JP3624255B1 - Superconducting magnet device - Google Patents

Superconducting magnet device Download PDF

Info

Publication number
JP3624255B1
JP3624255B1 JP2003350742A JP2003350742A JP3624255B1 JP 3624255 B1 JP3624255 B1 JP 3624255B1 JP 2003350742 A JP2003350742 A JP 2003350742A JP 2003350742 A JP2003350742 A JP 2003350742A JP 3624255 B1 JP3624255 B1 JP 3624255B1
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
coil
superconducting
main coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003350742A
Other languages
Japanese (ja)
Other versions
JP2005111057A (en
Inventor
武 中山
充志 阿部
洋之 渡邊
正典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003350742A priority Critical patent/JP3624255B1/en
Application granted granted Critical
Publication of JP3624255B1 publication Critical patent/JP3624255B1/en
Publication of JP2005111057A publication Critical patent/JP2005111057A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】 静磁場を形成する磁力線が分布する領域のうち撮像領域内の磁場を軸対称にすること。
【解決手段】 静磁場の磁場空間16を形成する主コイル10の内周側に円盤状場の磁極12が配置され、磁極12の中央部がヨーク14の小径部18に連結され、小径部18は、磁気飽和しやすい強磁性材を用いて磁極12よりも小径に形成されている。このため、主コイル10から発生する磁力線が、ヨーク14をリターン回路として、磁極12からヨーク14に移動する過程で、小径部18に集中することになり、主コイル10の軸がずれていても、主コイル10の軸ずれに伴う磁場の影響を受けることなく、磁極12内部の磁場を軸対称にすることができ、結果として、撮像領域内の磁場を軸対称にすることができる。
【選択図】 図1
PROBLEM TO BE SOLVED: To make a magnetic field in an imaging region axially symmetric among regions where magnetic lines of force forming a static magnetic field are distributed.
A disk-shaped magnetic pole 12 is arranged on the inner peripheral side of a main coil 10 that forms a magnetic field space 16 of a static magnetic field, and a central portion of the magnetic pole 12 is connected to a small-diameter portion 18 of a yoke 14 so that the small-diameter portion 18 is connected. Is formed with a diameter smaller than that of the magnetic pole 12 using a ferromagnetic material that is easily magnetically saturated. For this reason, the lines of magnetic force generated from the main coil 10 are concentrated on the small diameter portion 18 in the process of moving from the magnetic pole 12 to the yoke 14 using the yoke 14 as a return circuit, and even if the axis of the main coil 10 is displaced. The magnetic field in the magnetic pole 12 can be axisymmetric without being affected by the magnetic field accompanying the axial deviation of the main coil 10, and as a result, the magnetic field in the imaging region can be axisymmetric.
[Selection] Figure 1

Description

本発明は、超伝導磁石装置に係り、特に、磁気共鳴撮像装置の磁場発生源として用いるに好適な超伝導磁石装置に関する。   The present invention relates to a superconducting magnet device, and more particularly to a superconducting magnet device suitable for use as a magnetic field generation source of a magnetic resonance imaging apparatus.

磁気共鳴撮像装置(Magnetic Resonance Imaging)は、均一な静磁場空間に置かれた被検体(検査体)に電磁波を照射したときに生じる核磁気共鳴現象を利用して被検体の物理的、化学的性質を表す画像を得ることができ、特に、医療用として用いられている。磁気共鳴撮像装置は、主に、被検体が搬入される撮像領域(計測空間)内に均一な静磁場を印加するための静磁場発生手段としての超伝導磁石装置と、撮像領域に向けて電磁波を照射するとともに、撮像領域からの電磁波を受信するRFコイルと、撮像領域内に共鳴現象の位置情報を与えるための勾配磁場(動磁場)を印加する傾斜磁場コイルとを備えて構成されている(特許文献1参照)。   Magnetic Resonance Imaging (Physical Resonance Imaging) uses physical and chemical properties of a subject by utilizing the nuclear magnetic resonance phenomenon that occurs when the subject (test object) placed in a uniform static magnetic field space is irradiated with electromagnetic waves. An image representing the property can be obtained, and it is particularly used for medical purposes. The magnetic resonance imaging apparatus mainly includes a superconducting magnet device as a static magnetic field generating means for applying a uniform static magnetic field in an imaging region (measurement space) into which a subject is carried, and an electromagnetic wave toward the imaging region. And an RF coil that receives electromagnetic waves from the imaging region, and a gradient magnetic field coil that applies a gradient magnetic field (dynamic magnetic field) for giving positional information of the resonance phenomenon in the imaging region. (See Patent Document 1).

磁気共鳴撮像装置では、静磁場強度の増加によって共鳴信号強度が上がり、撮像時間の短縮、高機能撮影が可能になることから、高磁場化が進められており、特に、垂直磁場方式の磁気共鳴撮像装置においては、磁場発生源として、超伝導コイルや強磁性体(磁極)が多く採用されている。   In magnetic resonance imaging devices, the resonance signal strength increases due to an increase in the static magnetic field strength, shortening the imaging time, and enabling high-functional imaging. In an imaging apparatus, a superconducting coil or a ferromagnetic material (magnetic pole) is often used as a magnetic field generation source.

この種の磁気共鳴撮像装置のうち超伝導磁石装置として、磁極対向型マグネットを用いた装置においては、一対の超伝導コイル(主コイル)の内周側にそれぞれ相対向して配置された一対の磁極を互いに連結する支柱の本数を最小限、例えば、1本に抑え、磁極と磁極との間の空間部を広くして開放性を向上させることが試みられている。この支柱は磁性体や非磁性体で構成されている。
特開2002−102205号公報(第4頁から第6頁、図1)
In this type of magnetic resonance imaging apparatus, as a superconducting magnet device, in a device using a pole-facing magnet, a pair of superconducting coils (main coils) arranged in opposition to each other on the inner peripheral side. Attempts have been made to improve the openness by minimizing the number of pillars that connect the magnetic poles to each other to a minimum, for example, one, and widening the space between the magnetic poles. This support | pillar is comprised with the magnetic body and the nonmagnetic body.
JP 2002-102205 A (pages 4 to 6, FIG. 1)

ところが、支柱が磁性体で構成される場合は、各超伝導コイルから発生する磁力線の流れは支柱の位置に依存して非軸対称となり、それに伴い観測領域内の磁場も非軸対称となる。また、支柱が非磁性体で構成される場合は必然的に複数個の超伝導コイルで構成されるため、そのコイルの軸ずれがそのまま観測領域の磁場の非軸対称を引き起こす。超伝導コイルは、その電磁力を支持するため強固に固定する必要があるが、一方で極低温に保持する必要から熱進入量を低減するため断面積が小さく、長い材料で支持しなければならず、その構造は複雑となり、その設置精度を上げるのは難しい。ヨークの本数を1本にすると、主コイルに軸ずれがあるときにはその影響がそのまま各磁極の磁場分布に生じ、各磁極内部の磁場が軸に対して非対称となる。各磁極内部の磁場が軸に対して非対称になるのを補正するには、主コイルの他に主コイルの内周側に補正用コイルを複数本配置したり、各磁極に補正用の鉄量を付加したりする構成を採用することもできるが、これらの構成を採用しても、各磁極内部の磁場が軸に対して非対称になるのを補正するには十分ではない。しかも、各磁極内部の磁場が軸に対して非対称の状態にあるときに、傾斜磁場コイルから発生する動磁場(パルス磁場)が各磁極などの強磁性体に侵入すると、強磁性体中で発生する渦電流や強磁性体のB−H曲線の非線形特性あるいはヒステリシス特性により、磁場空間中の撮像領域(計測空間)の静磁場の磁場均一度に悪影響を与え、結果として、画像に歪が生じることになる。このため、特許文献1に記載されている装置においては、傾斜磁場コイルの外周部に傾斜磁場の漏洩を許容する傾斜磁場漏洩許容領域を設け、この傾斜磁場漏洩許容領域に対向する磁極の外周部を磁気飽和しやすい構造を採用し、磁極の磁化による計測空間内の磁場への悪影響を低減している。   However, when the support is made of a magnetic material, the flow of the magnetic lines of force generated from each superconducting coil becomes non-axisymmetric depending on the position of the support, and accordingly, the magnetic field in the observation region is also non-axisymmetric. Further, when the support column is made of a non-magnetic material, it is inevitably made up of a plurality of superconducting coils, so that the axial misalignment of the coils directly causes non-axis symmetry of the magnetic field in the observation region. The superconducting coil needs to be firmly fixed to support its electromagnetic force, but on the other hand, it must be supported by a long material with a small cross-sectional area to reduce the amount of heat penetration because it needs to be kept at a very low temperature. However, the structure becomes complicated and it is difficult to improve the installation accuracy. When the number of yokes is one, when the main coil has an axis deviation, the effect is generated as it is in the magnetic field distribution of each magnetic pole, and the magnetic field inside each magnetic pole becomes asymmetric with respect to the axis. To correct that the magnetic field inside each magnetic pole is asymmetric with respect to the axis, in addition to the main coil, a plurality of correction coils are arranged on the inner peripheral side of the main coil, or the amount of iron for correction is set on each magnetic pole. However, even if these configurations are employed, it is not sufficient for correcting the magnetic field inside each magnetic pole to be asymmetric with respect to the axis. In addition, when the magnetic field inside each magnetic pole is asymmetric with respect to the axis, if the dynamic magnetic field (pulse magnetic field) generated from the gradient magnetic field coil enters the ferromagnetic material such as each magnetic pole, it is generated in the ferromagnetic material. Eddy currents and the non-linear characteristics or hysteresis characteristics of the BH curve of the ferromagnetic material adversely affect the magnetic field uniformity of the static magnetic field in the imaging region (measurement space) in the magnetic field space, resulting in distortion in the image. It will be. For this reason, in the apparatus described in Patent Document 1, a gradient magnetic field leakage allowable region that allows leakage of a gradient magnetic field is provided in the outer peripheral portion of the gradient magnetic field coil, and the outer peripheral portion of the magnetic pole that faces this gradient magnetic field leakage allowable region Adopts a structure that easily saturates the magnetic field, reducing the adverse effects of the magnetic poles on the magnetic field in the measurement space.

本発明の課題は、静磁場を形成する磁力線が分布する領域のうち撮像領域内の磁場を軸対称にすることにある。   An object of the present invention is to make the magnetic field in the imaging region axially symmetric among the regions in which the lines of magnetic force forming the static magnetic field are distributed.

前記課題を解決するために、本発明の超伝導磁石装置は、環状に形成されて相対向して配置された一対の超伝導コイルと、前記各超伝導コイルの内周側にそれぞれ分かれて配置された一対の磁場調整手段とを備え、前記磁場調整手段は、磁力線が集中する強磁性領域を前記超伝導コイルの径方向に複数配置して形成され、該複数の強磁性領域の断面積S は、該複数の強磁性領域の飽和磁化を2[T]、前記超電導コイルの断面積をS 、前記一対の超電導コイルにより形成される観測領域の磁束密度をB [T]としたとき、S <B ・S /2に設定されてなることを特徴とする。 In order to solve the above-mentioned problems, a superconducting magnet device according to the present invention includes a pair of superconducting coils formed in an annular shape and arranged opposite to each other, and arranged separately on the inner peripheral side of each superconducting coil. Each of the magnetic field adjusting means is formed by arranging a plurality of ferromagnetic regions where magnetic lines of force are concentrated in the radial direction of the superconducting coil, and a cross-sectional area of the plurality of ferromagnetic regions. S 1 is the saturation magnetization of the plurality of ferromagnetic regions is 2 [T], the cross-sectional area of the superconducting coil is S 2 , and the magnetic flux density of the observation region formed by the pair of superconducting coils is B 0 [T]. when, characterized by comprising set to S 1 <B 0 · S 2 /2.

本発明によれば、撮像領域内の磁場を軸対称にすることができ、磁場調整を容易にすることが可能になる。   According to the present invention, the magnetic field in the imaging region can be axisymmetric, and the magnetic field adjustment can be facilitated.

以下、本発明を図面に基づいて説明する。図1(a)は、本発明の参考例を示す超伝導磁石装置の要部断面図、(b)は、(a)の要部平面図である。図1において、超伝導磁石装置は、磁気共鳴撮像装置(Magnetic Resonance Imaging)の磁場発生源として、主コイル10、磁極12、ヨーク(継鉄)14を備えて構成されている。なお、実際には、主コイル、磁極はそれぞれ一対ずつ配置され、上側の主コイル10に相対向して下側の主コイルが配置され、上側の磁極12に相対向して下側の磁極が配置され、各磁極がそれぞれヨーク14に接続されているが、上下の主コイルと磁極は同一の構成であるため、以下、上側の主コイル10と、上側の磁極12を基本に装置の構成を説明する。 The following description will explain the present onset Akira to the accompanying drawings. Fig.1 (a) is principal part sectional drawing of the superconducting magnet apparatus which shows the reference example of this invention, (b) is a principal part top view of (a). In FIG. 1, the superconducting magnet apparatus includes a main coil 10, a magnetic pole 12, and a yoke 14 as a magnetic field generation source of a magnetic resonance imaging apparatus. In practice, a pair of main coils and magnetic poles are arranged, a lower main coil is arranged opposite to the upper main coil 10, and a lower magnetic pole is arranged opposite to the upper magnetic pole 12. The magnetic poles are connected to the yoke 14, but the upper and lower main coils and the magnetic poles have the same configuration. Therefore, hereinafter, the configuration of the apparatus is based on the upper main coil 10 and the upper magnetic pole 12. explain.

主コイル10は、超伝導コイルとして、円環状に形成されて、例えば、コイル容器(図示せず)内に収納されている。コイル容器は、ほぼ円筒状に形成された真空容器、真空容器内に収納された輻射シールド、輻射シールド内に収納されたヘリウム容器を備えて構成されており、ヘリウム容器内に主コイル10や補正コイル(図示せず)が超伝導用冷媒としての液体ヘリウムとともに、収納されている。そして、主コイル10から発生する磁力線によって静磁場の磁場空間16が主コイル間に形成され、磁場空間16の中央部には、磁場均一領域となる撮像領域(図示せず)が球体状に形成されるようになっている。   The main coil 10 is formed in a ring shape as a superconducting coil, and is accommodated in, for example, a coil container (not shown). The coil container includes a vacuum container formed in a substantially cylindrical shape, a radiation shield accommodated in the vacuum container, and a helium container accommodated in the radiation shield. A coil (not shown) is housed together with liquid helium as a superconducting refrigerant. A magnetic field space 16 of a static magnetic field is formed between the main coils by the magnetic field lines generated from the main coil 10, and an imaging region (not shown) serving as a magnetic field uniform region is formed in a spherical shape at the center of the magnetic field space 16. It has come to be.

磁極12は、強磁性材、例えば、鉄を用いて円盤状に形成されて、主コイル10の内周側の領域に配置され、その中央部がヨーク14の小径部18に連結されている。小径部18は、連結部として、ヨーク14本体から突出して形成されているとともに、磁極12よりも小径で円柱状に形成されている。そして、磁極12とヨーク14とを結ぶ領域は、小径部18による強磁性材の領域と空気による非磁性材の領域に分割されており、小径部18による強磁性材の領域は、主コイル10から発生する磁力線が集中または収束する領域として形成されている。   The magnetic pole 12 is formed in a disk shape using a ferromagnetic material, for example, iron, and is disposed in a region on the inner peripheral side of the main coil 10, and a central portion thereof is coupled to the small diameter portion 18 of the yoke 14. The small-diameter portion 18 is formed as a connecting portion so as to protrude from the main body of the yoke 14 and is formed in a columnar shape having a smaller diameter than the magnetic pole 12. A region connecting the magnetic pole 12 and the yoke 14 is divided into a region of a ferromagnetic material by the small diameter portion 18 and a region of a nonmagnetic material by the air, and the region of the ferromagnetic material by the small diameter portion 18 is divided into the main coil 10. It is formed as a region where the magnetic lines of force generated from are concentrated or converged.

すなわち、小径部18は、磁気飽和しやすい強磁性材(鉄)を用いて磁極12よりも小径に形成されているので、主コイル10から発生する磁力線が、ヨーク14をリターン回路として、磁極12からヨーク14に移動する過程で、小径部18に集中することになる。これにより、磁力線は1ヶ所に集中されるため、磁極12上では磁力線は放射状、すなわち軸対称となり、ヨーク14本体の形状が非軸対称となっている影響を低減できる。すなわち、設置精度の調整が難しい超伝導コイルよりも小径部18の設置精度を管理するだけで、磁極12内部の磁場を軸対称にすることができ、結果として、撮像領域内の磁場を軸対称にすることができる。   That is, since the small diameter portion 18 is formed with a smaller diameter than the magnetic pole 12 using a ferromagnetic material (iron) that is easily magnetically saturated, the magnetic field lines generated from the main coil 10 use the yoke 14 as a return circuit and the magnetic pole 12. In the process of moving to the yoke 14, it concentrates on the small diameter portion 18. As a result, the magnetic lines of force are concentrated in one place, so that the influence of the magnetic lines of force on the magnetic pole 12 is radial, that is, axially symmetric and the shape of the yoke 14 body is non-axisymmetric. That is, the magnetic field inside the magnetic pole 12 can be made axisymmetric only by managing the installation accuracy of the small-diameter portion 18 rather than the superconducting coil in which the installation accuracy is difficult to adjust. As a result, the magnetic field in the imaging region is axisymmetric. Can be.

すなわち、図2に示すように、従来技術のように、ヨーク14に小径部18がないときには、磁極12を通過した磁力線がそのままヨーク14に入るので、ヨーク14の非軸対称の影響が磁極12内部の磁場にそのまま生じ、磁極12内部の磁場が軸対称にならない。これに対して、本発明によれば、主コイル10から発生する磁力線が磁極12からヨーク14に移動する過程で、小径部18の外周側に集中するので、主コイル10の軸がずれていても、主コイル10の軸ずれに伴う磁場の影響を受けることなく、磁極12内部の磁場を軸対称にすることができる。   That is, as shown in FIG. 2, when the yoke 14 does not have the small-diameter portion 18 as in the prior art, the lines of magnetic force that have passed through the magnetic pole 12 enter the yoke 14 as they are, and therefore the non-axisymmetric effect of the yoke 14 is affected by the magnetic pole 12. The magnetic field inside the magnetic pole 12 does not become axially symmetric as it occurs in the internal magnetic field. On the other hand, according to the present invention, the lines of magnetic force generated from the main coil 10 are concentrated on the outer peripheral side of the small diameter portion 18 in the process of moving from the magnetic pole 12 to the yoke 14, so that the axis of the main coil 10 is displaced. However, the magnetic field inside the magnetic pole 12 can be made axisymmetric without being affected by the magnetic field due to the axial deviation of the main coil 10.

このためには主コイル10で発生した磁束がほとんど全て小径部18を通過すれば良いので、鉄の飽和磁化を2[T]とし、ヨーク14のうち主コイル10から発生する磁力線が集中する領域となる小径部18の断面積をSとし、主コイル10の断面積をSとし、撮像領域における磁束密度をB [T]とすると、S<B・S/2に設定することができる。
For this purpose, almost all the magnetic flux generated in the main coil 10 only needs to pass through the small diameter portion 18, so that the saturation magnetization of iron is 2 [T] and the magnetic field lines generated from the main coil 10 in the yoke 14 are concentrated. the cross-sectional area of the small diameter portion 18 serving as a S 1, the cross-sectional area of the main coil 10 and S 2, set the magnetic flux density in the imaging region when the B 0 [T], the S 1 <B 0 · S 2 /2 can do.

なお、小径部18が複数に分割される場合にはその外形線が取り囲む面積をSとする。また超伝導コイル10は、撮像領域の磁場と同じ向きの磁場を発生するコイルを指し、複数ある場合は、その平均値をSとする。 In the case where the small-diameter portion 18 is divided into a plurality to the area in which the outline surrounds the S 1. The superconducting coil 10 refers to a coil that generates a magnetic field in the same direction as the magnetic field in the imaging region, and when there are a plurality of, and the average value S 2.

次に、本発明の他の参考例を図3にしたがって説明する。本例は、上側のコイル容器20内に収納された複数の主コイル10の内周側に磁場調整手段として、強磁性材(鉄)で構成された円柱状の軸状部材22を配置し、この軸状部材22と、下側のコイル容器(図示せず)内に収納された複数の主コイルの内周側に磁場調整手段として配置された軸状部材とを、空気をリターン回路として磁気結合したものであり、他の構成は図1の例と同様である。 Next, another reference example of the present invention will be described with reference to FIG. In this example , a cylindrical shaft-shaped member 22 made of a ferromagnetic material (iron) is arranged as a magnetic field adjusting means on the inner peripheral side of the plurality of main coils 10 housed in the upper coil container 20, This shaft-shaped member 22 and the shaft-shaped member disposed as magnetic field adjusting means on the inner peripheral side of the plurality of main coils housed in a lower coil container (not shown) are magnetized using air as a return circuit. The other configurations are the same as those in the example of FIG.

すなわち、軸状部材22は、各主コイル10の内周側に、各主コイル10から発生する磁力線が集中する領域を形成するために、強磁性材を用いて構成されて、非磁性材の領域中に配置されている。   That is, the shaft-shaped member 22 is configured using a ferromagnetic material in order to form a region where magnetic lines of force generated from each main coil 10 are concentrated on the inner peripheral side of each main coil 10. Arranged in the area.

本例においては、各主コイル10から発生する磁力線が、空気をリターン回路として、磁場空間16から軸状部材22に移動する過程で、軸状部材22に集中することになる。これにより、磁力線は、軸状部材22を中心に放射線状に集められるため、超伝導コイルに依存することなく、軸状部材22の設置精度をしっかり管理すれば、撮像領域内の磁場を軸対称にできる。 In this example , the lines of magnetic force generated from each main coil 10 are concentrated on the shaft-shaped member 22 in the process of moving from the magnetic field space 16 to the shaft-shaped member 22 using air as a return circuit. As a result, the magnetic lines of force are collected radially around the shaft-shaped member 22, so that the magnetic field in the imaging region is axisymmetrical if the installation accuracy of the shaft-shaped member 22 is well managed without depending on the superconducting coil. Can be.

次に、本発明の実施形態を図4にしたがって説明する。本実施形態は、上側のコイル容器20内に収納された複数の主コイル10の内周側に磁場調整手段として、強磁性材(鉄)で構成された円柱状の軸状部材24を配置するとともに、強磁性材で構成されて軸状部材24の周囲を囲む筒体26を配置し、軸状部材24および筒体26と、下側のコイル容器(図示せず)内に収納された複数の主コイルの内周側に磁場調整手段として配置された軸状部材および筒体とを、空気をリターン回路として磁気結合したものであり、他の構成は図3の例と同様である。 Next, the implementation form of the present invention according to FIG. In the present embodiment, a columnar shaft-shaped member 24 made of a ferromagnetic material (iron) is disposed as the magnetic field adjusting means on the inner peripheral side of the plurality of main coils 10 housed in the upper coil container 20. In addition, a cylindrical body 26 made of a ferromagnetic material and surrounding the shaft-shaped member 24 is arranged, and the shaft-shaped member 24 and the cylindrical body 26 and a plurality of coils housed in a lower coil container (not shown). A shaft-like member and a cylinder arranged as magnetic field adjusting means on the inner peripheral side of the main coil are magnetically coupled using air as a return circuit, and the other configuration is the same as the example of FIG.

すなわち、軸状部材24、26は、各主コイル10の内周側に、各主コイル10から発生する磁力線が集中する領域を複数個、例えば、2個形成するために、強磁性材を用いて構成されて、非磁性材(空気)の領域中に配置されている。   That is, the shaft-like members 24 and 26 use a ferromagnetic material to form a plurality of, for example, two regions where magnetic lines of force generated from each main coil 10 are concentrated on the inner peripheral side of each main coil 10. And is arranged in a non-magnetic material (air) region.

本実施形態においては、各主コイル10から発生する磁力線が、空気をリターン回路として、磁場空間16から軸状部材24、筒体26に移動する過程で、軸状部材24、筒体26に集中することになる。これにより、磁力線は、軸状部材24、筒体26の軸中心に向かって放射状に集められるため、超伝導コイルに依存することなく、軸状部材24、筒体26の設置精度をしっかり管理すれば、撮像領域内の磁場を軸対称にできる。   In the present embodiment, the lines of magnetic force generated from each main coil 10 are concentrated on the shaft-shaped member 24 and the cylinder 26 in the process of moving from the magnetic field space 16 to the shaft-shaped member 24 and the cylinder 26 using air as a return circuit. Will do. As a result, the magnetic lines of force are collected radially toward the axial center of the shaft-like member 24 and the cylindrical body 26, so that the installation accuracy of the shaft-like member 24 and the cylindrical body 26 can be firmly managed without depending on the superconducting coil. For example, the magnetic field in the imaging region can be axisymmetric.

なお、筒体26は、筒状ではなく、軸状部材24を取り囲むように軸対称に配置されていれば、本発明の効果が得られる。   It should be noted that the effect of the present invention can be obtained as long as the cylindrical body 26 is not cylindrical but is arranged symmetrically so as to surround the shaft-shaped member 24.

また、同様に軸状部材24も軸対称に配置されれば、分割されていても良い。   Similarly, the shaft-like member 24 may be divided as long as it is arranged symmetrically.

図1、図2の例および前記実施形態における超伝導磁石装置を用いてMRI装置を構成するに際しては、被検体としての患者がベッドに乗せられた状態で磁場空間14内に搬送されたときに、被検体からの核磁気共鳴信号を解析する解析手段としての解析装置が設けられることになる。 1, when configuring the MRI apparatus using a superconducting magnet apparatus of the example and the implementation form of FIG. 2, when conveyed to the magnetic field space 14 with the patient as the subject was placed on the bed In addition, an analysis device is provided as analysis means for analyzing the nuclear magnetic resonance signal from the subject.

この場合、上下のコイル容器のうち磁場空間16との対向面側には、磁場空間16のうち撮像領域内に共鳴現象の位置情報となる動磁場を形成する傾斜磁場コイルがそれぞれ収納され、各傾斜磁場コイルの磁場空間16側には、撮像領域に向きて電磁波を照射するとともに、撮像領域からの電磁波を受信する送受信用コイルとしてのRFコイルが配置される。   In this case, in the upper and lower coil containers, on the side facing the magnetic field space 16, gradient magnetic field coils that form a dynamic magnetic field serving as positional information of the resonance phenomenon are stored in the imaging region of the magnetic field space 16, respectively. On the magnetic field space 16 side of the gradient magnetic field coil, an RF coil is disposed as a transmission / reception coil that radiates electromagnetic waves toward the imaging region and receives electromagnetic waves from the imaging region.

なお、上記実施形態では超伝導コイルを用いたものについて説明したが、常伝導タイプの装置においても本発明を適用することが可能である。   In addition, although the said embodiment demonstrated what used the superconducting coil, it is possible to apply this invention also to a normal conduction type apparatus.

(a)は、本発明の参考例を示す超伝導磁石装置の要部断面図、(b)は、(a)の要部平面図である。(A) is principal part sectional drawing of the superconducting magnet apparatus which shows the reference example of this invention, (b) is a principal part top view of (a). (a)は、本発明に係る超伝導磁石装置の磁化特性を説明するための要部断面図、(b)は、本発明に係る超伝導磁石装置の磁化特性と従来技術の磁化特性との関係を説明するための特性図である。(A) is principal part sectional drawing for demonstrating the magnetization characteristic of the superconducting magnet apparatus which concerns on this invention, (b) is the magnetization characteristic of the superconducting magnet apparatus which concerns on this invention, and the magnetization characteristic of a prior art It is a characteristic view for demonstrating a relationship. (a)は、本発明の他の参考例を示す超伝導磁石装置の要部断面図、(b)は、(a)の要部平面図である。(A) is principal part sectional drawing of the superconducting magnet apparatus which shows the other reference example of this invention, (b) is a principal part top view of (a). (a)は、本発明の実施形態を示す超伝導磁石装置の要部断面図、(b)は、(a)の要部平面図である。(A) is a fragmentary cross-sectional view of a superconducting magnet apparatus according to the implementation embodiments of the present invention, (b) are a plan view of (a).

符号の説明Explanation of symbols

10 主コイル
12 磁極
14 ヨーク
16 磁場空間
18 小径部
20 コイル容器
22、24 軸状部材
26 筒体
DESCRIPTION OF SYMBOLS 10 Main coil 12 Magnetic pole 14 Yoke 16 Magnetic field space 18 Small diameter part 20 Coil container 22, 24 Axial member 26 Cylindrical body

Claims (3)

環状に形成されて相対向して配置された一対の超伝導コイルと、前記各超伝導コイルの内周側にそれぞれ分かれて配置された一対の磁場調整手段とを備え、前記磁場調整手段は、磁力線が集中する強磁性領域を前記超伝導コイルの径方向に複数配置して形成され、該複数の強磁性領域の断面積S は、該複数の強磁性領域の飽和磁化を2[T]、前記超電導コイルの断面積をS 、前記一対の超電導コイルにより形成される観測領域の磁束密度をB [T]としたとき、S <B ・S /2に設定されてなる超伝導磁石装置。 A pair of superconducting coils formed in an annular shape and arranged opposite to each other , and a pair of magnetic field adjusting means arranged separately on the inner peripheral side of each superconducting coil, each magnetic field adjusting means comprising: A plurality of ferromagnetic regions in which the magnetic field lines are concentrated are arranged in the radial direction of the superconducting coil, and the cross-sectional area S 1 of the plurality of ferromagnetic regions has a saturation magnetization of 2 [T ], wherein the cross-sectional area of the superconducting coil S 2, when the magnetic flux density of the observation area formed by the pair of superconducting coils was B 0 [T], is set to S 1 <B 0 · S 2 /2 consisting of a superconducting magnet apparatus. 請求項1に記載の超伝導磁石装置において、前記磁場調整手段は、それぞれ強磁性体の領域と非磁性体の領域とに分割されてなることを特徴とする超伝導磁石装置。   2. The superconducting magnet device according to claim 1, wherein the magnetic field adjusting means is divided into a ferromagnetic region and a non-magnetic region, respectively. 請求項1に記載の超伝導磁石装置において、前記磁場調整手段は、強磁性材で形成された軸状部材と、該軸状部材を囲んで配置され強磁性材で形成された円筒状部材とを備えてなることを特徴とする超伝導磁石装置。   2. The superconducting magnet device according to claim 1, wherein the magnetic field adjusting means includes: a shaft-like member formed of a ferromagnetic material; and a cylindrical member disposed around the shaft-like member and formed of a ferromagnetic material. A superconducting magnet device comprising:
JP2003350742A 2003-10-09 2003-10-09 Superconducting magnet device Expired - Fee Related JP3624255B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350742A JP3624255B1 (en) 2003-10-09 2003-10-09 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350742A JP3624255B1 (en) 2003-10-09 2003-10-09 Superconducting magnet device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004181109A Division JP2005111253A (en) 2004-06-18 2004-06-18 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JP3624255B1 true JP3624255B1 (en) 2005-03-02
JP2005111057A JP2005111057A (en) 2005-04-28

Family

ID=34373534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350742A Expired - Fee Related JP3624255B1 (en) 2003-10-09 2003-10-09 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP3624255B1 (en)

Also Published As

Publication number Publication date
JP2005111057A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4856430B2 (en) Electromagnet device
US7567083B2 (en) Superconductive magnetic apparatus for magnetic resonance imaging unit
US7071694B1 (en) Magnet assembly of an MRI system with concentric annular ferromagnetic laminations
CN102360691B (en) Open-type nuclear magnetic resonance magnet system with iron hoop structure
JP4639948B2 (en) Magnet apparatus and magnetic resonance imaging apparatus using the same
JPH0580125B2 (en)
US11875937B2 (en) Lightweight asymmetric array of magnet elements
US6498488B2 (en) Magnetic resonance imaging apparatus
JP2001224571A (en) Open type superconductive magnetic and magnetic resonance imaging instrument using it
JP3583528B2 (en) Electromagnet for use in magnetic resonance imaging equipment
JP4648722B2 (en) Magnetic resonance imaging system
JP3624255B1 (en) Superconducting magnet device
JP3861058B2 (en) Open magnet with embedded magnetic field forming coil
JP4921935B2 (en) Electromagnet apparatus and magnetic resonance imaging apparatus
JP2005111253A (en) Superconducting magnet device
JP3699789B2 (en) Superconducting magnet device
JPH03147305A (en) Electromagnet provided with magnetic shield
US20110241812A1 (en) Magnetic field generator based on dual permanent magnet rings
JP2008130947A (en) Superconducting magnet device and magnetic resonance imaging device using the same
JP2008125841A (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP4839078B2 (en) Magnetic resonance imaging apparatus and electromagnet apparatus
JPH0510334Y2 (en)
JP2020036764A (en) Magnetic resonance imaging apparatus
JP2014223169A (en) Magnetic resonance imaging device
JP2004329526A (en) Magnetic resonance imaging apparatus

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees