semiconductor board, its manufacture and its use method
Aleksandrov et al. p–n junctions in the surface region of silicon obtained by evaporation of silicon in ultrahigh vacuum
Vlasenko et al. Surface gettering of background impurities and defects in GaAs wafers
JP4952871B2 (en) Silicon wafer evaluation method
JP2011243783A (en) Semiconductor wafer evaluation method, standard sample for semiconductor wafer evaluation, and method of manufacturing the same
JP2002083853A (en) Evaluation method of semiconductor wafer and its apparatus
JPH07335927A (en) Fabrication of semiconductor radiation detector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040304

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees