JP3623476B2 - Flat wire dimension measuring device - Google Patents

Flat wire dimension measuring device Download PDF

Info

Publication number
JP3623476B2
JP3623476B2 JP2001354792A JP2001354792A JP3623476B2 JP 3623476 B2 JP3623476 B2 JP 3623476B2 JP 2001354792 A JP2001354792 A JP 2001354792A JP 2001354792 A JP2001354792 A JP 2001354792A JP 3623476 B2 JP3623476 B2 JP 3623476B2
Authority
JP
Japan
Prior art keywords
flat wire
posture holding
groove
wire
sheave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001354792A
Other languages
Japanese (ja)
Other versions
JP2003156313A (en
Inventor
倫太郎 仁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2001354792A priority Critical patent/JP3623476B2/en
Publication of JP2003156313A publication Critical patent/JP2003156313A/en
Application granted granted Critical
Publication of JP3623476B2 publication Critical patent/JP3623476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、平角ワイヤのワイヤ幅を測定する平角ワイヤ寸法測定装置に関する。
【0002】
【従来の技術】
平角ワイヤの製作は次のように行われている。丸断面の線状導体を圧延機により断面矩形状に圧延して平角ワイヤとし、連続状に走行させながら種々の工程を経て、平角ワイヤの表面に絶縁被覆層を形成する。
圧延後(絶縁被覆後)の平角ワイヤのワイヤ幅を管理するため、寸法測定装置において、レーザー測定手段により平角ワイヤの測定面にレーザーを投射させ、平角ワイヤのワイヤ幅を測定している。
従来の寸法測定装置は、図7に示すように、レーザー発振部41とレーザー受振部42とを備え、レーザー発振部41とレーザー受振部42との間(レーザー測定領域43)を通過する平角ワイヤ44のワイヤ幅を測定するものであり、平角ワイヤ44がレーザー測定領域43を通過する前後に、平角ワイヤ44をガイドする一対のシーブ45,46が配設されたものである。そして、これらシーブ45,46の上下を交互に平角ワイヤ44が懸け渡されテンションを与え、走行させながら寸法測定を行っている。
【0003】
【発明が解決しようとする課題】
平角ワイヤ44のワイヤ幅は丸線換算でφ0.4mm 〜φ1.2 mm程度であって、僅かな測定誤差でも測定結果に影響を及ぼすものであり、従来の寸法測定装置では、平角ワイヤ44を複数並列状態で広がって走行させた場合、または、平角ワイヤ44のワイヤ幅が広いものとした場合、図8に示すように、ガイドするシーブ溝47の鍔部48の勾配面に平角ワイヤ44が乗り上げて、ねじれ、曲がり、心振れ等が発生してしまう。従って、図8に示すように、平角ワイヤ44の測定面(ワイヤ幅)に対して垂直にレーザーを投射させる測定が正確に行えず、測定値が不正確となるという問題点がある。即ち、レーザー投射によるレーザー受振部42における平角ワイヤ44の投影幅α ,α ,α が、実際のワイヤ幅の寸法と異なるおそれがある。
【0004】
そこで本発明は、ワイヤ幅の大小に係わらず常に正確にワイヤ幅の測定が可能な平角ワイヤ寸法測定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係る平角ワイヤ寸法測定装置は、連続状に走行する平角ワイヤのワイヤ幅をレーザー測定手段により測定する寸法測定装置に於て、上記平角ワイヤのワイヤ幅より大きい溝底幅の姿勢保持凹溝を備え回転軸心が平行な一対の姿勢保持シーブと、該姿勢保持シーブの平角ワイヤ走行方向上下流側夫々に上記姿勢保持凹溝の溝底幅より幅狭の溝底幅の誘導凹溝を備え回転軸心が平行な一対の誘導シーブと、を有し、上記平角ワイヤを上記誘導シーブ及び上記姿勢保持シーブとに上下交互に走行させて、上記レーザー測定手段が上記両姿勢保持シーブ間に配設されているものである。
【0006】
また、上記姿勢保持シーブの姿勢保持凹溝及び上記誘導シーブの誘導凹溝を夫々シーブの回転軸心方向に複数並設し、該姿勢保持凹溝と該誘導凹溝の回転軸心方向の配設ピッチを等しくしたものである。
【0007】
【発明の実施の形態】
以下、図示の実施の形態に基づき、本発明を詳説する。
【0008】
本発明において寸法測定の対象となる平角ワイヤは、携帯機器等に使用されるコイルとして使用できるものであり、この平角ワイヤは横断面矩形状で、丸線換算でφ0.4mm 〜φ1.2mm の金属製の平角線である。
この平角ワイヤは、図示省略するが、圧延機により横断面を所定の(縦横比大の)矩形形状に圧延され、その後、連続状に走行させながら種々の工程を経て、平角ワイヤの表面に絶縁被覆層が形成される。
そして、圧延後(絶縁被覆後)、平角ワイヤのワイヤ幅を管理するため、寸法測定装置において、レーザー測定手段により平角ワイヤのワイヤ幅を測定している。なお、平角ワイヤのワイヤ幅とは、縦横比が大きな矩形断面形状の長辺側の幅寸法を言う。従って、短辺側の寸法は平角ワイヤの厚さとなる。
【0009】
図1は本発明の寸法測定装置の主要部を示す斜視図、図2は寸法測定装置の主要部の側部断面図、図3はこの主要部の平面図を示す。
この寸法測定装置は、矢印G方向に連続状に走行する平角ワイヤ1のワイヤ幅wをレーザー測定手段2により測定するものである。なお、図1は平角ワイヤ1が一条のみを表示したものであるが、図3に示すように、平角ワイヤ1を複数条並んで走行させてもよい。
【0010】
この測定装置は、回転軸心が平行な一対の姿勢保持シーブ(中間シーブ)3,3と、これら姿勢保持シーブ3,3の平角ワイヤ走行方向上下流側夫々に、回転軸心が平行な一対の誘導シーブ(外シーブ)4,4と、を有している。
具体的に説明すると、平角ワイヤ1の走行方向上流側から第一誘導シーブ31、第一姿勢保持シーブ21、第二姿勢保持シーブ22、第二誘導シーブ32が、夫々、第一回転軸心11、第二回転軸心12、第三回転軸心13、第四回転軸心14廻りに回転可能に配設されている。また、図2に示すように、第一回転軸心11、第二回転軸心12、第三回転軸心13、第四回転軸心14を、高さ方向に下・上交互にずらして配設している。
そして、第一姿勢保持シーブ21、第二姿勢保持シーブ22の間にレーザー測定手段2が配設されている。
【0011】
誘導シーブ31,32及び姿勢保持シーブ21,22は、夫々、平角ワイヤ1をガイドする誘導凹溝6及び姿勢保持凹溝5を有している。そして、平角ワイヤ1を、第一誘導シーブ31、第一姿勢保持シーブ21、第二姿勢保持シーブ22、第二誘導シーブ32と順番に、平角ワイヤ1にテンションを与えるよう上下交互に走行させてガイドしている。これにより、平角ワイヤ1を安定して走行させることが可能となる。
【0012】
また、第一・第二姿勢保持シーブ21,22は、第二回転軸心12、第三回転軸心13の方向に、姿勢保持凹溝5を複数並設している。さらに、第一・第二誘導シーブ31,32は、第一回転軸心11、第四回転軸心14の方向に、誘導凹溝6を複数並設している。即ち、これら姿勢保持シーブ21,22及び誘導シーブ31,32は、複数の凹溝を形成したものであり、本発明の実施例では、夫々、三溝形成している。
【0013】
そして、図3に示すように、四個のシーブすべてにおいて、各シーブに形成する凹溝の配設ピッチPを等しくしている。配設ピッチPは、(溝幅に関係なく)凹溝の中心間寸法をいう。従って、各ワイヤ1の走行方向に並んだ誘導凹溝6,6の中心線と姿勢保持凹溝5,5の中心線とは、同一直線上(中心線L上)に配置されることとなる。
【0014】
次に、レーザー測定手段2は、図2に示すように姿勢保持シーブ3,3間に配設されている。詳しく説明すると、レーザー測定手段2は走行する平角ワイヤ1を挟んで下方及び上方位置に、レーザー発振部9及びレーザー受振部10を備えており、レーザー測定領域R内に平角ワイヤ1を走行させ、平角ワイヤ1のワイヤ面(ワイヤ幅)に対して垂直にレーザーを発振し、レーザー受振部10に平角ワイヤ1を投影してワイヤ幅wを測定している。
従って、一対の姿勢保持シーブ3,3の共通接面に略垂直な方向に、レーザー発振部9及びレーザー受振部10を配設すればよい。
【0015】
図4は誘導凹溝6と姿勢保持凹溝5の断面を示す説明図である。
姿勢保持シーブ3の姿勢保持凹溝5について説明すると、姿勢保持凹溝5は、平面状の溝底部7と、その両側に外方向きの傾斜壁8,8と、を有しており、外径方向に向かって溝形状は拡大状となっている。即ち、姿勢保持シーブ3の一つの凹溝部は、円筒部を設けその両側に拡径状の円錐台部(鍔部)を連設させたものである。また、Lは、姿勢保持凹溝5の中心線を示し、溝形状は中心線Lに対して線対称となる。
そして、姿勢保持凹溝5の溝底部7の溝底幅bは、平角ワイヤ1のワイヤ幅wより大きく設定してあり、平角ワイヤ1のワイヤ幅全域が溝底部7に(面)接触することができる。
【0016】
次に、誘導シーブ4の誘導凹溝6について説明すると、誘導凹溝6は、平面状の溝底部17と、その両側に外方向きの傾斜壁18,18と、を有しており、外径方向に向かって溝形状は拡大状となっている。即ち、誘導シーブ4の一つの凹溝部は、円筒部を設けその両側に拡径状の円錐台部(鍔部)を連設させたものである。また、Lは、姿勢保持凹溝5の中心線と共通となる誘導凹溝6の中心線を示し、溝形状は中心線Lに対して線対称となる。
そして、誘導凹溝6の溝底部17の溝底幅aは、姿勢保持凹溝5の溝底幅bより幅狭に設定している。すなわち、w<a<bとなっている。
【0017】
また、誘導シーブ4の誘導凹溝6の他の実施例としては、誘導凹溝6の(溝底幅aはもちろん)全溝幅Aを、姿勢保持凹溝5の溝底幅bと同一乃至幅狭に設定している。そして、姿勢保持凹溝5の全溝幅Bは、姿勢保持凹溝5において傾斜壁8,8を上記と同様に形成するため、姿勢保持凹溝5の溝底幅bより大きくなる。
【0018】
従って、平角ワイヤ1が第一誘導シーブ31によりガイドされる際、図3に示すように、第一誘導シーブ31の中心線Lに対して平角ワイヤ1が入射角度θを有していても(斜行しても)、或いは、平角ワイヤ1がより幅広のワイヤで誘導凹溝6の傾斜壁18に乗り上げても、図5の誘導シーブ31の正面図に示すように、第一誘導シーブ31において、平角ワイヤ1は誘導凹溝6内に保持され続ける。そして、第一誘導シーブ31は、その下流側において図3に示すように、第二誘導シーブ32の誘導凹溝6による保持(誘導)作用と共働きして、平角ワイヤ1を中心線Lに平行に走行させることができる。
【0019】
さらに、図3に示すように、平角ワイヤ1を複数並列状態で走行させる場合、これら平角ワイヤ1…の全走行幅Dが広がっていても、誘導シーブ4の誘導凹溝6が平角ワイヤ1の走行誘導を行って、誘導シーブ4,4間において、平角ワイヤ1の走行幅を所定幅以下に狭めることができる。従って、たとえ平角ワイヤ1を複数並列状態で走行させ、また、平角ワイヤ1のワイヤ幅wが広くなっても、レーザー測定手段2の測定領域Rの(回転軸心方向の)必要幅を狭くすることができる(不要に広くすることがない)。
【0020】
そして、図2及び図6の姿勢保持シーブの正面図に示すように、第一姿勢保持シーブ21及び第二姿勢保持シーブ22において、誘導凹溝6内に保持された平角ワイヤ1は、常に、ワイヤ幅全域が姿勢保持凹溝5の平面状溝底部7に(面)接触した状態で所定向きに姿勢保持することができる。さらに、上下流方向に配設した一対の姿勢保持シーブ21,22は、平角ワイヤ1にテンションを与えた状態とし、平角ワイヤ1の上面・下面側を夫々で押さえて平角ワイヤ1を姿勢保持させることができる。
また、平角ワイヤ1のワイヤ幅wが多少広くなり(断面積が大きくなり)、平角ワイヤ1の剛性が高くなっても、平角ワイヤ1の姿勢を所定の向きに保持することが可能である。
【0021】
さらに、複数並んで平角ワイヤ1…を走行させた場合においても、誘導凹溝6により所定幅以下に誘導された全ての平角ワイヤ1…は、図6に示すように、溝底幅bの平面状溝底部7に、夫々が、常にワイヤ幅全域に渡って(面)接触することができる。
従って、第一姿勢保持シーブ21と第二姿勢保持シーブ22の間に設けたレーザー測定手段2により、図6に示すように、走行する平角ワイヤ1のワイヤ幅wを正確にレーザー発振部9からレーザー受振部10へ投影することができ、誤差なく寸法管理が連続して行える。
【0022】
【発明の効果】
本発明は上述の構成により次のような効果を奏する。
【0023】
(請求項1によれば)予め、一対の誘導シーブ4,4により平角ワイヤ1の走行位置を位置決め・矯正するため、平角ワイヤ1のワイヤ幅wの大小に係わらず、平角ワイヤ1の振れを抑えつつ誘導し、レーザー測定手段2の測定領域を狭めても正確に平角ワイヤ1の寸法測定が可能となる。さらに、一対の姿勢保持シーブ3,3により位置決めされた平角ワイヤ1の姿勢を、捩じらせることなく、また、姿勢保持凹溝5の傾斜壁8に乗り上げさせることがなく、レーザー測定手段2のレーザー発振方向に対して確実に垂直な方向に維持するため、平角ワイヤ1の測定面(ワイヤ幅w)を誤差なく、正確に測定できる。
【0024】
(請求項2によれば)同時に複数条の平角ワイヤ1…の寸法測定が可能となると共に、平角ワイヤ1のワイヤ幅wの大小に係わらず、誘導シーブ4,4により平角ワイヤ1の走行位置を位置決め・矯正するため、レーザー測定手段2の測定領域を狭めることができ、省スペースにおいて平角ワイヤ1の寸法測定が可能となる。
【図面の簡単な説明】
【図1】本発明の寸法測定装置の主要部を示す斜視図である。
【図2】寸法測定装置の主要部の側部断面図である。
【図3】寸法測定装置の主要部の平面図である。
【図4】姿勢保持凹溝と誘導凹溝の断面を示す説明図である。
【図5】誘導シーブの正面図である。
【図6】姿勢保持シーブの正面図である。
【図7】従来の寸法測定装置の主要部の側部断面図である。
【図8】従来のシーブの正面図である。
【符号の説明】
1 平角ワイヤ
2 レーザー測定手段
3 姿勢保持シーブ
4 誘導シーブ
5 姿勢保持凹溝
6 誘導凹溝
11 第一回転軸心
12 第二回転軸心
13 第三回転軸心
14 第四回転軸心
a 溝底幅
b 溝底幅
P 配設ピッチ
w ワイヤ幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat wire dimension measuring apparatus for measuring the wire width of a flat wire.
[0002]
[Prior art]
The flat wire is manufactured as follows. A linear conductor having a round cross section is rolled into a rectangular cross section by a rolling mill to form a flat wire, and an insulating coating layer is formed on the surface of the flat wire through various processes while continuously running.
In order to manage the wire width of the flat wire after rolling (after insulation coating), a laser is projected onto the measurement surface of the flat wire by a laser measuring means in a dimension measuring device to measure the wire width of the flat wire.
As shown in FIG. 7, the conventional dimension measuring apparatus includes a laser oscillation unit 41 and a laser receiving unit 42, and a flat wire that passes between the laser oscillation unit 41 and the laser receiving unit 42 (laser measurement region 43). A pair of sheaves 45 and 46 for guiding the flat wire 44 are disposed before and after the flat wire 44 passes through the laser measurement region 43. Then, the flat wire 44 is alternately suspended above and below the sheaves 45 and 46 to give tension, and the dimensions are measured while running.
[0003]
[Problems to be solved by the invention]
The wire width of the flat wire 44 is about φ0.4 mm to φ1.2 mm in terms of a round wire, and even a slight measurement error affects the measurement result. In the conventional dimension measuring apparatus, the flat wire 44 is When traveling in a plurality of parallel states or when the wire width of the flat wire 44 is wide, as shown in FIG. 8, the flat wire 44 is formed on the inclined surface of the flange portion 48 of the sheave groove 47 to be guided. It gets on and twists, bends, and shakes. Therefore, as shown in FIG. 8, there is a problem that the measurement in which the laser is projected perpendicularly to the measurement surface (wire width) of the flat wire 44 cannot be performed accurately, and the measurement value becomes inaccurate. That is, the projection widths α 1 , α 2 , α 3 of the flat wire 44 in the laser receiving unit 42 by laser projection may be different from the actual wire width dimension.
[0004]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a flat wire dimension measuring apparatus capable of always accurately measuring the wire width regardless of the wire width.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, a flat wire dimension measuring apparatus according to the present invention is a dimension measuring apparatus for measuring the wire width of a flat wire traveling continuously by a laser measuring means. A pair of posture holding sheaves having a posture holding concave groove having a larger groove bottom width and parallel rotation axes, and a width wider than the groove bottom width of the posture holding groove on the upstream and downstream sides of the flat wire traveling direction of the posture holding sheave. A pair of induction sheaves having a guide groove with a narrow groove bottom width and parallel rotation axes, and the rectangular wire is allowed to run alternately up and down on the induction sheave and the attitude holding sheave. The measuring means is disposed between the two posture holding sheaves.
[0006]
In addition, a plurality of posture holding grooves of the posture holding sheave and guide groove of the guide sheave are arranged in parallel in the rotational axis direction of the sheave, and the posture holding groove and the guide groove are arranged in the rotational axis direction. The pitch is equal.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiment.
[0008]
In the present invention, the flat wire that is the object of dimension measurement can be used as a coil used in a portable device or the like, and this flat wire has a rectangular cross section and has a diameter of φ0.4 mm to φ1.2 mm in terms of a round wire. It is a metal rectangular wire.
Although not shown in the figure, this flat wire is rolled into a predetermined (large aspect ratio) rectangular shape by a rolling mill, and then is insulated from the surface of the flat wire through various processes while continuously running. A coating layer is formed.
Then, after rolling (after insulation coating), in order to manage the wire width of the flat wire, the wire width of the flat wire is measured by a laser measuring means in a dimension measuring device. In addition, the wire width of a flat wire means the width dimension of the long side of a rectangular cross-sectional shape with a large aspect ratio. Accordingly, the dimension on the short side is the thickness of the flat wire.
[0009]
FIG. 1 is a perspective view showing the main part of the dimension measuring apparatus of the present invention, FIG. 2 is a side sectional view of the main part of the dimension measuring apparatus, and FIG. 3 is a plan view of this main part.
This dimension measuring device measures the wire width w of the flat wire 1 running continuously in the direction of arrow G by the laser measuring means 2. 1 shows only one wire of the flat wire 1, a plurality of flat wires 1 may be run side by side as shown in FIG. 3.
[0010]
This measuring apparatus includes a pair of posture holding sheaves (intermediate sheaves) 3 and 3 having parallel rotation axes, and a pair of rotation holding shafts parallel to the upstream and downstream sides of the flat wire traveling direction of these posture holding sheaves 3 and 3. Inductive sheaves (outer sheaves) 4 and 4.
More specifically, the first guide sheave 31, the first posture holding sheave 21, the second posture holding sheave 22, and the second guide sheave 32 from the upstream side of the flat wire 1 in the running direction are respectively the first rotation axis 11. The second rotation axis 12, the third rotation axis 13, and the fourth rotation axis 14 are rotatably arranged. Further, as shown in FIG. 2, the first rotation axis 11, the second rotation axis 12, the third rotation axis 13, and the fourth rotation axis 14 are alternately shifted in the height direction downward and upward. Has been established.
The laser measuring means 2 is disposed between the first posture holding sheave 21 and the second posture holding sheave 22.
[0011]
The guide sheaves 31 and 32 and the posture holding sheaves 21 and 22 respectively have a guide groove 6 and a posture holding groove 5 that guide the flat wire 1. Then, the flat wire 1 is made to run alternately up and down so as to apply tension to the flat wire 1 in the order of the first guide sheave 31, the first posture holding sheave 21, the second posture holding sheave 22, and the second guide sheave 32. I am guiding. Thereby, it becomes possible to make the flat wire 1 run stably.
[0012]
Further, the first and second posture holding sheaves 21 and 22 are provided with a plurality of posture holding grooves 5 in parallel in the direction of the second rotation axis 12 and the third rotation axis 13. Further, the first and second induction sheaves 31 and 32 are provided with a plurality of induction grooves 6 in the direction of the first rotation axis 11 and the fourth rotation axis 14. That is, the posture holding sheaves 21 and 22 and the guide sheaves 31 and 32 are formed with a plurality of concave grooves, and in the embodiment of the present invention, three grooves are formed.
[0013]
And as shown in FIG. 3, the arrangement | positioning pitch P of the ditch | groove formed in each sheave is made equal in all four sheaves. The arrangement pitch P refers to the dimension between the centers of the concave grooves (regardless of the groove width). Therefore, the center line of the guide grooves 6 and 6 aligned in the running direction of each wire 1 and the center line of the posture holding grooves 5 and 5 are arranged on the same straight line (on the center line L). .
[0014]
Next, the laser measuring means 2 is disposed between the posture holding sheaves 3 and 3 as shown in FIG. More specifically, the laser measuring means 2 includes a laser oscillation unit 9 and a laser receiving unit 10 at the lower and upper positions across the traveling flat wire 1, and the flat wire 1 travels in the laser measurement region R, A laser is oscillated perpendicularly to the wire surface (wire width) of the flat wire 1, and the flat wire 1 is projected onto the laser receiving unit 10 to measure the wire width w.
Therefore, the laser oscillation unit 9 and the laser receiving unit 10 may be arranged in a direction substantially perpendicular to the common contact surface of the pair of posture holding sheaves 3 and 3.
[0015]
FIG. 4 is an explanatory view showing a cross section of the guide groove 6 and the posture maintaining groove 5.
The posture holding groove 5 of the posture holding sheave 3 will be described. The posture holding groove 5 has a flat groove bottom portion 7 and outwardly inclined walls 8 and 8 on both sides thereof. The groove shape is enlarged toward the radial direction. That is, one concave groove portion of the posture maintaining sheave 3 is a cylindrical portion provided with a conical portion (an ridge portion) having an enlarged diameter on both sides thereof. L indicates the center line of the posture retaining groove 5, and the groove shape is line symmetric with respect to the center line L.
The groove bottom width b of the groove bottom portion 7 of the posture holding groove 5 is set to be larger than the wire width w of the flat wire 1, and the entire wire width of the flat wire 1 is in contact with the groove bottom portion 7 (surface). Can do.
[0016]
Next, the guide groove 6 of the guide sheave 4 will be described. The guide groove 6 has a planar groove bottom portion 17 and outwardly inclined walls 18 and 18 on both sides thereof. The groove shape is enlarged toward the radial direction. That is, one concave groove portion of the induction sheave 4 is formed by providing a cylindrical portion and continuously connecting a conical truncated cone portion (ridge portion) on both sides thereof. L indicates a center line of the guide groove 6 which is common with the center line of the posture maintaining groove 5, and the groove shape is symmetrical with respect to the center line L.
The groove bottom width a of the groove bottom portion 17 of the guide groove 6 is set to be narrower than the groove bottom width b of the posture maintaining groove 5. That is, w <a <b.
[0017]
As another example of the guide groove 6 of the guide sheave 4, the entire groove width A (not to mention the groove bottom width a) of the guide groove 6 is the same as the groove bottom width b of the attitude holding groove 5. It is set to be narrow. The total groove width B of the posture holding groove 5 is larger than the groove bottom width b of the posture holding groove 5 because the inclined walls 8 and 8 are formed in the posture holding groove 5 in the same manner as described above.
[0018]
Therefore, when the flat wire 1 is guided by the first guide sheave 31, as shown in FIG. 3, even if the flat wire 1 has an incident angle θ with respect to the center line L of the first guide sheave 31 ( Even if the flat wire 1 rides on the inclined wall 18 of the guide groove 6 with a wider wire, as shown in the front view of the guide sheave 31 in FIG. , The flat wire 1 continues to be held in the guide groove 6. As shown in FIG. 3, the first induction sheave 31 cooperates with the holding (induction) action of the second induction sheave 32 by the induction concave groove 6, and the flat wire 1 is parallel to the center line L, as shown in FIG. Can be run.
[0019]
Furthermore, as shown in FIG. 3, when a plurality of flat wires 1 are run in a parallel state, even if the entire running width D of these flat wires 1 is widened, the guide grooves 6 of the guide sheave 4 are formed on the flat wires 1. By performing traveling guidance, the traveling width of the flat wire 1 can be narrowed to a predetermined width or less between the guiding sheaves 4 and 4. Therefore, even if the flat wire 1 is run in a plurality of parallel states, and the wire width w of the flat wire 1 is increased, the necessary width (in the direction of the rotation axis) of the measurement region R of the laser measuring means 2 is reduced. (Do not unnecessarily widen).
[0020]
And as shown in the front view of the attitude | position holding sheave of FIG.2 and FIG.6, in the 1st attitude | position holding sheave 21 and the 2nd attitude | position holding sheave 22, the flat wire 1 hold | maintained in the guide groove 6 is always, It is possible to hold the posture in a predetermined direction in a state where the entire width of the wire is in (surface) contact with the planar groove bottom portion 7 of the posture holding groove 5. Further, the pair of posture holding sheaves 21 and 22 arranged in the upstream and downstream directions put the flat wire 1 in a tensioned state, and hold the flat wire 1 in posture by pressing the upper and lower surfaces of the flat wire 1 respectively. be able to.
Moreover, even if the wire width w of the flat wire 1 is somewhat wide (the cross-sectional area is large) and the rigidity of the flat wire 1 is increased, the flat wire 1 can be held in a predetermined orientation.
[0021]
Further, even when a plurality of flat wires 1 are run side by side, all the flat wires 1 guided to a predetermined width or less by the guide groove 6 are flat surfaces having a groove bottom width b as shown in FIG. Each of the groove-shaped groove bottom portions 7 can always contact (surface) over the entire wire width.
Accordingly, the laser measuring means 2 provided between the first posture holding sheave 21 and the second posture holding sheave 22 accurately determines the wire width w of the traveling flat wire 1 from the laser oscillation section 9 as shown in FIG. Projection can be performed on the laser receiving unit 10, and dimensional management can be continuously performed without error.
[0022]
【The invention's effect】
The present invention has the following effects by the above-described configuration.
[0023]
(According to claim 1) Since the traveling position of the flat wire 1 is previously determined and corrected by the pair of induction sheaves 4 and 4, the flat wire 1 is shaken regardless of the wire width w of the flat wire 1. It is possible to accurately measure the dimensions of the flat wire 1 even when guiding while suppressing and narrowing the measurement area of the laser measuring means 2. Further, the position of the flat wire 1 positioned by the pair of posture holding sheaves 3 and 3 is not twisted, and does not ride on the inclined wall 8 of the posture holding groove 5, and the laser measuring means 2. Therefore, the measurement surface (wire width w) of the flat wire 1 can be accurately measured without error.
[0024]
(According to claim 2) It becomes possible to measure the dimensions of a plurality of flat wires 1 at the same time, and the travel position of the flat wires 1 by the induction sheaves 4 and 4 irrespective of the wire width w of the flat wires 1. Therefore, the measurement area of the laser measuring means 2 can be narrowed, and the dimensions of the flat wire 1 can be measured in a space-saving manner.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a main part of a dimension measuring apparatus according to the present invention.
FIG. 2 is a side sectional view of a main part of the dimension measuring apparatus.
FIG. 3 is a plan view of a main part of the dimension measuring apparatus.
FIG. 4 is an explanatory view showing a cross section of a posture holding groove and a guide groove.
FIG. 5 is a front view of the induction sheave.
FIG. 6 is a front view of a posture holding sheave.
FIG. 7 is a side sectional view of a main part of a conventional dimension measuring apparatus.
FIG. 8 is a front view of a conventional sheave.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flat wire 2 Laser measuring means 3 Posture holding sheave 4 Guidance sheave 5 Posture holding groove 6 Guidance groove 11 First rotation axis 12 Second rotation axis 13 Third rotation axis 14 Fourth rotation axis a Groove bottom Width b Groove bottom width P Arrangement pitch w Wire width

Claims (2)

連続状に走行する平角ワイヤのワイヤ幅をレーザー測定手段により測定する寸法測定装置に於て、上記平角ワイヤのワイヤ幅より大きい溝底幅の姿勢保持凹溝を備え回転軸心が平行な一対の姿勢保持シーブと、該姿勢保持シーブの平角ワイヤ走行方向上下流側夫々に上記姿勢保持凹溝の溝底幅より幅狭の溝底幅の誘導凹溝を備え回転軸心が平行な一対の誘導シーブと、を有し、上記平角ワイヤを上記誘導シーブ及び上記両姿勢保持シーブとに上下交互に走行させて、上記レーザー測定手段が上記姿勢保持シーブ間に配設されていることを特徴とする平角ワイヤ寸法測定装置。In a dimension measuring apparatus for measuring the wire width of a flat wire that runs continuously by a laser measuring means, a pair of posture holding concave grooves having a groove bottom width larger than the wire width of the flat wire and having a rotation axis parallel to each other. A pair of guides each having a posture holding sheave and a guide groove having a groove bottom width narrower than the groove bottom width of the posture holding groove on the upstream and downstream sides of the flat wire running direction of the posture holding sheave. The laser measuring means is disposed between the posture holding sheaves by causing the flat wire to run up and down alternately on the guide sheave and the both posture holding sheaves. Flat wire dimension measuring device. 上記姿勢保持シーブの姿勢保持凹溝及び上記誘導シーブの誘導凹溝を夫々シーブの回転軸心方向に複数並設し、該姿勢保持凹溝と該誘導凹溝の回転軸心方向の配設ピッチを等しくした請求項1記載の平角ワイヤ寸法測定装置。A plurality of the posture holding grooves of the posture holding sheave and the guide groove of the guide sheave are juxtaposed in the direction of the rotation axis of the sheave, and the arrangement pitch of the posture holding groove and the guide groove in the direction of the rotation axis The flat wire dimension measuring apparatus according to claim 1, wherein
JP2001354792A 2001-11-20 2001-11-20 Flat wire dimension measuring device Expired - Fee Related JP3623476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354792A JP3623476B2 (en) 2001-11-20 2001-11-20 Flat wire dimension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354792A JP3623476B2 (en) 2001-11-20 2001-11-20 Flat wire dimension measuring device

Publications (2)

Publication Number Publication Date
JP2003156313A JP2003156313A (en) 2003-05-30
JP3623476B2 true JP3623476B2 (en) 2005-02-23

Family

ID=19166593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354792A Expired - Fee Related JP3623476B2 (en) 2001-11-20 2001-11-20 Flat wire dimension measuring device

Country Status (1)

Country Link
JP (1) JP3623476B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612402B (en) * 2013-10-11 2019-01-11 古河电气工业株式会社 Coating thickness check method and coating thickness check device

Also Published As

Publication number Publication date
JP2003156313A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
TWI607461B (en) Multi-wire winding method, multi-wire winding device and coiled coil part
JP3623476B2 (en) Flat wire dimension measuring device
JP2009118574A (en) Winding structure of rotating electrical machine
JP6180183B2 (en) Method for producing stranded wire and stranded wire device
JPH02209703A (en) Coil bobbin
JP2009131886A (en) Wire material straightening apparatus
JP3449882B2 (en) Vertical attachment device for electric wire tape
JPH06211546A (en) Method for measuring and controlling eccentricity of strip
JP2001012453A (en) Roller guide device
JPS5943779Y2 (en) Cable alignment board
JP2003042235A (en) Metal element, metal band, and metal belt
JP3969389B2 (en) Equipment for turning strips
JPH09251122A (en) Optical fiber cable
JPH0432387Y2 (en)
JP2003031060A (en) Forming jig for flat shielded wire, and manufacturing method of the flat shielded wire
JPH11120839A (en) Sz stranded cable
JP2002038944A (en) Insulator
JP4541348B2 (en) Fiber optic cable
JPH0415965B2 (en)
JP2652824B2 (en) Electric razor blade
JPH02305927A (en) Method and device for zigzag transportation of hot rolled wire rod
JP2001208944A (en) Collectively coating die device and manufacturing method for coated optical fiber ribbon
JPS645917Y2 (en)
JP2001281508A (en) Coated optical fiber tape core, coated optical fiber tape core assembly and resin covering device for coated optical fiber tape core
JPS6322646Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees