JP3623631B2 - Vinyl chloride resin powder and paste sol composition using the same - Google Patents
Vinyl chloride resin powder and paste sol composition using the same Download PDFInfo
- Publication number
- JP3623631B2 JP3623631B2 JP05099197A JP5099197A JP3623631B2 JP 3623631 B2 JP3623631 B2 JP 3623631B2 JP 05099197 A JP05099197 A JP 05099197A JP 5099197 A JP5099197 A JP 5099197A JP 3623631 B2 JP3623631 B2 JP 3623631B2
- Authority
- JP
- Japan
- Prior art keywords
- vinyl chloride
- component
- weight
- chloride resin
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は塩化ビニル系樹脂粉末及びこれを用いたペーストゾル組成物に関し、更に詳しくは、特にペーストゾルとして有用な、すなわち低可塑剤量配合に対応可能で、低剪断領域から高剪断領域までの広い剪断速度領域にわたって低粘度で加工性に優れたペーストゾルを与える塩化ビニル系樹脂粉末及びこれを用いたペーストゾル組成物に関する。
【0002】
【従来の技術】
塩化ビニル系樹脂粉末のペースト加工は、塩化ビニル系ペースト樹脂粉末及び可塑剤を必須成分とし、必要に応じて安定剤、充填剤等を加えて混合・混練してペーストゾル化し、その流動性を利用して賦形し、その後加熱ゲル化して成形加工する方法である。ペースト加工においては、その加工性と加工製品の品質は、ペーストゾルの流動性(ゾル粘度)と密接な関係にあり、必須成分である可塑剤の配合量が少ないほどペーストゾルは高粘度となり、加工製品は高硬度となる。すなわち、高硬度のペースト加工製品を得るためには、可塑剤の配合量を減らせばよいが、ペーストゾルの粘度が高くなりすぎると、塗工性が悪くなり、ついには塗工できなくなってしまう。
【0003】
従来、塩化ビニル系樹脂粉末100重量部に対して可塑剤を50重量部以下、特に30重量部以下配合したペーストゾルは、著しく高粘度であり、希釈剤(加熱ゲル化時に揮発する低沸点の溶剤)を添加、あるいは塩化ビニル系ペースト樹脂粉末よりも大きな粒子を併用することにより、ゾル粘度を下げて塗工を行ってきた。しかし、希釈剤を多量に添加した場合、加熱ゲル化時に希釈剤が揮発して加工製品にピンホールが生じる、希釈剤の蒸気が作業環境を汚染する等の問題がある。また、一般に平均粒子径が20〜100μmの範囲にある塩化ビニル系ブレンディング樹脂粉末(以下、ブレンディング樹脂粉末と記す)を併用した場合、薄膜用途においては、塗工時に大粒子による筋斑が発生し、また低温加工用途には、ゲル化不良の大粒子が未溶融物として残る等により、加工製品の外観性及び引張特性、耐衝撃性、耐熱性、耐寒性、耐候性等が悪くなる等が懸念される。
【0004】
上記のように、希釈剤あるいはブレンディング樹脂粉末を使用した場合、加工製品に欠陥が生じやすいという問題があり、外観性及び引張特性、耐衝撃性、耐熱性、耐寒性、耐候性等の品質面を損なうことなく、低可塑剤量配合に対応できる塩化ビニル系樹脂粉末の開発が望まれていた。
【0005】
【発明が解決しようとする課題】
本発明は、上記従来の問題点を解決するもので、希釈剤あるいはブレンディング樹脂粉末を使用しなくても、低可塑剤量配合に対応可能であり、高品質を維持しながら、低剪断領域から高剪断領域までの広い剪断速度領域にわたって低粘度で加工性に優れたペーストゾルを与える塩化ビニル系樹脂粉末及びこれを用いたペーストゾル組成物を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らはかかる実情に鑑み鋭意研究の結果、特定の比表面積及び粒子径分布をもった塩化ビニル系樹脂粉末が、上記課題を解決した塩化ビニル系ペーストゾル組成物を提供することを見いだした。
すなわち本発明の第1は、比表面積が1.0〜3.5m2/gであり、(A)2μm未満に粒子径分布をもち、その分布のピーク径が0.2〜1.5μmに少なくとも1つある粒子15〜55重量%、(B)2μm以上4μm未満の粒子15重量%未満、及び(C)4μm以上に粒子径分布をもち、その分布のピーク径が7〜15μmに少なくとも1つある粒子40〜80重量%で構成されたことを特徴とする塩化ビニル系樹脂粉末を、
本発明の第2は、上記塩化ビニル系樹脂粉末と可塑剤とからなることを特徴とする塩化ビニル系ペーストゾル組成物を、それぞれ内容とする。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の塩化ビニル系樹脂粉末は、比表面積が1.0〜3.5m2/gであり、(A)2μm未満に粒子径分布をもち、その分布のピーク径が0.2〜1.5μmに少なくとも1つある粒子15〜55重量%、(B)2μm以上4μm未満の粒子15重量%未満、及び(C)4μm以上に粒子径分布をもち、その分布のピーク径が7〜15μmに少なくとも1つある粒子40〜80重量%で構成されたことを特徴とする。
本発明の塩化ビニル系樹脂粉末は、塩化ビニル単量体、又は塩化ビニル単量体とこれと共重合可能な単量体の混合物を水性媒体中で、乳化剤、必要に応じて、高級アルコール、高級脂肪酸等の分散助剤、更に油溶性重合開始剤を加えて均質化した後微細懸濁重合するか、あるいは水溶性開始剤を加えて乳化重合、シード乳化重合する等により重合する。続いて、重合後の塩化ビニル系樹脂の水性均質分散液(ラテックス)を噴霧乾燥する等により製品とされる。微細懸濁重合においては、均質化条件によって単量体液滴の粒子径が制御され、通常均質化装置の吸入側と吐出側の圧力差が小さいほど、大きな粒子径をもつ粒子が得られる。通常用いられる均質化装置としては、1段または多段の高圧ホモジナイザー、コロイドミル、1段または多段の遠心ポンプ及びパイプラインミキサー等の機械的分散装置が挙げられ、これらは単独または組み合わせて用いられる。
本発明の塩化ビニル系樹脂粉末は、重合又はラテックスブレンドのいずれで作製してもよいが、粒子径分布のコントロールの容易さからラテックスブレンドが好ましい。
【0008】
塩化ビニル単量体と共重合可能な単量体の例としては、エチレン、プロピレン、ブテン等のオレフィン類、酢酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル等のビニルエステル類、メチルビニルエーテル、エチルビニルエーテル、オクチルビニルエーテル、ラウリルビニルエーテル等のビニルエーテル類、塩化ビニリデン等のビニリデン類、アクリル酸、メタクリル酸、フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等の不飽和カルボン酸及びその酸無水物、アクリル酸メチル、アクリル酸エチル、マレイン酸モノメチル、マレイン酸ジメチル、マレイン酸ブチルベンジル等の不飽和カルボン酸エステル類、スチレン、α−メチルスチレン、ジビニルベンゼン等の芳香族ビニル化合物、アクリロニトリル等の不飽和ニトリル類、更にはジアリルフタレート等の架橋性モノマー等が挙げられる。これらは単独又は2種以上組み合わせて用いられる。
【0009】
乳化剤としては、アニオン性乳化剤が通常単量体100重量部当たり0.1〜3重量部程度用いられる。アニオン性乳化剤としては、脂肪酸、アルキル硫酸エステル、アルキルベンゼンスルホン酸、アルキルスルホコハク酸、α−オレフィンスルホン酸、アルキルエーテルリン酸エステル等のカリウム、ナトリウム、アンモニウム塩等が挙げられる。これらは単独又は2種以上組み合わせて用いられる。分散助剤として、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール等の高級アルコール類、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の高級脂肪酸類を用いることもできる。これらは単独又は2種以上組み合わせて用いられる。
【0010】
微細懸濁重合に用いる油溶性開始剤としては、ジラウロイルパーオキサイド、ジ−3,5,5,トリメチルヘキサノイルパーオキサイド等のジアシルパーオキサイド類、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート等のパーオキシジカーボネート類、t−ブチルパーオキシピバレート、t−ブチルパーオキシネオデカノエート等のパーオキシエステル類等の有機過酸化物開始剤、及び2,2′−アゾビスイソブチロニトリル、2,2′−アゾビス(2,4−ジメチルバレロニトリル)、2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ系開始剤を用いることができる。これらは単独又は2種以上組み合わせて用いられる。乳化重合に用いる水溶性開始剤としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、過酸化水素等を用い、必要に応じて、亜硫酸ナトリウム、チオ硫酸ナトリウム、ホルムアルデヒドナトリウムスルホキシラート2水塩、アスコルビン酸、アスコルビン酸ナトリウム等の還元剤を併用することができる。これらは単独又は2種以上組み合わせて用いられる。
【0011】
以上の如くして得られた塩化ビニル系樹脂粉末は、特にペーストゾル用として有用である。すなわち、本発明の塩化ビニル系樹脂粉末は、必須成分として可塑剤、必要に応じて、安定剤、充填剤、補強剤、希釈剤、減粘剤、酸化防止剤、紫外線吸収剤、発泡剤、難燃剤、帯電防止剤、滑剤、顔料、表面処理剤、チキソトロープ剤、接着性付与剤等の1種又は2種以上を加えて混練してペーストゾル組成物とし、その流動性を利用して賦形し、その後加熱ゲル化して成形加工される。尚、希釈剤を使用する場合は、前記した如く、多量に添加すると加工製品の外観を損ない、また作業環境を汚染するので、これらの問題を惹き起こさない範囲内で使用するのが好ましい。
【0012】
本発明に用いる可塑剤について特に制限は無いが、1次可塑剤としては、ジ−2−エチルヘキシルフタレート、ジ−n−オクチルフタレート、ジブチルフタレート、ジイソノニルフタレート等のフタル酸エステル、トリクレジルホスフェート、トリ−2−エチルヘキシルホスフェート等のリン酸エステル、ジ−2−エチルヘキシルアジペート等のアジピン酸エステル、ジ−2−エチルヘキシルセバケート等のセバシン酸エステル、ジ−2−エチルヘキシルアゼレート等のアゼライン酸エステル、トリ−2−エチルヘキシルトリメリテート等のトリメリット酸エステル、ポリエステル系可塑剤等を用いることができる。これらは単独又は2種以上組み合わせて用いられる。また、クエン酸エステル、グリコール酸エステル、塩素化パラフィン、塩素化脂肪酸エステル、エポキシ系可塑剤等の2次可塑剤を併用してもよい。これらの2次可塑剤も単独又は2種以上組み合わせて用いられる。その他の配合剤についても公知のものを使用することができる。
【0013】
可塑剤の量は特に制限されない。しかしながら、本発明の塩化ビニル系樹脂粉末は特に低可塑剤量配合に好適であり、例えば、塩化ビニル系樹脂粉末100重量部に対して可塑剤20〜50重量部配合して、高品質を維持しながら、低剪断領域から高剪断領域までの広い範囲にわたって低粘度で加工性に優れた高硬度ペースト加工用塩化ビニル系ペーストゾル組成物を提供することができる。
【0014】
成形加工法としてはコーティング(塗布)法、ディッピング(浸漬)法、スプレー(噴霧)塗装法、キャスティング法、スラッシュ成型法、回転成型法、発泡成型法等がある。いずれの加工法においても、その加工性は、主にペーストゾルの流動性(ゾル粘度)により規定されるが、成型加工法により、重要となる剪断速度領域及びそれぞれの剪断速度下で要求される粘度レベルが異なる。すなわち、ディッピング法、スラッシュ成型法及び回転成型法等では低剪断速度領域での粘度が重要であり、コーティング法及びスプレー塗装法等では低剪断速度領域での粘度に加えて高剪断速度領域での粘度も重要となる。
【0015】
ペーストゾルの流動性(ゾル粘度)は、ペーストゾル作製時の可塑剤等の配合及び混練条件によって異なるが、塩化ビニル系ペースト樹脂粉末の粒子径分布及び形状は、重要な支配因子となる。塩化ビニル系ペースト樹脂粉末は、ラテックス状態での1次粒子が乾燥工程で凝集・集合して2次粒子を形成することがあり、更に粒度要因が複雑になっている。
【0016】
一般に、1次粒子は粒子径が0.1〜数μm程度で、真球に近い構造をしているのに対し、2次粒子は粒子径が数μm〜100μm程度で、不定形で空隙の多い構造をしている場合が多い。この2次粒子は、粉砕及びペーストゾル化の際の混合・混練過程で1次粒子まで崩壊するように設計されている場合もあれば、ペーストゾル中でも崩壊しにくいように設計されている場合もある。
【0017】
本発明において、これらの1次粒子、2次粒子の粒子径分布、形状及び凝集・集合状態を総合的に定量化する指標は比表面積である。一般に、粒子径が大きく、形状が真球に近く、粒子内空隙の小さい塩化ビニル系樹脂粉末ほど比表面積が小さくなり、低可塑剤量配合でも流動性のよいペーストゾルを与える。
更に、粒子径分布が多分散型でペーストゾル中で粒子間空隙の少ない最密充填状態を形成することも重要であり、そのためには、1次粒子に分布をもたせること、2次粒子を崩壊しにくいように設計して1次粒子と2次粒子で多分散系とすること、及びブレンディング樹脂粉末を併用すること等が挙げられる。低可塑剤量配合に適応できる2次粒子は、緻密で崩壊しにくい凝集粒子が好ましいが、大きな凝集粒子が崩壊せずに残ると、塗工時の筋斑の原因となりやすい。また、ブレンディング樹脂粉末を併用した場合、一般には減粘効果があるが、前記した如く、薄膜用途においては、塗工時に大粒子による筋斑が発生し、また低温加工用途には、ゲル化不良の大粒子が未溶融物として残る等して、加工製品の外観性及び強度や耐久性が悪くなる等のことが懸念される。薄膜用途及び低温加工用途以外の用途では、ブレンディング樹脂粉末を50重量%未満併用しても差し支えない。しかし、一般にブレンディング樹脂粉末は、塩化ビニル系ペースト樹脂粉末と比べて形状がいびつで粒子内空隙が多いため、特に低可塑剤量配合において多量、特に55〜80重量%併用した場合にはその影響が無視できなくなる。従って、低可塑剤量化を図るためには、1次粒子自体に分布をもたせることが、ペーストゾルの流動性及び加工製品の品質両面で一層好ましい。
【0018】
特に、低可塑剤量配合、すなわち、塩化ビニル系樹脂粉末100重量部に対して可塑剤20〜50重量部配合に対応可能なペーストゾル組成物を提供するためには、塩化ビニル系樹脂粉末の比表面積と粒子径分布が特定の範囲に入っていることが重要である。塩化ビニル系樹脂粉末の比表面積は1.0〜3.5m2/gであり、好ましくは1.0〜3.0m2/g、より好ましくは1.0〜2.5m2/gである。比表面積が3.5m2/gを越えると、粒子表面に接触する可塑剤が多くなるため、流動性に寄与する可塑剤量が減り、流動性が低下する。比表面積が小さいほど低粘度のペーストゾルを与えるが、1.0m2/g未満では、4μm以上の大粒子が大半を占めることとなり、大粒子の間隙を埋める小粒子がほとんどない疎充填状態をとるため、間隙部分に取り込まれた可塑剤量が多くなり、粘度が上昇する。
【0019】
低粘度のペーストゾルを得るためには、比表面積を小さくして粒子表面に接触する可塑剤量を少なくすると共に、更に粒子径分布を多分散型として大粒子の間隙を小粒子でうめた最密充填状態を形成させて粒子間に取り込まれた可塑剤量を少なくすることが重要である。塩化ビニル系樹脂粉末の粒子径分布は、(A)2μm未満に粒子径分布をもち、その分布のピーク径が0.2〜1.5μmに少なくとも1つある粒子15〜55重量%、(B)2μm以上4μm未満の粒子15重量%未満、及び(C)4μm以上に粒子径分布をもち、その分布のピーク径が7〜15μmに少なくとも1つある粒子40〜80重量%の範囲にあることが必要である。尚、(A)、(B)、(C)3成分の合計で100重量%である。特に、(A)成分の分布のピーク径については0.2〜1μm、更には0.5〜1μmで、構成比率については15〜40重量%、(B)成分の構成比率については10重量%未満、更には5重量%未満、及び(C)成分の分布のピーク径については9〜15μmで、構成比率については55〜80重量%であることが望ましい。
尚、(B)成分はピーク径を有していてもよいし、有していなくてもよい。更に、充填性を上げて粒子間の空隙をなくすため、(A)成分と(C)成分がそれぞれ1つではなく2つ以上のピーク径をもってもよい。特に(A)成分のピーク径が0.2〜0.5μmに1つ以上、また0.5〜1.5μmに1つ以上存在すると粒子間の間隙が少なくなるので好ましい。
【0020】
小粒径である(A)成分と大粒径である(C)成分のピーク径が離れているほど、ペーストゾル中で(C)成分の間隙を(A)成分で埋めた最密充填状態が形成されやすく、その結果、粒子間に取り込まれた可塑剤量が少なくなり、低可塑剤量でも流動性のよいペーストゾルが得られる。(A)成分と(C)成分のピーク径の比(C)/(A)は、7以上が好ましく、9以上がより好ましく、11以上が特に好ましい。そのためには、(A)成分のピーク径を小さく、(C)成分のピーク径を大きくすればよいが、(A)成分のピーク径が0.2μm未満であると、比表面積が大きくなり、ペーストゾルの流動性が確保されず、また(C)成分のピーク径が15μmを越える場合は、ブレンディング樹脂粉末の場合と同様に、加工製品の外観性及び強度や耐久性等が悪くなる等が懸念される。
また、各成分の構成比率について、(A)成分が15重量%未満で(C)成分が80重量%を越えると、(C)成分の間隙を埋めるのに(A)成分が不十分であり、また(A)成分が55重量%を越え(C)成分が40重量%未満であると、比表面積が大きくなり、ペーストゾルの流動性が確保されない。(A)成分と(C)成分の中間に位置する(B)成分は、(A)成分と(C)成分の最密充填状態の障害となり、特に15重量%以上存在するとその影響は無視できなくなる。(B)成分が15重量%以上存在する塩化ビニル系樹脂粉末を用いたペーストゾル組成物は、ペーストゾル中での粒子の充填性が悪いため、低剪断領域での粘度が低い場合であっても高剪断領域での粘度が高くなる。(B)成分は少ないほど好ましく、その下限については特に制限されず0重量%を含む。但し、重合又はラテックスブレンドによる塩化ビニル系樹脂粉末の作製の容易さからは、2重量%迄が好適に採用される。
【0021】
上記のように、特定の比表面積及び粒子径分布をもった塩化ビニル系樹脂粉末は、従来、希釈剤あるいはブレンディング樹脂粉末を使用することでしか対応できなかった低可塑剤量配合にも対応できる高硬度ペースト加工用塩化ビニル系ペーストゾル組成物を提供することができる。また、このペーストゾルを用いた加工製品は、希釈剤やブレンディング樹脂粉末の使用に伴う外観性の不良及び引張特性、耐衝撃性、耐熱性、耐寒性、耐候性等の品質面での低下がないという利点があり、コーティング法、ディッピング法、スプレー塗装法、回転成型法等のあらゆる成型加工法で好適な製品を提供することができる。
【0022】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
【0023】
尚、塩化ビニル系樹脂粉末の比表面積、粒子径分布、ペーストゾル組成物の低剪断粘度及び高剪断粘度は、下記の方法で測定した。
【0024】
比表面積:
BET1点法に基づき、フローソーブII2300(マイクロメリティックス製)を用いて測定した。
粒子径分布:
ストークス則に基づく遠心沈降法により、(A)粒子径が2μm未満の粒子と(B)2μm以上4μm未満の粒子及び(C)4μm以上の粒子の構成比率を求めた。なお、ピーク径は、コールターマルチサイザーII(コールターエレクトロニクス製)を用いて測定した。
【0025】
低剪断粘度:
ペーストゾル組成物を30℃の恒温槽に保存し、1時間後、1日後、7日後に取り出し、BM型粘度計(TOKIMEC 製)、ローター4、6rpm で粘度を測定した。測定上限の100000 mPa・s を越えたものは“OVER”と表示した。
【0026】
高剪断粘度:
ペーストゾル組成物を作製してから1時間後、室温下、圧力10、20、40、80psi (69、138、276、552kPa)下で、セバース粘度計(BURELL-SEVERS RHEOMETER MODEL A-120 )を用いて測定を行い、剪断速度に対して粘度をプロットした図から剪断速度100、200、1000sec -1での粘度を求めた。
以下の実施例では成型加工法としてコーティング法を採用しており、ペーストゾルの塗工性が良好であるためには、低剪断粘度は8000 mPa・s 以下であることが好ましく、15000 mPa・s 以上では塗工性が悪くなり、更に30000 mPa・s 以上では塗工が非常に困難になる。また、高剪断粘度は30000 mPa・s 以下であることが好ましく、50000 mPa・s 以上では塗工性が悪くなり、更に100000 mPa・s 以上では塗工が非常に困難になる。
【0027】
製造例1
ステンレス製攪拌付耐圧容器に、塩化ビニル単量体100重量部、イオン交換水300重量部、ドデシルベンゼンスルホン酸ナトリウム1重量部、セチルアルコール1重量部及びジ−2−エチルヘキシルパーオキシジカーボネート0.05重量部を仕込んで脱気し、更に均質化装置の吸入側と吐出側の圧力差1kg/cm2 で均質化した後、50℃に昇温して重合を行い、重合圧力が降下した時点で未反応の単量体を除去して重合を終了させた。こうして、11.5μmに分布のピーク径をもち、(A)成分3重量%、(B)成分5重量%、(C)成分92重量%で構成されたラテックスを得た。
【0028】
製造例2〜6
製造例1において、重合処方と均質化装置の圧力差を表1のように変更して同様に重合を行い、重合ラテックスを得た。
【0029】
【表1】
【0030】
実施例1
製造例1と製造例6で得られた重合ラテックスを固形分比で80:20になるように組み合わせて噴霧乾燥し、得られた粉体を粉砕して、比表面積が1.2m2/g、(A)成分21重量%、(B)成分5重量%及び(C)成分74重量%で構成され、(A)の分布のピーク径が0.8μm、(C)の分布のピーク径が11.5μmで(A)と(C)のピーク径の比(C)/(A)が14.4の塩化ビニル樹脂粉末を作製した。
この樹脂粉末100重量部に対して、DOP(ジ−2−エチルヘキシルフタレート)40重量部を配合し、石川式擂潰機を用い、室温下で20分間混練脱泡を行い、ペーストゾル組成物を作製し、低剪断粘度及び高剪断粘度を測定した。
【0031】
実施例2〜7、比較例1〜3
製造例1〜6で得られた重合ラテックスを表2に記載の混合比率で組み合わせ、噴霧乾燥し、得られた粉体を粉砕して塩化ビニル樹脂粉末を作製した。
これらの樹脂粉末を用いて実施例1と同様にしてペーストゾル組成物の作製及び低剪断粘度及び高剪断粘度の評価を行った。
【0032】
比較例4
製造例6で得られた重合ラテックスを噴霧乾燥し、得られた粉体を粉砕して塩化ビニル樹脂粉末を作製し、実施例1と同様の評価を試みたが、擂潰機が回転しなかったので手練りでペーストゾル組成物を作製した。なお、高剪断粘度の測定を試みたが、セバース粘度計からゾルがほとんど吐出せず、測定不可能であった。
実施例1〜7及び比較例1〜4の評価結果を表2及び図1に示す。
【0033】
【表2】
【0034】
表2及び図1の結果より、以下のことが明らかである。
実施例1〜7に示す本発明の塩化ビニル樹脂粉末を用いたペーストゾル組成物は、低剪断領域から高剪断領域までの広い剪断速度領域にわたって低粘度であった。
比較例1に示す(C)成分90重量%以上で構成された1ピークの樹脂粉末及び比較例3に示す(C)成分のピーク径が小さくかつ比表面積が大きい樹脂粉末を用いたペーストゾル組成物は、低剪断粘度、高剪断粘度共に高粘度であった。更に、比較例4に示す(A)成分90重量%以上で構成された1ピークの樹脂粉末を用いたペーストゾル組成物は、擂潰機での混練が不可能で、ほとんど流動しなかった。
(C)成分のピーク径と構成比率が等しいが、(A)成分のピーク径と(B)成分の構成比率が異なる実施例5と比較例2を比較すると、低剪断粘度には大きな違いはないが、高剪断粘度は比較例2の方が著しく高くなった。比較例2に示す樹脂粉末は比表面積が小さくかつ2ピークであるが、本発明よりも(A)成分のピーク径が大きく、また(B)成分の構成比率が多いため、高粘度となった。この結果より、(C)成分の間隙を(A)成分でうめた最密充填状態を形成させるためには、(A)成分と(C)成分のピーク径が離れており、かつ(B)成分の構成比率が少ないことが重要であることが分かる。
【0035】
実施例8
実施例2と同様の樹脂粉末100重量部に対して、DOP30重量部、ジオクチルスズメルカプト系安定剤(アデカスタブ465L、旭電化工業株式会社製商品名)3重量部を配合し、石川式擂潰機を用い、室温下で20分間混練脱泡を行い、ペーストゾル組成物を作製した。実施例1と同様の方法で、このゾルの低剪断粘度及び高剪断粘度を測定した。また、以下に示す方法で、ゾル中の粗粒及び加熱ゲル化させた試験片の硬度、引張特性、折曲耐衝撃性を評価した。また塗膜の外観性を肉眼で評価した。
【0036】
ゾル中の粗粒:
JIS K5400に従い、100μmのグラインドメーターを用い、1つの溝に3本以上の線が並んで現れた箇所の目盛(線条法)及び密集したつぶが現れ始めた箇所の目盛(分布図法)を読み取った。
硬度:
軟膏管にゾルを流し込み、180℃×30分間加熱ゲル化させて試験片を作製し、デュローメーターA型(株式会社東洋精機製作所製商品名)を用いて硬度を測定した。
【0037】
引張特性:
ガラス板にゾルを約250μm厚にコーティングし、180℃×5分間加熱ゲル化させて、JIS K 6251 ダンベル状3号形に切断して試験片とした。引張試験の条件は、引張速度:200mm/min 、ロードセル:100kgf (980N)で、23℃及び0℃の下で試験を行った。
【0038】
折曲耐衝撃性:
亜鉛鉄板に接着剤(ソニーボンドSC435、ソニーケミカル株式会社製商品名)を220℃×90秒間焼き付け、その上にゾルを200μm厚に被覆して180℃×5分間加熱ゲル化させた後、中央部で折り曲げて試験片とした。5℃、−5℃、−10℃の下で、ガードナー落錘衝撃試験機1G−1125を用いて、40インチ(101.6cm)の位置から錘を試験片に落下させ、被膜の割れの有無を判定した。
【0039】
実施例9及び10
それぞれ、実施例3及び実施例4と同様の樹脂粉末を用いて、実施例8と同様にしてペーストゾル組成物の作製及び低剪断粘度及び高剪断粘度、更に、ゾル中の粗粒及び加熱ゲル化させた試験片の硬度、引張特性、折曲耐衝撃性の評価を行った。また塗膜の外観性を肉眼で評価した。
【0040】
比較例5
比較例3と同様の樹脂粉末を用いて、実施例8と同様の評価を試みたが、擂潰機が回転しなかったので手練りでペーストゾル組成物を作製した。このペーストゾルをコーティングしようとしたが、ほとんど流動しないため、塗膜が得られず、加工評価はできなかった。
【0041】
比較例6
比較例3と同様の樹脂粉末を用いて、実施例8の配合成分に石油系炭化水素希釈剤(ミネラルスピリットA、日本石油化学株式会社製商品名)5重量部を加えたペーストゾルを作製し、同様の評価を行った。
【0042】
比較例7
比較例4と同様の樹脂粉末30重量部に、比表面積が0.5m2/g、(C)成分100重量%で36μmにピーク径をもつブレンディング樹脂粉末70重量部を併用し、実施例8と同様の評価を行った。
実施例8〜10及び比較例5〜7の評価結果を表3及び図2に示す。
【0043】
【表3】
【0044】
表3及び図2の結果より、以下のことが明らかである。
実施例8〜10に示す本発明の塩化ビニル樹脂粉末を用いたペーストゾル組成物は、低剪断領域から高剪断領域までの広い剪断速度領域にわたって低粘度で、塗工性が良好であった。これらのペーストゾルを加熱ゲル化した試験片は、いずれも塗膜状態が良好であり、高硬度で、常温、低温下での引張特性に優れ、折曲耐衝撃性試験において−10℃まで割れを生じなかった。
比較例5に示す、本発明よりも(C)成分のピーク径が小さくかつ比表面積が大きい塩化ビニル樹脂粉末を用いたペーストゾル組成物は、擂潰機での混練が不可能で、ほとんど流動しないため、コーティング法での塗膜が得られず、加工評価はできなかった。
比較例6に示す、希釈剤を添加したペーストゾル組成物は、塗工性が良好なレベルに到達するのに5重量部の希釈剤を必要とし、比較的低粘度であったが、低温物性が本発明品よりも若干悪くなった。
比較例7に示す、ブレンディング樹脂粉末を70重量%併用したペーストゾル組成物は、高剪断粘度は低かったが、低剪断粘度が著しく高くなった。グラインドメータによるペーストゾル中の粗粒評価では、80μm以下の領域に多数の線とつぶが現れた。このペーストゾルを加熱ゲル化した試験片は、特に低温物性が本発明品よりも著しく劣っていた。
【0045】
【発明の効果】
本発明の塩化ビニル系樹脂粉末は特にペーストゾル組成物として有用で、低可塑剤量配合に対応可能であり、低剪断領域から高剪断領域までの広い剪断速度領域にわたって低粘度で加工性に優れた高硬度ペースト加工用塩化ビニル系ペーストゾル組成物を提供することが可能である。本発明によれば、希釈剤又はブレンティング樹脂粉末を使用しなくても低可塑剤量配合に対応できるため、加工製品の外観性、引張特性、耐衝撃性、耐熱性、耐寒性及び耐候性等の品質面での低下がないという特徴を有し、コーティング法、ディッピング法、スプレー塗装法、回転成型法等のあらゆる成形加工用途に好適に利用することができる。
【図面の簡単な説明】
【図1】高剪断粘度を示すグラフである。
【図2】高剪断粘度を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is a vinyl chloride resin. Powder More particularly, the paste sol composition using the same is particularly useful as a paste sol, that is, can be applied to a low plasticizer content, and has a low viscosity over a wide shear rate region from a low shear region to a high shear region. Vinyl chloride resin that provides paste sol with excellent processability Powder And a paste sol composition using the same.
[0002]
[Prior art]
Vinyl chloride resin Powder Paste processing of vinyl chloride paste resin Powder And a plasticizer as an essential component, and if necessary, a stabilizer, a filler, etc. are added, mixed and kneaded to form a paste sol, shaped using the fluidity, then heated to gel and processed It is. In paste processing, the processability and the quality of processed products are closely related to the fluidity (sol viscosity) of the paste sol, and the smaller the blending amount of the plasticizer that is an essential component, the higher the paste sol, The processed product has high hardness. That is, in order to obtain a paste processed product with high hardness, it is sufficient to reduce the blending amount of the plasticizer. However, if the viscosity of the paste sol becomes too high, the coating property is deteriorated and finally the coating becomes impossible. .
[0003]
Conventional vinyl chloride resin Powder Paste sol containing 50 parts by weight or less, especially 30 parts by weight or less of plasticizer with respect to 100 parts by weight has a remarkably high viscosity, and a diluent (a low boiling point solvent that volatilizes during heating gelation) is added or chlorinated. Vinyl paste resin Powder Coating with lower sol viscosity has been performed by using larger particles together. However, when a large amount of diluent is added, the diluent is not Volatilization As a result, pinholes are produced in the processed product, and the diluent vapor contaminates the working environment. In general, a vinyl chloride blending resin having an average particle diameter in the range of 20 to 100 μm. Powder (Hereafter, blending resin Powder In the case of thin film applications, streaks due to large particles occur during coating, and in low temperature processing applications, large particles with poor gelation remain as unmelted materials. There are concerns that the appearance and tensile properties, impact resistance, heat resistance, cold resistance, weather resistance, and the like will deteriorate.
[0004]
As mentioned above, diluent or blending resin Powder When using, there is a problem that defects are likely to occur in processed products, and low plasticizer content is blended without impairing quality aspects such as appearance and tensile properties, impact resistance, heat resistance, cold resistance, weather resistance, etc. Compatible vinyl chloride resin Powder Development of was desired.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, and is a diluent or blending resin. powder A paste sol with low viscosity and excellent processability over a wide shear rate range from low shear to high shear while maintaining high quality without using powder. Vinyl chloride resin Powder And it aims at providing the paste sol composition using the same.
[0006]
[Means for Solving the Problems]
As a result of diligent research in view of such circumstances, the present inventors have determined that the vinyl chloride resin has a specific surface area and particle size distribution. Powder However, it has been found that a vinyl chloride paste sol composition that solves the above problems is provided.
That is, the first of the present invention has a specific surface area of 1.0 to 3.5 m. 2 (A) 15-55% by weight of particles having a particle size distribution below 2 μm and a peak size of the distribution of at least one in 0.2-1.5 μm, (B) 2 μm or more and less than 4 μm Vinyl chloride, characterized by comprising less than 15% by weight of particles and (C) 40-80% by weight of particles having a particle size distribution of 4 μm or more and at least one particle having a peak size of 7-15 μm Resin Powder The
The second of the present invention is the above vinyl chloride resin Powder And a vinyl chloride paste sol composition characterized by comprising a plasticizer and a plasticizer.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Vinyl chloride resin of the present invention Powder Has a specific surface area of 1.0 to 3.5 m 2 (A) 15-55% by weight of particles having a particle size distribution below 2 μm and a peak size of the distribution of at least one in 0.2-1.5 μm, (B) 2 μm or more and less than 4 μm The particle size distribution is less than 15% by weight and (C) 4 μm or more, and the peak diameter of the distribution is composed of 40 to 80% by weight of at least one particle of 7 to 15 μm.
Vinyl chloride resin of the present invention Powder Is a vinyl chloride monomer, or a mixture of a vinyl chloride monomer and a monomer copolymerizable therewith, in an aqueous medium, an emulsifier, if necessary, a dispersing aid such as a higher alcohol or higher fatty acid, Further, an oil-soluble polymerization initiator is added for homogenization and then fine suspension polymerization is performed, or a water-soluble initiator is added for emulsion polymerization or seed emulsion polymerization. Subsequently, an aqueous homogeneous dispersion (latex) of the vinyl chloride resin after polymerization is made into a product by spray drying or the like. In the fine suspension polymerization, the particle size of the monomer droplets is controlled by the homogenization conditions. Usually, the smaller the pressure difference between the suction side and the discharge side of the homogenizer, the larger the particle size. Commonly used homogenizers include mechanical dispersion devices such as single-stage or multi-stage high-pressure homogenizers, colloid mills, single-stage or multi-stage centrifugal pumps and pipeline mixers, and these can be used alone or in combination.
Vinyl chloride resin of the present invention Powder May be produced by either polymerization or latex blend, but latex blend is preferred because of easy control of particle size distribution.
[0008]
Examples of monomers copolymerizable with vinyl chloride monomer include olefins such as ethylene, propylene and butene, vinyl esters such as vinyl acetate, vinyl propionate and vinyl stearate, methyl vinyl ether, ethyl vinyl ether, Vinyl ethers such as octyl vinyl ether and lauryl vinyl ether, vinylidenes such as vinylidene chloride, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride and acid anhydrides thereof , Unsaturated carboxylic acid esters such as methyl acrylate, ethyl acrylate, monomethyl maleate, dimethyl maleate, butyl benzyl maleate, aromatic vinyl compounds such as styrene, α-methylstyrene, divinylbenzene, and acrylonitrile. Sum nitriles, further include crosslinking monomers such as diallyl phthalate. These may be used alone or in combination of two or more.
[0009]
As the emulsifier, an anionic emulsifier is usually used in an amount of about 0.1 to 3 parts by weight per 100 parts by weight of the monomer. Examples of anionic emulsifiers include potassium, sodium, ammonium salts such as fatty acids, alkyl sulfates, alkylbenzene sulfonic acids, alkyl sulfosuccinic acids, α-olefin sulfonic acids, alkyl ether phosphates, and the like. These may be used alone or in combination of two or more. As the dispersion aid, higher alcohols such as lauryl alcohol, myristyl alcohol, cetyl alcohol and stearyl alcohol, and higher fatty acids such as lauric acid, myristic acid, palmitic acid and stearic acid can also be used. These may be used alone or in combination of two or more.
[0010]
Examples of oil-soluble initiators used for fine suspension polymerization include diacyl peroxides such as dilauroyl peroxide, di-3,5,5, trimethylhexanoyl peroxide, diisopropyl peroxydicarbonate, and di-2-ethylhexylperoxide. Peroxydicarbonates such as oxydicarbonate, organic peroxide initiators such as peroxyesters such as t-butylperoxypivalate, t-butylperoxyneodecanoate, and 2,2′-azo Use azo initiators such as bisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) Can do. These may be used alone or in combination of two or more. As a water-soluble initiator used for emulsion polymerization, ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, etc. are used, and if necessary, sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate dihydrate, A reducing agent such as ascorbic acid or sodium ascorbate can be used in combination. These may be used alone or in combination of two or more.
[0011]
Vinyl chloride resin obtained as described above Powder Is particularly useful for paste sols. That is, the vinyl chloride resin of the present invention Powder Is an essential component plasticizer, if necessary, stabilizer, filler, reinforcing agent, diluent, thinning agent, antioxidant, UV absorber, foaming agent, flame retardant, antistatic agent, lubricant, pigment , Surface treatment agent, thixotrope agent, adhesion imparting agent or the like is added and kneaded to form a paste sol composition, shaped using the fluidity, and then heated to gel and molded Is done. When a diluent is used, as described above, if added in a large amount, the appearance of the processed product is impaired and the working environment is contaminated. Therefore, it is preferable to use it within a range that does not cause these problems.
[0012]
The plasticizer used in the present invention is not particularly limited, and examples of the primary plasticizer include di-2-ethylhexyl phthalate, di-n-octyl phthalate, dibutyl phthalate, diisononyl phthalate and other phthalic acid esters, tricresyl phosphate, Phosphate esters such as tri-2-ethylhexyl phosphate, adipic acid esters such as di-2-ethylhexyl adipate, sebacic acid esters such as di-2-ethylhexyl sebacate, azelaic acid esters such as di-2-ethylhexyl azelate, Trimellitic acid esters such as tri-2-ethylhexyl trimellitate, polyester plasticizers, and the like can be used. These may be used alone or in combination of two or more. In addition, secondary plasticizers such as citric acid esters, glycolic acid esters, chlorinated paraffins, chlorinated fatty acid esters, and epoxy plasticizers may be used in combination. These secondary plasticizers are also used alone or in combination of two or more. Known other compounding agents can also be used.
[0013]
The amount of the plasticizer is not particularly limited. However, the vinyl chloride resin of the present invention Powder Is particularly suitable for blending low plasticizers, for example, vinyl chloride resin Powder Chloride for high-hardness paste processing with low viscosity and excellent workability over a wide range from low shear region to high shear region while blending 20 to 50 parts by weight of plasticizer to 100 parts by weight while maintaining high quality A vinyl-based paste sol composition can be provided.
[0014]
Examples of the molding method include a coating (coating) method, a dipping (dipping) method, a spray (spraying) coating method, a casting method, a slash molding method, a rotational molding method, and a foam molding method. In any processing method, the workability is mainly defined by the flowability (sol viscosity) of the paste sol, but is required by the molding processing method in an important shear rate region and each shear rate. Viscosity level is different. That is, the viscosity in the low shear rate region is important in the dipping method, the slush molding method, the rotational molding method, and the like, and in the coating method and the spray coating method, the viscosity in the high shear rate region in addition to the viscosity in the low shear rate region. Viscosity is also important.
[0015]
The flowability (sol viscosity) of the paste sol varies depending on the compounding and kneading conditions of the plasticizer, etc. at the time of preparing the paste sol, but the vinyl chloride paste resin Powder The particle size distribution and shape of the particles are important governing factors. Vinyl chloride paste resin Powder In some cases, primary particles in a latex state aggregate and aggregate in the drying process to form secondary particles, and the particle size factor is further complicated.
[0016]
In general, the primary particles have a particle size of about 0.1 to several μm and have a structure close to a true sphere, whereas the secondary particles have a particle size of about several μm to 100 μm, are irregular and have voids. Often has many structures. The secondary particles may be designed to collapse to primary particles during the mixing and kneading process during pulverization and paste sol formation, or may be designed to be difficult to disintegrate even in paste sol. is there.
[0017]
In the present invention, an index for comprehensively quantifying the particle size distribution, shape, and aggregation / aggregation state of these primary particles and secondary particles is the specific surface area. In general, a vinyl chloride resin with a large particle size, a shape close to a true sphere, and a small internal void Powder As the specific surface area becomes smaller, a paste sol with good fluidity is obtained even with a low plasticizer content.
Furthermore, it is also important to form a close-packed state in which the particle size distribution is polydisperse and there are few interparticle voids in the paste sol. To that end, the distribution of the primary particles is made, and the secondary particles are collapsed. Designed to be difficult to form and to be polydispersed with primary and secondary particles, and blending resin Powder Can be used in combination. The secondary particles that can be applied to the low plasticizer content are preferably aggregated particles that are dense and difficult to disintegrate, but if large agglomerated particles remain undisintegrated, they tend to cause streaks during coating. Also blending resin Powder When used together, it generally has a viscosity reducing effect, but as described above, in thin film applications, streaks due to large particles occur during coating, and in low temperature processing applications, large particles with poor gelation are not yet present. There is a concern that the appearance, strength, and durability of the processed product deteriorate due to remaining as a melt. For applications other than thin film applications and low temperature processing applications, blending resin Powder May be used in combination with less than 50% by weight. But generally blending resin Powder Is a vinyl chloride paste resin Powder Since the shape is irregular and the number of voids in the particle is large, the effect is not negligible when a large amount, particularly 55 to 80% by weight, is used in combination with a low plasticizer amount. Therefore, in order to reduce the amount of plasticizer, it is more preferable in terms of both the fluidity of the paste sol and the quality of the processed product that the primary particles themselves have a distribution.
[0018]
Especially, low plasticizer content, that is, vinyl chloride resin Powder In order to provide a paste sol composition capable of accommodating 20 to 50 parts by weight of a plasticizer with respect to 100 parts by weight, a vinyl chloride resin is used. Powder It is important that the specific surface area and particle size distribution of the particles fall within a specific range. Vinyl chloride resin Powder Specific surface area of 1.0-3.5m 2 / G, preferably 1.0 to 3.0 m 2 / G, more preferably 1.0 to 2.5 m 2 / G. Specific surface area 3.5m 2 When the amount exceeds / g, the amount of plasticizer that comes into contact with the particle surface increases, so the amount of plasticizer that contributes to fluidity decreases and fluidity decreases. A smaller specific surface area gives a paste sol with a lower viscosity. 2 When the particle size is less than / g, large particles of 4 μm or more occupy the majority, and a loosely packed state in which there are almost no small particles filling the gaps between the large particles takes place. Rise.
[0019]
In order to obtain a low-viscosity paste sol, the specific surface area is reduced to reduce the amount of plasticizer in contact with the particle surface, and the particle size distribution is made polydisperse so that the gap between large particles is filled with small particles. It is important to form a tightly packed state to reduce the amount of plasticizer taken up between the particles. Vinyl chloride resin Powder The particle size distribution of (A) has a particle size distribution below 2 μm, and the peak diameter of the distribution is 15 to 55% by weight of particles having at least one in 0.2 to 1.5 μm, and (B) 2 μm or more and less than 4 μm It is necessary that the particle size distribution is less than 15% by weight and (C) the particle diameter distribution is 4 μm or more, and the peak diameter of the distribution is in the range of 40 to 80% by weight with at least one particle in 7 to 15 μm. The total of the three components (A), (B), and (C) is 100% by weight. Particularly, the peak diameter of the distribution of the component (A) is 0.2 to 1 μm, further 0.5 to 1 μm, the constituent ratio is 15 to 40% by weight, and the constituent ratio of the component (B) is 10% by weight. The peak diameter of the component (C) distribution is preferably 9 to 15 μm, and the component ratio is preferably 55 to 80% by weight.
In addition, (B) component may have a peak diameter and does not need to have it. Furthermore, in order to improve the filling property and eliminate voids between the particles, the component (A) and the component (C) may each have two or more peak diameters instead of one. In particular, it is preferable that the peak diameter of the component (A) is one or more in the range of 0.2 to 0.5 μm and one or more in the range of 0.5 to 1.5 μm because the gap between particles is reduced.
[0020]
The closer the peak diameter of the component (A) having a small particle size and the component (C) having a large particle size is, the closer the packing between the components (C) is filled in the paste sol with the component (A). As a result, the amount of plasticizer taken up between the particles is reduced, and a paste sol having good fluidity can be obtained even with a low amount of plasticizer. The ratio (C) / (A) of the peak diameters of the component (A) and the component (C) is preferably 7 or more, more preferably 9 or more, and particularly preferably 11 or more. For that purpose, the peak diameter of the component (A) may be reduced and the peak diameter of the component (C) may be increased. However, if the peak diameter of the component (A) is less than 0.2 μm, the specific surface area is increased. If the fluidity of the paste sol is not secured and the peak diameter of the component (C) exceeds 15 μm, blending resin Powder As in the case of, there is a concern that the appearance, strength, durability and the like of the processed product are deteriorated.
In addition, regarding the component ratio of each component, when the component (A) is less than 15% by weight and the component (C) exceeds 80% by weight, the component (A) is insufficient to fill the gap between the components (C). In addition, when the component (A) exceeds 55% by weight and the component (C) is less than 40% by weight, the specific surface area increases and the fluidity of the paste sol is not ensured. The (B) component located between the (A) component and the (C) component becomes an obstacle to the close-packed state of the (A) component and the (C) component. Disappear. (B) vinyl chloride resin in which component is present in an amount of 15% by weight or more Powder Since the paste sol composition using is poor in the packing property of particles in the paste sol, the viscosity in the high shear region is high even when the viscosity in the low shear region is low. (B) A component is so preferable that there are few, and it does not restrict | limit especially about the minimum, It contains 0 weight%. However, vinyl chloride resin by polymerization or latex blend Powder Up to 2% by weight is preferably employed because of the ease of manufacturing.
[0021]
As mentioned above, vinyl chloride resin with specific specific surface area and particle size distribution Powder Conventionally, diluent or blending resin Powder Thus, it is possible to provide a vinyl chloride paste sol composition for processing a high-hardness paste that can be applied to a low plasticizer amount blending that can only be supported by the use of. In addition, processed products using this paste sol include diluents and blending resins. Powder There is an advantage that there is no deterioration in quality such as poor appearance and tensile properties, impact resistance, heat resistance, cold resistance, weather resistance, etc. due to use, coating method, dipping method, spray coating method, rotational molding A suitable product can be provided by any molding method such as a method.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.
[0023]
Vinyl chloride resin Powder The specific surface area, particle size distribution, low shear viscosity and high shear viscosity of the paste sol composition were measured by the following methods.
[0024]
Specific surface area:
Based on the BET 1-point method, measurement was performed using Flowsorb II2300 (manufactured by Micromeritics).
Particle size distribution:
By a centrifugal sedimentation method based on Stokes' law, the constituent ratio of (A) particles having a particle diameter of less than 2 μm, (B) particles having a particle diameter of 2 μm or more and less than 4 μm, and (C) particles having a particle diameter of 4 μm or more was determined. The peak diameter was measured using Coulter Multisizer II (manufactured by Coulter Electronics).
[0025]
Low shear viscosity:
The paste sol composition was stored in a thermostatic bath at 30 ° C., taken out after 1 hour, 1 day, and 7 days, and the viscosity was measured with a BM viscometer (manufactured by TOKIMEC), rotor 4, 6 rpm. Those exceeding the measurement upper limit of 100,000 mPa · s were indicated as “OVER”.
[0026]
High shear viscosity:
One hour after the preparation of the paste sol composition, the Severse viscometer (BURELL-SEVERS RHEOMETER MODEL A-120) is used at room temperature and under pressure of 10, 20, 40, 80 psi (69, 138, 276, 552 kPa). And measured the viscosity against the shear rate, the shear rate was 100, 200, 1000 sec. -1 The viscosity at was determined.
In the following examples, a coating method is employed as the molding method, and in order to achieve good coating properties of the paste sol, the low shear viscosity is preferably 8000 mPa · s or less, and 15000 mPa · s. If it is above, coating property will worsen, and if it is 30000 mPa * s or more, coating will become very difficult. Further, the high shear viscosity is preferably 30000 mPa · s or less, the coating property is deteriorated at 50000 mPa · s or more, and the coating is very difficult at 100000 mPa · s or more.
[0027]
Production Example 1
In a stainless steel pressure-resistant vessel with stirring, 100 parts by weight of vinyl chloride monomer, 300 parts by weight of ion exchange water, 1 part by weight of sodium dodecylbenzenesulfonate, 1 part by weight of cetyl alcohol and di-2-ethylhexyl peroxydicarbonate Charge 05 parts by weight, deaerate, and further the pressure difference between the suction side and the discharge side of the homogenizer 1kg / cm 2 Then, the temperature was raised to 50 ° C. to carry out the polymerization, and when the polymerization pressure dropped, the unreacted monomer was removed and the polymerization was terminated. Thus, a latex having a distribution peak diameter of 11.5 μm and comprising 3% by weight of component (A), 5% by weight of component (B) and 92% by weight of component (C) was obtained.
[0028]
Production Examples 2-6
In Production Example 1, the pressure difference between the polymerization recipe and the homogenizer was changed as shown in Table 1, and polymerization was performed in the same manner to obtain a polymerized latex.
[0029]
[Table 1]
[0030]
Example 1
The polymerization latexes obtained in Production Example 1 and Production Example 6 were combined in a solid content ratio of 80:20 and spray dried, and the resulting powder was pulverized to have a specific surface area of 1.2 m. 2 / G, 21% by weight of component (A), 5% by weight of component (B) and 74% by weight of component (C), with a peak diameter of distribution (A) of 0.8 μm and a peak of distribution of (C) Vinyl chloride resin having a diameter (11.5 μm) and a ratio of peak diameters (A) and (C) (C) / (A) of 14.4 Powder Was made.
This resin Powder Compounding 40 parts by weight of DOP (di-2-ethylhexyl phthalate) with respect to 100 parts by weight, using an Ishikawa crusher, kneading and defoaming at room temperature for 20 minutes to prepare a paste sol composition, Low shear viscosity and high shear viscosity were measured.
[0031]
Examples 2-7, Comparative Examples 1-3
The polymerization latexes obtained in Production Examples 1 to 6 were combined at the mixing ratio shown in Table 2, spray dried, and the resulting powder was pulverized to give a vinyl chloride resin. Powder Was made.
These resins Powder The paste sol composition was prepared and the low shear viscosity and the high shear viscosity were evaluated in the same manner as in Example 1.
[0032]
Comparative Example 4
The polymerization latex obtained in Production Example 6 is spray-dried, and the resulting powder is pulverized to give a vinyl chloride resin. Powder Although the same evaluation as Example 1 was tried, since the crusher did not rotate, the paste sol composition was produced by hand kneading. In addition, although the measurement of the high shear viscosity was tried, the sol was hardly discharged from the Severse viscometer, and the measurement was impossible.
The evaluation results of Examples 1 to 7 and Comparative Examples 1 to 4 are shown in Table 2 and FIG.
[0033]
[Table 2]
[0034]
From the results in Table 2 and FIG. 1, the following is clear.
The vinyl chloride resin of the present invention shown in Examples 1-7 Powder The paste sol composition using was low in viscosity over a wide shear rate region from a low shear region to a high shear region.
1-peak resin composed of 90% by weight or more of component (C) shown in Comparative Example 1 Powder And a resin having a small peak diameter of component (C) and a large specific surface area shown in Comparative Example 3 Powder The paste sol composition using No. 1 had high viscosity at both low shear viscosity and high shear viscosity. Furthermore, the 1-peak resin composed of 90% by weight or more of the component (A) shown in Comparative Example 4 Powder The paste sol composition using the kneader could not be kneaded by a crusher and hardly flowed.
Comparing Example 5 and Comparative Example 2 in which the peak diameter of the component (C) is equal to the component ratio but the peak diameter of the component (A) is different from the component ratio of the component (B), there is no significant difference in the low shear viscosity. However, the high shear viscosity was significantly higher in Comparative Example 2. Resin shown in Comparative Example 2 Powder Although the specific surface area is small and has two peaks, the peak diameter of the component (A) is larger than that of the present invention, and the component ratio of the component (B) is large. From this result, in order to form a close-packed state in which the gap of component (C) is filled with component (A), the peak diameters of component (A) and component (C) are separated, and (B) It can be seen that it is important that the component composition ratio is small.
[0035]
Example 8
Resin similar to Example 2 Powder 100 parts by weight, 30 parts by weight of DOP, 3 parts by weight of dioctyltin mercapto stabilizer (ADK STAB 465L, trade name manufactured by Asahi Denka Kogyo Co., Ltd.) are blended, and using an Ishikawa crusher for 20 minutes Kneading defoaming was performed to prepare a paste sol composition. In the same manner as in Example 1, the low shear viscosity and high shear viscosity of the sol were measured. In addition, the hardness, tensile properties, and bending impact resistance of the coarse particles in the sol and the heat-gelled test piece were evaluated by the following methods. The appearance of the coating film was evaluated with the naked eye.
[0036]
Coarse grains in the sol:
In accordance with JIS K5400, using a grindometer of 100 μm, read the scale (straight line method) where three or more lines appeared in one groove and the scale (distribution map method) where dense crushing began to appear. It was.
hardness:
The sol was poured into an ointment tube and heated to 180 ° C. for 30 minutes to produce a test piece, and the hardness was measured using a durometer A type (trade name, manufactured by Toyo Seiki Seisakusho Co., Ltd.).
[0037]
Tensile properties:
A glass plate was coated with a sol with a thickness of about 250 μm, gelled by heating at 180 ° C. for 5 minutes, and cut into a JIS K 6251 dumbbell shape No. 3 to obtain a test piece. The tensile test was conducted under the conditions of 23 ° C. and 0 ° C. under a tensile speed of 200 mm / min and a load cell of 100 kgf (980 N).
[0038]
Bending impact resistance:
An adhesive (Sony Bond SC435, trade name, manufactured by Sony Chemical Co., Ltd.) was baked on a zinc iron plate at 220 ° C. for 90 seconds, and the sol was coated to a thickness of 200 μm thereon and heated to 180 ° C. for 5 minutes to form a gel. The test piece was bent at the part. Using a Gardner falling weight impact tester 1G-1125 at 5 ° C, -5 ° C, and -10 ° C, the weight was dropped from the position of 40 inches (101.6 cm) onto the test piece, and the presence or absence of cracks in the coating Was judged.
[0039]
Examples 9 and 10
Resins similar to Example 3 and Example 4, respectively Powder In the same manner as in Example 8, the paste sol composition was prepared and the low shear viscosity and the high shear viscosity were obtained, and the hardness, tensile properties, bending resistance of the coarse particles in the sol and the heat-gelled test piece were used. The impact property was evaluated. The appearance of the coating film was evaluated with the naked eye.
[0040]
Comparative Example 5
Resin similar to Comparative Example 3 Powder However, since the crusher did not rotate, a paste sol composition was prepared by hand kneading. An attempt was made to coat this paste sol, but since it hardly flowed, a coating film could not be obtained and processing evaluation could not be performed.
[0041]
Comparative Example 6
Resin similar to Comparative Example 3 Powder The paste sol which added 5 weight part of petroleum hydrocarbon diluents (mineral spirit A, Nippon Petrochemical Co., Ltd. brand name) to the compounding component of Example 8 was produced, and the same evaluation was performed.
[0042]
Comparative Example 7
Resin similar to Comparative Example 4 Powder 30 parts by weight with a specific surface area of 0.5m 2 / G, blending resin having a peak diameter of 36 μm at 100% by weight of component (C) Powder The same evaluation as in Example 8 was performed using 70 parts by weight.
The evaluation results of Examples 8 to 10 and Comparative Examples 5 to 7 are shown in Table 3 and FIG.
[0043]
[Table 3]
[0044]
From the results of Table 3 and FIG. 2, the following is clear.
Vinyl chloride resin of the present invention shown in Examples 8-10 Powder The paste sol composition using No. 1 had a low viscosity over a wide shear rate region from a low shear region to a high shear region, and had good coatability. All of the test pieces obtained by heating and pasting these paste sols have a good coating state, high hardness, excellent tensile properties at room temperature and low temperature, and cracking to −10 ° C. in a bending impact resistance test. Did not occur.
As shown in Comparative Example 5, a vinyl chloride resin having a smaller peak diameter of component (C) and a larger specific surface area than the present invention. Powder Since the paste sol composition using No. cannot be kneaded in a crusher and hardly flows, a coating film by a coating method cannot be obtained and processing evaluation cannot be performed.
The paste sol composition added with the diluent shown in Comparative Example 6 required 5 parts by weight of the diluent to reach a good level of coating properties, and had a relatively low viscosity. However, it was slightly worse than the product of the present invention.
Blending resin shown in Comparative Example 7 Powder The paste sol composition using 70% by weight in combination had a low high shear viscosity, but the low shear viscosity was remarkably high. In the evaluation of coarse particles in the paste sol using a grindometer, a large number of lines and crushes appeared in an area of 80 μm or less. The test piece obtained by heating and pasting this paste sol was particularly inferior to the product of the present invention in terms of low-temperature properties.
[0045]
【The invention's effect】
Vinyl chloride resin of the present invention Powder Is particularly useful as a paste sol composition, can be applied to low plasticizer content, has low viscosity and excellent processability over a wide shear rate range from low shear region to high shear region. It is possible to provide a system paste sol composition. According to the present invention, a diluent or a bleeding resin Powder Since it can be applied to low plasticizer content without using, it has the characteristic that there is no deterioration in quality such as appearance, tensile properties, impact resistance, heat resistance, cold resistance and weather resistance of processed products. In addition, it can be suitably used for all molding processes such as a coating method, a dipping method, a spray coating method, and a rotational molding method.
[Brief description of the drawings]
FIG. 1 is a graph showing high shear viscosity.
FIG. 2 is a graph showing high shear viscosity.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05099197A JP3623631B2 (en) | 1997-02-18 | 1997-02-18 | Vinyl chloride resin powder and paste sol composition using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05099197A JP3623631B2 (en) | 1997-02-18 | 1997-02-18 | Vinyl chloride resin powder and paste sol composition using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10231322A JPH10231322A (en) | 1998-09-02 |
JP3623631B2 true JP3623631B2 (en) | 2005-02-23 |
Family
ID=12874268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05099197A Expired - Fee Related JP3623631B2 (en) | 1997-02-18 | 1997-02-18 | Vinyl chloride resin powder and paste sol composition using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3623631B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1379563A2 (en) * | 2001-01-10 | 2004-01-14 | Solvay (Societe Anonyme) | Method for preparing halogenated polymers and resulting halogenated polymers |
JP2005290022A (en) * | 2004-03-31 | 2005-10-20 | Kanto Leather Co Ltd | Vinyl chloride-based resin paste for decorative sheet |
JP4249075B2 (en) * | 2004-04-16 | 2009-04-02 | 新第一塩ビ株式会社 | Vinyl chloride plastisol composition and foam molded article |
KR101898320B1 (en) | 2015-12-16 | 2018-10-04 | 주식회사 엘지화학 | Vinyl chloride polymer, preparation method thereof and plastisol comprising the same |
-
1997
- 1997-02-18 JP JP05099197A patent/JP3623631B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10231322A (en) | 1998-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0867795A (en) | Water-base vinylidene fluoride copolymer dispersion, water-base vinylidene fluoride seed polymer dispersion, and their production | |
CN102459371A (en) | Vinyl-chloride-based resin for foaming having outstanding low-viscosity characteristics, and a production method therefor | |
JP3623631B2 (en) | Vinyl chloride resin powder and paste sol composition using the same | |
KR101768284B1 (en) | Paste vinyl chloride resin and preparing method thereof | |
JPH11263849A (en) | Preparation of synthetic resin emulsion powder | |
JP4249075B2 (en) | Vinyl chloride plastisol composition and foam molded article | |
EP0287701A2 (en) | Skinless porous particle pvc resin and process for producing same | |
JP3509085B2 (en) | Synthetic resin powder for plastisol and method for producing the same | |
KR100789249B1 (en) | Method for preparing vinyl chloride based resin capable of providing plastisol having lowered viscosity and vinyl chloride based resin prepared therefrom | |
JP3973234B2 (en) | Method for producing vinyl chloride resin for paste processing | |
JP3637798B2 (en) | Vinyl chloride resin for paste | |
JP3998762B2 (en) | Vinyl chloride resin granules for paste processing and method for producing the same | |
JP2576926B2 (en) | Method for producing vinyl chloride resin for paste | |
JP3938446B2 (en) | Acrylic ester resin | |
JPH11140256A (en) | Spherical vinyl chloride-based blended resin for paste processing, production thereof and vinyl chloride resin composition for paste processing containing the same | |
JP3301138B2 (en) | Vinyl chloride resin composition for paste and method for producing the same | |
KR101433998B1 (en) | Non-foaming vinyl chloride-based resin paste resin and a method for producing thereof | |
JP2009096918A (en) | Vinyl chloride resin | |
JP2003238621A (en) | Polyvinyl chloride resin for paste processing | |
JPH0867705A (en) | Production of vinyl chloride polymer | |
KR20190075346A (en) | Vinyl chloride polymer and preparation method thereof | |
JP3508171B2 (en) | Method for producing vinyl chloride resin | |
JPH09118711A (en) | Production of vinyl chloride polymer | |
JPS63308002A (en) | Production of emulsion polymer composition having high solid content | |
JP2932296B2 (en) | Vinyl chloride polymer composition and polymer paste dispersion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040723 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041125 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131203 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |