JP3620206B2 - Thermal low-frequency treatment conductor and low-frequency treatment device - Google Patents

Thermal low-frequency treatment conductor and low-frequency treatment device Download PDF

Info

Publication number
JP3620206B2
JP3620206B2 JP06624197A JP6624197A JP3620206B2 JP 3620206 B2 JP3620206 B2 JP 3620206B2 JP 06624197 A JP06624197 A JP 06624197A JP 6624197 A JP6624197 A JP 6624197A JP 3620206 B2 JP3620206 B2 JP 3620206B2
Authority
JP
Japan
Prior art keywords
electrode
low
layer
ptc
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06624197A
Other languages
Japanese (ja)
Other versions
JPH10258128A (en
Inventor
了一 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Healthcare Co Ltd
Original Assignee
Omron Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Healthcare Co Ltd filed Critical Omron Healthcare Co Ltd
Priority to JP06624197A priority Critical patent/JP3620206B2/en
Publication of JPH10258128A publication Critical patent/JPH10258128A/en
Application granted granted Critical
Publication of JP3620206B2 publication Critical patent/JP3620206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrotherapy Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、温めながら低周波治療を行うための温熱低周波治療用導子、並びにその導子を備える低周波治療器に関する。
【0002】
【従来の技術】
温熱低周波治療用導子は、生体の治療部位を温めながら治療部位に低周波電流を印加して治療を行うために治療部位に貼着するもので、例えば、治療部位を温めるために自身が発熱するステンレス製の電極(温熱用電極)と、導電性層(例えばカーボン層)に通電するステンレス製の電極(低周波電流用電極)とを、1枚の絶縁性層(樹脂シート)の片面に形成したものがある。
【0003】
この導子は、粘着パッドにカーボン層を介して樹脂シートが貼付され、樹脂シートのカーボン層側とは反対側の面に低周波電流用電極と温熱用電極が形成されている。低周波電流用電極は、樹脂シートの中央を直線状に延伸し、温熱用電極は、低周波電流用電極と交わらない(接触しない)ように折れ線状のパターンで連続して形成されている。この導子によれば、低周波電流用電極により導電性層に通電されると共に、温熱用電極が自身の抵抗により発熱する。
【0004】
しかしながら、温熱用電極はステンレス製であるため、通電時間に対する温度応答性が悪い。例えば、室温が20℃で、最大加温温度が43℃とすると、温熱用電極に通電されて、導子の温度が20℃から43℃に達するまでの時間が長い。通常、低周波治療は15分程度が最長時間であるため、43℃に達するまで時間が掛かると、ようやく温まった頃には治療が殆ど終りに近づいており、加温する意味がなくなる。
【0005】
このため、発熱層をPTC(正温度特性)材料で構成した低周波治療器用電極装置(実公平6−27168号公報)がある。この公報に記載された電極装置では、PTC材料からなる発熱層とこの発熱層に通電する電極(温熱用電極)とでヒータ部が構成され、導電性層とこの導電性層に通電する電極(低周波電流用電極)とで低周波治療部が構成される。
【0006】
PTC(Positive Temperature Coefficient)は、周知のように温度上昇と共に抵抗値が増大するもので、導子としては、例えば約43℃で急激に抵抗値が増大するような特性のものが選定される。
この電極装置によれば、室温(20℃)付近では抵抗値が低く、通電により温度が急激に上昇し、43℃に近づくと抵抗値の増大により電流が抑制され、43℃以上になると実質的に電流が遮断され、発熱が停止し、加熱を防止できると共に温度を43℃にほぼ一定に保つことができる。
【0007】
【発明が解決しようとする課題】
しかしながら、上記公報の電極装置では、ヒータ部と低周波治療部がそれぞれ別々の樹脂シート(絶縁性シート)上に構成されているだけでなく、ピン部材や電源端子を用いてヒータ部や低周波治療部との導通を行う構造であるため、下記の問題点▲1▼,▲2▼がある。
▲1▼使用する樹脂シートの枚数が増えるなど、全体として電極装置が厚くなり、曲げ力が硬くなり(弾性が劣化し)、治療部位へのフィット性が悪くなるだけでなく、治療部位に着脱する時に加わる曲げ力に対して弱くなる。
▲2▼構造が複雑になり、製造も手間が掛かり、コスト高となる。
【0008】
この発明は、そのような従来の問題点▲1▼,▲2▼に着目してなされたもので、良好なフィット性、曲げ力に対する強度の向上、簡素な構造、低コストを実現する温熱低周波治療用導子及び低周波治療器を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記目的を達成するために、本発明の請求項1の温熱低周波治療用導子は、生体表面の貼付側から、生体表面に貼着される粘着パッドと、導電性層と、絶縁性層と、PTC(正温度特性)層と、絶縁性シートの前記導電性層側の面上に前記導電性層に通電する低周波電流用電極及び前記PTC層に通電する一対の温熱用電極を互いに接触しないように形成した電極シートとを順に積層してなることを特徴とする。
【0010】
この導子では、絶縁性シートの片面(導電性層側の面)に低周波電流用電極及び一対の温熱用電極を設け、この低周波電流用電極と温熱用電極が絶縁性シートの片面側に位置する導電性層とPTC層にそれぞれ接触する構造であるため、良好なフィット性、曲げ力に対する強度の向上、簡素な構造、低コストを実現できる。
【0011】
請求項2の温熱低周波治療用導子は、生体表面の貼付側から、生体表面に貼着される粘着パッドと、導電性層と、絶縁性シートの前記導電性層側の面上に前記導電性層に通電する低周波電流用電極を形成し、前記導電性層側とは反対側に位置するPTC(正温度特性)層側の面上に当該PTC層に通電する一対の温熱用電極をそれぞれ形成した電極シートと、PTC層と、絶縁性層とを順に積層し、前記低周波電流用電極は前記導電性層と前記絶縁性シートとの間に位置し、前記一対の温熱用電極は前記絶縁性シートと前記PTC層との間に位置することを特徴とする。
【0012】
この導子では、絶縁性シートの一方面(導電性層側の面)に低周波電流用電極を設け、他方面(反対側の面)に一対の温熱用電極を設け、低周波電流用電極が絶縁性シートの一方面側に位置する導電性層に接触し、温熱用電極が絶縁性シートの他方面側に位置するPTC層に接触する構造であるため、前記と同様に、良好なフィット性、曲げ力に対する強度の向上、簡素な構造、低コストを実現できる。
【0013】
請求項の温熱低周波治療用導子は、請求項1の構成に加えて、温熱用電極が分岐された複数の直線状パターンを有し、この直線状パターンの延伸方向と低周波電流用電極のパターンの延伸方向が交差することを特徴とする。この導子では、PTC層の発熱により導子が反ろうとするが、温熱用電極の直線状パターンの延伸方向と低周波電流用電極のパターンの延伸方向が交差することにより、反りが防止される。
【0014】
請求項6の温熱低周波治療用導子は、請求項1の構成に加えて、PTC層が低周波電流用電極に接触しない形状であることを特徴とする。この導子では、低周波電流用電極は導電性層に、温熱用電極はPTC層に確実に接触する。
【0015】
又、請求項7記載の低周波治療器は、請求項1、請求項2、請求項3、請求項4、請求項5又は請求項6記載の温熱低周波治療用導子と、この導子に低周波電流を流す本体とを備えることを特徴とする。
【0016】
この治療器では、上記構成の導子を有するので、前記作用効果が得られる。
【0017】
【発明の実施の形態】
以下、本発明を実施の形態に基づいて説明する。
図1及び図2は、それぞれ請求項2及び請求項3の温熱低周波治療用導子の構造の一例を概略的に示す断面図である。但し、図1及び図2では、分かり易くするために各層を分離して示してあるが、実際には各層は接触している。
【0018】
図1に示す導子は、絶縁性層の片面(導電性層側の面)に低周波電流用電極及び一対の温熱用電極が設けられたもので、生体表面の貼付側から、生体表面に貼着される粘着パッド(ゲルパッド)10と、導電性層(カーボン層)11と、絶縁性層(樹脂シート)12と、PTC層13と、別の絶縁性層(樹脂シート)16のカーボン層11側の面にカーボン層11に通電する低周波電流用電極14及びPTC層13に通電する一対(正負)の温熱用電極15を互いに接触しないように形成した電極シート17と、断熱シート18とを順に積層してなる。
【0019】
この導子では、カーボン層11とPTC層13が共に粘着パッド10側に設けられているが、両層11,13は樹脂シート12で絶縁されて非接触状態にある。低周波電流用電極14は、樹脂シート12に形成された孔12aを通じて突出するカーボン層11の導通部11aによりカーボン層11に接触し、温熱用電極15はPTC層13に直接接触する。樹脂シート12,16はPETフィルム、ポリイミドフィルム、布等からなり、電極14,15は例えば銅箔からなる。
【0020】
この導子における各層の厚さの一例を示すと、粘着パッド10の厚さが2mm、カーボン層11の厚さが40μm、樹脂シート12の厚さが50μm、PTC層13の厚さが40μm、電極14,15の厚さが各々18μm、樹脂シート16の厚さが50μm、断熱シート18の厚さが1.5mmである。
図2に示す導子は、絶縁性層の一方面(導電性層側の面)に低周波電流用電極が設けられ、他方面(反対側の面)に温熱用電極が設けられたもので、生体表面の貼付側から、生体表面に貼着される粘着パッド20と、カーボン層21と、樹脂シート23のカーボン層21側の面にカーボン層21に通電する低周波電流用電極22を形成し、反対側の面にPTC層26に通電する一対の温熱用電極24を形成した電極シート25と、PTC層26と、樹脂シート27と、断熱シート28とを順に積層してなる。
【0021】
この導子の各層の厚さは、例えば粘着パッド20の厚さが2mm、カーボン層21の厚さが40μm、低周波電流用電極22の厚さが18μm、樹脂シート23の厚さが50μm、温熱用電極24の厚さが18μm、PTC層26の厚さが40μm、樹脂シート27の厚さが50μm、断熱シート28の厚さが1.5mmである。
【0022】
図1に示すタイプの導子の各要素について更に説明する。粘着パッド10は、従来の低周波治療器の導子に使用されているものと同様であり、この粘着パッド10に貼付されるカーボン層11は、図3の(a)に示すような矩形状であり、2辺の縁に突出状の導通部11aを有する。図3の(b)に示す樹脂シート12は、カーボン層11より大きく、カーボン層11の導通部11aに対応する位置に孔12aを有する。
【0023】
図4の(a)のPTC層13は、図4の(b)の電極シート17の温熱用電極15のパターンに応じてきのこ形状(スペード形状)になっている。電極シート17は、樹脂シート12と同一形状・サイズを有し、片面に低周波電流用電極14と一対(正負)の温熱用電極15が形成されている。低周波電流用電極14は、矩形状の樹脂シート16の2辺の周囲部分に沿って延伸し、2箇所に接点部14aを有する。この接点部14aには、カーボン層11の導通部11aが樹脂シート12の孔12aを通じて接触し、カーボン層11と低周波電流用電極14とが導通する。
【0024】
温熱用電極15は、正極と負極のパターンからなり、ここでの正負のパターンは、図面の上下方向に交互に互いに接触しないように分岐・延伸するものである。この正負のパターンに対応して、PTC層13は図4の(a)のような形状になっており、PTC層13は、一対の温熱用電極15に接触するが、低周波電流用電極14には接触しない。従って、一対の温熱用電極15に通電されると、PTC層13が発熱することになる。
【0025】
この電極シート17において、温熱用電極15への通電によりPTC層13は発熱するが、発熱に伴って導子は断熱シート18側に反ろうとする。しかしながら、低周波電流用電極14を図示のようなパターンに形成すれば、反りを防ぐことが可能となる。つまり、温熱用電極15の正負のパターンが図4の(b)のような場合、反りは、電極シート17の左右の端部が断熱シート18側に湾曲しようとする。この反りに対して、低周波電流用電極14を図示のようなパターンに形成すると、即ち、図面の上下方向に延伸する温熱用電極15の正負の複数の直線状のパターンに対して、その延伸方向(上下方向)に交差する方向(左右方向)に低周波電流用電極14のパターンを形成すると、低周波電流用電極14のパターンが反りを相殺するように作用する結果、導子の反りを防ぐことができる。
【0026】
図5は、PTC層13、低周波電流用電極14、温熱用電極15のパターンの別例を示す。図5の(b)の低周波電流用電極14は樹脂シート16の中央を直線状に延伸し、この低周波電流用電極14の両側に温熱用電極15の正負のパターンが形成されている。ここでも、正負の複数の直線状の分岐パターンは図面の上下方向に延伸し、この上下方向に交差(直交)する方向(左右方向)に低周波電流用電極14のパターンが存在することにより、発熱による導子の反りを防ぐ構造となっている。なお、図5の(b)では、低周波電流用電極14にカーボン層11との接点部が示されていないが、接点部は適所(例えば中央、或いは左右に1つずつ)に設けられ、カーボン層11との導通が計られる。そして、温熱用電極15の正負のパターンに対応して、図5の(a)のように2つに分割されたPTC層13が使用される。
【0027】
ここで、図4と図5の電極パターンの相違について説明する。図1のタイプの導子では、図6の(a)に示すように、カーボン層11と低周波電流用電極14との間に、樹脂シート12の他にPTC層13が存在するため、カーボン層11の導通部11aと電極14を接触させるためには、PTC層13に幅Wの印刷ロス分(樹脂シート12の孔12aからPTC層13の端縁までの間隔)が必要である。即ち、樹脂シート12の厚さが50μm、PTC層13の厚さが40μmであるとすると、カーボン層11と電極14との間隔が90μmとなるため、この90μmの間隔を通じてカーボン層11と電極14とを導通させるには、幅Wの印刷ロス分が必要となる。
【0028】
これに対して、前記ステンレス製の電極を有する従来の導子では、図6の(b)に示すように、PTC層が存在しないため、PTC層の印刷ロス分は全く必要なく、樹脂シート12の厚さが同様に50μmであるとすると、この50μmの樹脂シート12の孔12aを通じてカーボン層11の導通部11aをステンレス製の低周波電流用電極14’に接触させればよい。
【0029】
このように図1のタイプの導子では、PTC層13の印刷ロス分が存在するため、図5の(b)のように低周波電流用電極14が中央に位置すると、温熱用電極15のパターン形成領域が狭くなり、それだけPTC層13の面積が小さくなり、発熱効率の点で不利である。しかしながら、図4の(b)のように低周波電流用電極14を端部に設けると、PTC層13の印刷ロス分を樹脂シート16の端部のスペースに持ってくることができるので、温熱用電極15のパターン形成領域を広く確保でき、PTC層13の面積も大きくなり、発熱効率の点で有利となる。
【0030】
次に、図2に示すタイプの導子の各要素について更に説明する。このタイプの導子では、図7において、電極シート25とPTC層26が設けられた部分を、断熱シート28側(矢視A)から見た平面図は図8の(a)に、粘着パッド20側(矢視B)から見た平面図は図8の(b)に示すようになる。但し、樹脂シート27は省略してある。
【0031】
図8の(a)において、電極シート25における樹脂シート23の一方面には、温熱用電極24が図示のような正負のパターンで形成され、このパターンの温熱用電極24にPTC層26が接触して形成されている。一方、樹脂シート23の他方面には、低周波電流用電極22が温熱用電極24と同様のパターンで形成され、このパターンの低周波電流用電極22にカーボン層21が接触して形成されている。低周波電流用電極22と温熱用電極24のパターンは、図8の(a)と(b)では同一方向に示されるが、矢視方向が反対方向(上下方向)であるため、実際には樹脂シート23の中心に対して点対称となっており、互いに交差(直交)する方向に延伸する。
【0032】
この低周波電流用電極22と温熱用電極24のパターンによれば、前記図1のタイプの導子の場合と同様に、PTC層26の発熱による導子の反りを防ぐことができる。つまり、温熱用電極24が図面の斜め方向に延伸するパターンであるから、そのパターンを交差する方向(直角方向)に低周波電流用電極22のパターンを形成すれば、即ち電極22,24のパターンを樹脂シート23の中心に対して点対称的に形成すれば、導子の反りを防ぐことができる。
【0033】
又、低周波電流用電極22と温熱用電極24のパターンはできるだけ点対称的に同様のパターンとするのが好ましい。つまり、導子の製造工程において、PTC層26を形成する工程で、PTCを印刷した後に高温で1時間程度焼成するが、この時にも反りが発生する可能性があるので、これを防ぐ意味からも、電極22,24のパターンは図8の(a),(b)のようにできるだけ同じパターンであるのが望ましい。
【0034】
上記のように構成される温熱低周波治療用導子の全体の平面図(粘着パッド側の図)を図9の(a)に、側面図を図9の(b)に示す。ここに示す導子30は、粘着パッド貼付部31に粘着パッド32を貼付したもので、粘着パッド32を生体表面に貼着して使用する。粘着パッド貼付部31は、図1のタイプの導子では、カーボン層11、樹脂シート12、PTC層13、電極シート17及び断熱シート18からなり、図2のタイプの導子では、カーボン層21、電極シート25、PTC層26、樹脂シート27、断熱シート28からなる。
【0035】
このような導子30によると、図1のタイプでは、1枚の樹脂シート16の片面側に、低周波電流用電極14とカーボン層11で構成される低周波治療部、及び温熱用電極15とPTC層13で構成されるヒータ部が設けられ、図2のタイプでは、1枚の樹脂シート23の一方面側に低周波電流用電極22とカーボン層21で構成される低周波治療部が、他方面側に温熱用電極24とPTC層26で構成されるヒータ部が設けられるので、低周波治療部とヒータ部をそれぞれ別々の樹脂シート上に構成する従来の導子に比べて、いずれも必要な樹脂シートの枚数が減少し、それだけ導子の厚みが薄くなると共に、曲げ応力に対しても強くなる。
【0036】
そのような導子30を備える低周波治療器は、例えば図10に示すようなものである。ここに示す治療器は、従来のものと同様であり、低周波電流を生成する電気回路やスイッチ類等を有する本体40と、この本体40にリード線41により接続された上記構成の一対の導子30とを備える。本体40には、電源のON/OFFを行うと共に低周波電流の強さを変える強さ/電源ダイヤル50と、電源のON/OFFや低周波電流の強さを表示する強さ表示51と、低周波出力の周期を速い/遅いに切り替える速さ切り替えスイッチ52と、低周波出力に同期して点滅する出力表示53と、導子30への通電をオン/オフして導子30を加温するための温熱スイッチ54と、温熱出力時に点灯する温熱表示55とが設けられている。
【0037】
本体40と導子30は、リード線41の一端に取付けられた導子プラグ57を本体40の出力口56に差し込むことで接続される。又、本体40には、ACアダプタジャック58を介してACアダプタ59が接続される。
この低周波治療器では、治療に際しては図11に示すように、生体の治療部位60に導子30を貼着する。このとき、導子30は薄くて弾性に優れているから、特に治療部位60が曲面であっても、その曲面に対するフィット性が良く、どのような治療部位60にも確実に密着させることができる。又、図12のように、治療部位60に対して導子30を着脱するとき(特に導子30を取り外すとき)に、導子30には曲げ力が加わるが、導子30は薄くて曲げ応力に対して強いので、曲げによる破損を防止することができる。
【0038】
なお、上記実施形態では、導子の反りを防止する構造として、図1のタイプの導子では、低周波電流用電極14のパターン方向と温熱用電極15の分岐パターン方向を交差させ、図2のタイプの導子では、低周波電流用電極22のパターンと温熱用電極24のパターンを、樹脂シート23の中心に対して点対称的に設けているが、次のような構造としてもよい。即ち、図1及び図2のいずれのタイプの導子においても、電極シート17,25の樹脂シート16,23は、前記したようにPETフィルム、ポリイミドフィルム、布等からなるため繊維質である。従って、この樹脂シート16,23の繊維方向と温熱用電極15,24の分岐パターン方向を交差させても、同様の作用により導子の反りを防ぐことができる。
【0039】
【発明の効果】
以上説明したように、本発明の請求項1、請求項2、請求項4及び請求項5の温熱低周波治療用導子によれば、いずれも下記の効果(1)〜(3)が得られる。
(1)従来のものに比べて必要な絶縁性シート(樹脂シート)の枚数を減らすことができ、導子の厚みを薄くすることができる。このため、全体の弾性が向上し、治療部位に対するフィット性が良くなり、曲面的な治療部位に対しても確実に密着させることができる。
(2)曲げ応力に対して強くなり、破損を防止でき、耐久性が増す。
(3)構造及び製造工程を簡素化でき、低コスト化を実現できる。
【0040】
又、上記効果(1)〜(3)に加えて、それぞれ下記の効果が得られる。
請求項、請求項及び請求項の導子によれば、発熱による導子の反りを防ぐことができ、治療部位に対するフィット性がより一層向上する。
請求項の導子によれば、低周波電流用電極は導電性層に、温熱用電極はPTC層に確実に接触させることができる。
【0041】
請求項の低周波治療器によれば、上記構成の導子を有するので、上記効果が得られる。
【図面の簡単な説明】
【図1】一実施形態(請求項2)に係る導子の構造を概略的に示す断面図である。
【図2】別実施形態(請求項3)に係る導子の構造を概略的に示す断面図である。
【図3】図1のタイプの導子におけるカーボン層の平面図(a)、及び樹脂シートの平面図(b)である。
【図4】図1のタイプの導子におけるPTC層の平面図(a)、及び電極シートの平面図(b)である。
【図5】図1のタイプの導子において、別例のPTC層の平面図(a)、及び別例の電極シートの平面図(b)である。
【図6】図1のタイプの導子におけるカーボン層と低周波電流用電極との導通状態を示す要部断面図(a)、及び従来の導子における同じ部分の要部断面図(b)である。
【図7】図2のタイプの導子を3分割した分解図である。
【図8】図7の導子において、電極シートとPTC層とからなる部分を矢視Aから見た平面図(a)、及び矢視Bから見た平面図(b)である。
【図9】導子全体を粘着パッド側から見た平面図(a)、及び側面図(b)である。
【図10】低周波治療器の一例を示す外観構成図である。
【図11】低周波治療器の導子を治療部位に貼着した状態を示す図である。
【図12】低周波治療器の導子を治療部位に対して着脱するときの状態を示す図である。
【符号の説明】
10,20 粘着パッド
11,21 カーボン層(導電性層)
11a 導通部
12,16 樹脂シート(絶縁性層)
12a 孔
13,26 PTC層
14,22 低周波電流用電極
14a 接点部
15,24 温熱用電極
17,25 電極シート
18,28 断熱シート
23,27 樹脂シート(絶縁性層)
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a thermal low-frequency treatment lead for performing low-frequency treatment while warming, and a low-frequency treatment device including the lead.
[0002]
[Prior art]
A thermal low-frequency treatment lead is applied to a treatment site in order to perform treatment by applying a low-frequency current to the treatment site while warming the treatment site of a living body. For example, in order to warm the treatment site, One surface of a single insulating layer (resin sheet) is a stainless steel electrode (thermal electrode) that generates heat and a stainless steel electrode (low frequency current electrode) that conducts electricity to a conductive layer (for example, a carbon layer). There is something formed.
[0003]
In this conductor, a resin sheet is attached to an adhesive pad via a carbon layer, and a low frequency current electrode and a heating electrode are formed on the surface of the resin sheet opposite to the carbon layer side. The electrode for low frequency current extends linearly in the center of the resin sheet, and the electrode for heating is continuously formed in a polygonal line pattern so as not to cross (contact) the electrode for low frequency current. According to this conductor, the conductive layer is energized by the low frequency current electrode, and the heating electrode generates heat by its own resistance.
[0004]
However, since the heating electrode is made of stainless steel, the temperature responsiveness to the energization time is poor. For example, if the room temperature is 20 ° C. and the maximum heating temperature is 43 ° C., it takes a long time for the temperature of the conductor to reach 43 ° C. after the heating electrode is energized. Usually, the low frequency treatment has a maximum time of about 15 minutes, so if it takes time to reach 43 ° C., the treatment is almost over when it finally gets warm, and there is no point in heating.
[0005]
For this reason, there is an electrode device for a low frequency treatment device (Japanese Utility Model Publication No. 6-27168) in which the heat generation layer is made of a PTC (positive temperature characteristic) material. In the electrode device described in this publication, a heater portion is configured by a heat generating layer made of a PTC material and an electrode (thermal electrode) that supplies current to the heat generating layer, and a conductive layer and an electrode that supplies current to the conductive layer ( The low frequency current electrode) constitutes a low frequency treatment unit.
[0006]
As is well known, PTC (Positive Temperature Coefficient) has a resistance value that increases with an increase in temperature, and a conductor whose resistance value suddenly increases at about 43 ° C., for example, is selected.
According to this electrode device, the resistance value is low near room temperature (20 ° C.), the temperature rapidly rises due to energization, the current is suppressed by increasing the resistance value when it approaches 43 ° C., and substantially when the temperature exceeds 43 ° C. Current is cut off, heat generation stops, heating can be prevented, and the temperature can be kept substantially constant at 43 ° C.
[0007]
[Problems to be solved by the invention]
However, in the electrode device of the above publication, the heater unit and the low-frequency treatment unit are not only configured on separate resin sheets (insulating sheets), but also the heater unit and the low-frequency unit using pin members and power terminals. Since it is a structure that conducts with the treatment section, there are the following problems (1) and (2).
(1) The number of resin sheets to be used increases. As a whole, the electrode device becomes thicker, the bending force becomes harder (elasticity deteriorates), the fit to the treatment site not only deteriorates, but it is also detachable from the treatment site. It becomes weak against the bending force applied.
{Circle around (2)} The structure is complicated, manufacturing takes time, and the cost increases.
[0008]
The present invention has been made by paying attention to such conventional problems (1) and (2), and has a good fit, improved strength against bending force, simple structure, and low heat to realize low cost. An object of the present invention is to provide a high-frequency treatment lead and a low-frequency treatment device.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a thermal low-frequency treatment conductor according to claim 1 of the present invention is provided with an adhesive pad, a conductive layer, and an insulating layer, which are attached to a living body surface from the sticking side of the living body surface. And a PTC (positive temperature characteristic) layer, a low frequency current electrode for energizing the conductive layer and a pair of thermal electrodes for energizing the PTC layer on the surface of the insulating sheet on the electroconductive layer side. An electrode sheet formed so as not to be in contact is laminated in order .
[0010]
In this conductor, a low frequency current electrode and a pair of heating electrodes are provided on one side (surface on the conductive layer side) of the insulating sheet, and the low frequency current electrode and the heating electrode are provided on one side of the insulating sheet. Therefore, good fit, improved strength against bending force, simple structure, and low cost can be realized.
[0011]
The thermal low-frequency treatment lead according to claim 2 is provided on the surface of the living body surface from the adhesive side, the adhesive pad attached to the living body surface, the conductive layer, and the surface of the insulating sheet on the conductive layer side. A pair of heating electrodes for forming a low-frequency current electrode for energizing the conductive layer and energizing the PTC layer on a surface on the PTC (positive temperature characteristic) layer side opposite to the conductive layer side Each of the electrode sheet, the PTC layer, and the insulating layer are sequentially laminated, and the low-frequency current electrode is located between the conductive layer and the insulating sheet, and the pair of heating electrodes Is located between the insulating sheet and the PTC layer .
[0012]
In this conductor, a low-frequency current electrode is provided on one surface (surface on the conductive layer side) of the insulating sheet, and a pair of heating electrodes is provided on the other surface (opposite surface). Is in contact with the conductive layer located on one side of the insulating sheet, and the heating electrode is in contact with the PTC layer located on the other side of the insulating sheet. , Improved strength against bending force, simple structure, low cost.
[0013]
The thermal low-frequency treatment conductor of claim 5 has, in addition to the configuration of claim 1, a plurality of linear patterns in which the thermal electrodes are branched, and the extending direction of the linear pattern and the low-frequency current The extending direction of the electrode pattern intersects. In this conductor, the conductor tries to warp due to the heat generated by the PTC layer, but warpage is prevented by intersecting the extending direction of the linear pattern of the thermal electrode and the extending direction of the pattern of the low-frequency current electrode. .
[0014]
The thermal low-frequency treatment conductor according to claim 6 is characterized in that, in addition to the configuration of claim 1, the PTC layer has a shape that does not contact the electrode for low-frequency current. In this conductor, the low-frequency current electrode is in reliable contact with the conductive layer, and the thermal electrode is in reliable contact with the PTC layer.
[0015]
Further, the low frequency treatment device according to claim 7 is the thermal low frequency treatment lead according to claim 1, claim 2, claim 3, claim 4, claim 5 or claim 6, and the lead. And a main body through which a low-frequency current flows.
[0016]
Since this treatment device has the conductor configured as described above, the above-described effects can be obtained.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on embodiments.
1 and 2 are cross-sectional views schematically showing an example of the structure of the thermal low-frequency treatment lead of claims 2 and 3, respectively. However, in FIG. 1 and FIG. 2, each layer is shown separately for the sake of clarity, but each layer is actually in contact.
[0018]
The conductor shown in FIG. 1 is provided with a low-frequency current electrode and a pair of heating electrodes on one side of the insulating layer (surface on the conductive layer side). Adhesive pad (gel pad) 10 to be attached, conductive layer (carbon layer) 11, insulating layer (resin sheet) 12, PTC layer 13, and carbon layer of another insulating layer (resin sheet) 16 An electrode sheet 17 formed on the surface on the 11 side so that the low frequency current electrode 14 energizing the carbon layer 11 and the pair of positive and negative heating electrodes 15 energizing the PTC layer 13 are not in contact with each other; Are sequentially laminated.
[0019]
In this conductor, both the carbon layer 11 and the PTC layer 13 are provided on the adhesive pad 10 side, but both the layers 11 and 13 are insulated by the resin sheet 12 and are in a non-contact state. The low frequency current electrode 14 is in contact with the carbon layer 11 through the conductive portion 11 a of the carbon layer 11 protruding through the hole 12 a formed in the resin sheet 12, and the heating electrode 15 is in direct contact with the PTC layer 13. The resin sheets 12 and 16 are made of PET film, polyimide film, cloth, etc., and the electrodes 14 and 15 are made of, for example, copper foil.
[0020]
As an example of the thickness of each layer in this conductor, the thickness of the adhesive pad 10 is 2 mm, the thickness of the carbon layer 11 is 40 μm, the thickness of the resin sheet 12 is 50 μm, the thickness of the PTC layer 13 is 40 μm, The electrodes 14 and 15 each have a thickness of 18 μm, the resin sheet 16 has a thickness of 50 μm, and the heat insulating sheet 18 has a thickness of 1.5 mm.
The conductor shown in FIG. 2 is one in which an electrode for low frequency current is provided on one surface (surface on the conductive layer side) of the insulating layer, and an electrode for heating is provided on the other surface (surface on the opposite side). The low-frequency current electrode 22 for energizing the carbon layer 21 is formed on the carbon layer 21 side surface of the adhesive pad 20, the carbon layer 21, and the resin sheet 23, which are attached to the biological surface from the application side of the biological surface. Then, an electrode sheet 25 in which a pair of heating electrodes 24 energizing the PTC layer 26 is formed on the opposite surface, a PTC layer 26, a resin sheet 27, and a heat insulating sheet 28 are laminated in order.
[0021]
For example, the thickness of each layer of the conductor is 2 mm for the adhesive pad 20, 40 μm for the carbon layer 21, 18 μm for the low frequency current electrode 22, 50 μm for the resin sheet 23, The thickness of the heating electrode 24 is 18 μm, the thickness of the PTC layer 26 is 40 μm, the thickness of the resin sheet 27 is 50 μm, and the thickness of the heat insulating sheet 28 is 1.5 mm.
[0022]
Each element of the type of conductor shown in FIG. 1 will be further described. The adhesive pad 10 is the same as that used for the conventional low frequency treatment device, and the carbon layer 11 attached to the adhesive pad 10 has a rectangular shape as shown in FIG. And has protruding conductive portions 11a at the edges of the two sides. The resin sheet 12 shown in FIG. 3B is larger than the carbon layer 11 and has a hole 12 a at a position corresponding to the conduction portion 11 a of the carbon layer 11.
[0023]
The PTC layer 13 of FIG. 4A has a mushroom shape (spade shape) according to the pattern of the heating electrode 15 of the electrode sheet 17 of FIG. 4B. The electrode sheet 17 has the same shape and size as the resin sheet 12, and a low frequency current electrode 14 and a pair (positive and negative) heating electrodes 15 are formed on one side. The low frequency current electrode 14 extends along the peripheral portions of the two sides of the rectangular resin sheet 16, and has contact portions 14a at two locations. The contact portion 14a is in contact with the conducting portion 11a of the carbon layer 11 through the hole 12a of the resin sheet 12, and the carbon layer 11 and the low-frequency current electrode 14 are conducted.
[0024]
The heating electrode 15 includes a positive electrode pattern and a negative electrode pattern. The positive and negative patterns here are branched and extended so as not to contact each other alternately in the vertical direction of the drawing. Corresponding to this positive / negative pattern, the PTC layer 13 has a shape as shown in FIG. 4A, and the PTC layer 13 is in contact with the pair of heating electrodes 15 but the low frequency current electrode 14. Do not touch. Accordingly, when the pair of heating electrodes 15 are energized, the PTC layer 13 generates heat.
[0025]
In this electrode sheet 17, the PTC layer 13 generates heat by energizing the heating electrode 15, but the conductor tends to warp toward the heat insulating sheet 18 with the generation of heat. However, if the low frequency current electrode 14 is formed in a pattern as shown in the figure, it is possible to prevent warping. That is, when the positive / negative pattern of the heating electrode 15 is as shown in FIG. 4B, the warping tends to curve the left and right end portions of the electrode sheet 17 toward the heat insulating sheet 18 side. In response to this warp, when the low frequency current electrode 14 is formed in a pattern as shown in the drawing, that is, with respect to a plurality of positive and negative linear patterns of the heating electrode 15 extending in the vertical direction of the drawing, When the pattern of the low-frequency current electrode 14 is formed in a direction (left-right direction) intersecting the direction (vertical direction), the pattern of the low-frequency current electrode 14 acts so as to cancel out the warp. Can be prevented.
[0026]
FIG. 5 shows another example of the pattern of the PTC layer 13, the low-frequency current electrode 14, and the heating electrode 15. The low-frequency current electrode 14 in FIG. 5B extends linearly at the center of the resin sheet 16, and positive and negative patterns of the heating electrode 15 are formed on both sides of the low-frequency current electrode 14. Here, a plurality of positive and negative linear branch patterns extend in the vertical direction of the drawing, and the pattern of the low-frequency current electrode 14 exists in a direction (left-right direction) that intersects (perpendicularly) the vertical direction, It has a structure that prevents warpage of the conductor due to heat generation. In FIG. 5 (b), the contact portion with the carbon layer 11 is not shown in the low frequency current electrode 14, but the contact portion is provided at an appropriate place (for example, one in the center or one on the left and right), Conductivity with the carbon layer 11 is measured. Then, the PTC layer 13 divided into two as shown in FIG. 5A corresponding to the positive and negative patterns of the heating electrode 15 is used.
[0027]
Here, the difference between the electrode patterns in FIGS. 4 and 5 will be described. In the type of conductor shown in FIG. 1, as shown in FIG. 6A, the PTC layer 13 is present in addition to the resin sheet 12 between the carbon layer 11 and the low-frequency current electrode 14. In order to bring the conductive portion 11 a of the layer 11 into contact with the electrode 14, the PTC layer 13 needs to have a printing loss of width W (interval from the hole 12 a of the resin sheet 12 to the edge of the PTC layer 13). That is, if the thickness of the resin sheet 12 is 50 μm and the thickness of the PTC layer 13 is 40 μm, the distance between the carbon layer 11 and the electrode 14 is 90 μm, and therefore the carbon layer 11 and the electrode 14 are passed through this 90 μm distance. Is required to have a printing loss of width W.
[0028]
On the other hand, in the conventional conductor having the stainless steel electrode, as shown in FIG. 6 (b), there is no PTC layer, so there is no need for the printing loss of the PTC layer. If the thickness is 50 μm, the conductive portion 11 a of the carbon layer 11 may be brought into contact with the stainless steel low-frequency current electrode 14 ′ through the hole 12 a of the 50 μm resin sheet 12.
[0029]
As described above, in the type of conductor shown in FIG. 1, since there is a printing loss of the PTC layer 13, when the low frequency current electrode 14 is located at the center as shown in FIG. The pattern formation region is narrowed, and the area of the PTC layer 13 is accordingly reduced, which is disadvantageous in terms of heat generation efficiency. However, if the low-frequency current electrode 14 is provided at the end as shown in FIG. 4B, the printing loss of the PTC layer 13 can be brought into the space at the end of the resin sheet 16, so The pattern forming region of the electrode 15 can be secured widely and the area of the PTC layer 13 is increased, which is advantageous in terms of heat generation efficiency.
[0030]
Next, each element of the type of conductor shown in FIG. 2 will be further described. In this type of conductor, a plan view of the portion where the electrode sheet 25 and the PTC layer 26 are provided in FIG. 7 as viewed from the heat insulating sheet 28 side (arrow A) is shown in FIG. A plan view viewed from the 20 side (arrow B) is as shown in FIG. However, the resin sheet 27 is omitted.
[0031]
In FIG. 8A, the heating electrode 24 is formed in a positive / negative pattern as shown on one surface of the resin sheet 23 in the electrode sheet 25, and the PTC layer 26 is in contact with the heating electrode 24 of this pattern. Is formed. On the other hand, the low frequency current electrode 22 is formed in the same pattern as the heating electrode 24 on the other surface of the resin sheet 23, and the carbon layer 21 is formed in contact with the low frequency current electrode 22 of this pattern. Yes. The patterns of the low-frequency current electrode 22 and the heating electrode 24 are shown in the same direction in FIGS. 8A and 8B, but the direction of the arrow is the opposite direction (up and down direction). It is point-symmetric with respect to the center of the resin sheet 23, and extends in directions that intersect (orthogonal) each other.
[0032]
According to the pattern of the low-frequency current electrode 22 and the heating electrode 24, the warp of the conductor due to the heat generation of the PTC layer 26 can be prevented as in the case of the conductor of the type shown in FIG. That is, since the heating electrode 24 is a pattern extending in an oblique direction of the drawing, if the pattern of the low-frequency current electrode 22 is formed in a direction intersecting the pattern (perpendicular direction), that is, the pattern of the electrodes 22 and 24. Is formed symmetrically with respect to the center of the resin sheet 23, warping of the conductor can be prevented.
[0033]
The patterns of the low-frequency current electrode 22 and the heating electrode 24 are preferably as similar as possible in point symmetry. That is, in the manufacturing process of the conductor, in the process of forming the PTC layer 26, after printing the PTC, it is baked at a high temperature for about 1 hour, but warping may also occur at this time, so that this can be prevented. However, it is desirable that the patterns of the electrodes 22 and 24 be as much as possible as shown in FIGS.
[0034]
FIG. 9A shows a plan view (figure on the adhesive pad side) of the whole of the thermal low-frequency treatment lead constructed as described above, and FIG. 9B shows a side view thereof. The conductor 30 shown here has an adhesive pad 32 attached to an adhesive pad attaching portion 31, and is used by attaching the adhesive pad 32 to the surface of a living body. The adhesive pad pasting portion 31 includes a carbon layer 11, a resin sheet 12, a PTC layer 13, an electrode sheet 17, and a heat insulating sheet 18 in the type of conductor shown in FIG. 1, and the carbon layer 21 in the type of conductor shown in FIG. , Electrode sheet 25, PTC layer 26, resin sheet 27, and heat insulating sheet 28.
[0035]
According to such a conductor 30, in the type of FIG. 1, the low-frequency treatment unit composed of the low-frequency current electrode 14 and the carbon layer 11 and the heating electrode 15 are provided on one side of one resin sheet 16. 2 and a PTC layer 13 is provided. In the type of FIG. 2, a low frequency treatment unit composed of a low frequency current electrode 22 and a carbon layer 21 is provided on one surface side of one resin sheet 23. Since the heater part composed of the heating electrode 24 and the PTC layer 26 is provided on the other side, compared to the conventional conductor in which the low-frequency treatment part and the heater part are respectively formed on separate resin sheets, However, the number of necessary resin sheets is reduced, the thickness of the conductor is reduced accordingly, and the bending stress is increased.
[0036]
A low-frequency treatment device including such a conductor 30 is, for example, as shown in FIG. The treatment device shown here is the same as the conventional one, and a main body 40 having an electric circuit and switches for generating a low-frequency current, and a pair of conductors having the above-described structure connected to the main body 40 by lead wires 41. And a child 30. The main body 40 has a power / power dial 50 for turning on / off the power and changing the strength of the low frequency current, a strength display 51 for displaying the power on / off and the strength of the low frequency current, A speed changeover switch 52 for switching the cycle of the low frequency output to fast / slow, an output display 53 that blinks in synchronization with the low frequency output, and heating the conductor 30 by turning on / off the power to the conductor 30 There are provided a heat switch 54 for turning on and a heat display 55 that is turned on when the heat is output.
[0037]
The main body 40 and the conductor 30 are connected by inserting a conductor plug 57 attached to one end of the lead wire 41 into the output port 56 of the main body 40. An AC adapter 59 is connected to the main body 40 via an AC adapter jack 58.
In this low-frequency treatment device, as shown in FIG. 11, the conductor 30 is attached to the treatment site 60 of the living body during treatment. At this time, since the conductor 30 is thin and excellent in elasticity, even when the treatment site 60 is a curved surface, the fitting property to the curved surface is good and can be surely adhered to any treatment site 60. . Also, as shown in FIG. 12, when the conductor 30 is attached to and detached from the treatment site 60 (particularly when the conductor 30 is removed), bending force is applied to the conductor 30, but the conductor 30 is thin and bent. Since it is strong against stress, breakage due to bending can be prevented.
[0038]
In the above embodiment, as a structure for preventing the warp of the conductor, in the conductor of the type shown in FIG. 1, the pattern direction of the low-frequency current electrode 14 and the branch pattern direction of the heating electrode 15 are crossed, and FIG. In this type of conductor, the pattern of the low-frequency current electrode 22 and the pattern of the heating electrode 24 are provided point-symmetrically with respect to the center of the resin sheet 23, but the following structure may be adopted. That is, in any of the types of conductors shown in FIGS. 1 and 2, the resin sheets 16 and 23 of the electrode sheets 17 and 25 are fibrous because they are made of PET film, polyimide film, cloth, or the like as described above. Therefore, even if the fiber direction of the resin sheets 16 and 23 and the branch pattern direction of the heating electrodes 15 and 24 are crossed, the warp of the conductor can be prevented by the same action.
[0039]
【The invention's effect】
As described above, according to the thermal low-frequency treatment lead of claims 1, 2, 4, and 5 of the present invention, the following effects (1) to (3) are obtained. It is done.
(1) The number of necessary insulating sheets (resin sheets) can be reduced as compared with the conventional one, and the thickness of the conductor can be reduced. For this reason, the whole elasticity improves, the fitting property with respect to a treatment site | part improves, and it can be made to contact | adhere reliably also to a curved treatment site | part.
(2) Strengthens against bending stress, can prevent damage, and increases durability.
(3) The structure and the manufacturing process can be simplified, and the cost can be reduced.
[0040]
In addition to the effects (1) to (3), the following effects can be obtained.
According to the conductors of claims 3 , 4, and 5 , the warp of the conductor due to heat generation can be prevented, and the fit to the treatment site is further improved.
According to the conductor of the sixth aspect, the low frequency current electrode can be brought into contact with the conductive layer, and the heating electrode can be brought into contact with the PTC layer without fail.
[0041]
According to the low frequency treatment device according to claim 7, since it has a Shirubeko the above configuration, the effect is obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a structure of a conductor according to an embodiment (claim 2).
FIG. 2 is a cross-sectional view schematically showing a structure of a conductor according to another embodiment (claim 3).
FIG. 3 is a plan view (a) of a carbon layer and a plan view (b) of a resin sheet in a conductor of the type shown in FIG. 1;
4A is a plan view of a PTC layer in the conductor of the type shown in FIG. 1, and FIG. 4B is a plan view of an electrode sheet.
FIG. 5 is a plan view (a) of another example PTC layer and a plan view (b) of another example electrode sheet in the conductor of the type shown in FIG. 1;
6 is a cross-sectional view of a main part showing a conduction state between a carbon layer and a low-frequency current electrode in the conductor of the type shown in FIG. 1 and a cross-sectional view of a main part of the same part in a conventional conductor (b). It is.
7 is an exploded view of a conductor of the type shown in FIG. 2 divided into three parts.
8 is a plan view (a) as viewed from the direction of arrow A and a plan view (b) as viewed from the direction of arrow B of the conductor of FIG.
FIG. 9 is a plan view (a) and a side view (b) of the entire conductor as viewed from the adhesive pad side.
FIG. 10 is an external configuration diagram showing an example of a low-frequency treatment device.
FIG. 11 is a view showing a state in which a lead of a low-frequency treatment device is attached to a treatment site.
FIG. 12 is a diagram showing a state when the lead of the low frequency treatment device is attached to and detached from the treatment site.
[Explanation of symbols]
10,20 Adhesive pads 11, 21 Carbon layer (conductive layer)
11a Conductive parts 12, 16 Resin sheet (insulating layer)
12a Holes 13 and 26 PTC layers 14 and 22 Low frequency current electrodes 14a Contact portions 15 and 24 Heating electrodes 17 and 25 Electrode sheets 18 and 28 Heat insulation sheets 23 and 27 Resin sheet (insulating layer)

Claims (7)

生体表面の貼付側から、生体表面に貼着される粘着パッドと、導電性層と、絶縁性層と、PTC(正温度特性)層と、絶縁性シートの前記導電性層側の面上に前記導電性層に通電する低周波電流用電極及び前記PTC層に通電する一対の温熱用電極を互いに接触しないように形成した電極シートとを順に積層してなることを特徴とする温熱低周波治療用導子。From sticking side of a living body surface, the adhesive pad is stuck on the living body surface, a conductive layer, an insulating layer, and a PTC (positive temperature coefficient) layer, on the surface of the conductive layer side of the insulating sheet thermal low frequency treatment, characterized in that formed by laminating an electrode sheet formed with a pair of heat electrodes so as not to contact with each other to energize the low-frequency current electrodes and the PTC layer energizing the conductive layer in this order For the guide. 生体表面の貼付側から、生体表面に貼着される粘着パッドと、導電性層と、絶縁性シートの前記導電性層側の面上に前記導電性層に通電する低周波電流用電極を形成し、前記導電性層側とは反対側に位置するPTC(正温度特性)層側の面上に当該PTC層に通電する一対の温熱用電極をそれぞれ形成した電極シートと、PTC層と、絶縁性層とを順に積層し
前記低周波電流用電極は前記導電性層と前記絶縁性シートとの間に位置し、前記一対の温熱用電極は前記絶縁性シートと前記PTC層との間に位置することを特徴とする温熱低周波治療用導子。
Forming a sticking side of the living body surface, the adhesive pad is stuck on the living body surface, and the conductive layer, the low frequency current electrode for energizing the conductive layer on the surface of the conductive layer side of the insulating sheet and, an electrode sheet formed respectively a pair of heat for the electrode and the conductive layer side of energizing the PTC layer PTC (positive temperature coefficient) layer side on the surface located on the opposite side, and the PTC layer, insulating Layered in order ,
The low frequency current electrode is located between the conductive layer and the insulating sheet, and the pair of thermal electrodes are located between the insulating sheet and the PTC layer. A low frequency treatment.
前記低周波電流用電極のパターンと前記一対の温熱用電極のパターンは、前記絶縁性シートの中心に対して点対称的であることを特徴とする請求項記載の温熱低周波治療用導子。The pattern of the pattern and the pair of thermal electrodes of the low frequency current electrodes, the thermal according to claim 2, characterized in that the point-symmetrical with respect to the center of the insulating sheet low-frequency therapeutic Shirubeko . 前記絶縁性シートは繊維質からなり、前記温熱用電極は分岐された複数の直線状パターンを有し、前記絶縁性シートの繊維方向と温熱用電極の直線状パターンの延伸方向は交差することを特徴とする請求項又は請求項記載の温熱低周波治療用導子。The insulating sheet is made of fiber, the thermal electrode has a plurality of branched linear patterns, and the fiber direction of the insulating sheet and the extending direction of the linear pattern of the thermal electrode intersect. The thermal low-frequency treatment lead according to claim 1 or 2, characterized in that: 生体表面の貼付側から、生体表面に貼着される粘着パッドと、導電性層と、絶縁性層と、PTC(正温度特性)層と、絶縁性シートの前記導電性層側の面上に前記導電性層に通電する低周波電流用電極及び前記PTC層に通電する一対の温熱用電極を互いに接触しないように形成した電極シートとを順に積層してなり、前記温熱用電極は分岐された複数の直線状パターンを有し、この直線状パターンの延伸方向と前記低周波電流用電極のパターンの延伸方向は交差することを特徴とする温熱低周波治療用導子。From sticking side of a living body surface, the adhesive pad is stuck on the living body surface, a conductive layer, an insulating layer, and a PTC (positive temperature coefficient) layer, on the surface of the conductive layer side of the insulating sheet formed by laminating a pair of electrode sheets to the thermal electrode was formed so as not to contact with each other to energize the low-frequency current electrodes and the PTC layer energizing the conductive layer in this order, the heat electrode is branched a plurality of linear patterns, this linear pattern extending direction and the low frequency extension direction of patterns of the current electrodes is Shirubeko for thermotherapy low frequency treatment, characterized in that the intersection of the. 生体表面の貼付側から、生体表面に貼着される粘着パッドと、導電性層と、絶縁性層と、PTC(正温度特性)層と、絶縁性シートの前記導電性層側の面上に前記導電性層に通電する低周波電流用電極及び前記PTC層に通電する一対の温熱用電極を互いに接触しないように形成した電極シートとを順に積層してなり、前記PTC層は前記低周波電流用電極に接触しない形状であることを特徴とする温熱低周波治療用導子。From sticking side of a living body surface, the adhesive pad is stuck on the living body surface, a conductive layer, an insulating layer, and a PTC (positive temperature coefficient) layer, on the surface of the conductive layer side of the insulating sheet formed by laminating an electrode sheet formed with a pair of heat electrodes so as not to contact with each other to energize the low-frequency current electrodes and the PTC layer energizing the conductive layer in this order, the PTC layer has the low frequency current A thermal low-frequency treatment conductor characterized by having a shape that does not come into contact with a medical electrode. 請求項1、請求項2、請求項3、請求項4、請求項5又は請求項6記載の温熱低周波治療用導子と、この導子に低周波電流を流す本体とを備えることを特徴とする低周波治療器。A thermal low-frequency treatment conductor according to claim 1, claim 2 , claim 3, claim 4, claim 5, or claim 6 , and a main body for supplying a low-frequency current to the conductor. A low frequency treatment device.
JP06624197A 1997-03-19 1997-03-19 Thermal low-frequency treatment conductor and low-frequency treatment device Expired - Lifetime JP3620206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06624197A JP3620206B2 (en) 1997-03-19 1997-03-19 Thermal low-frequency treatment conductor and low-frequency treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06624197A JP3620206B2 (en) 1997-03-19 1997-03-19 Thermal low-frequency treatment conductor and low-frequency treatment device

Publications (2)

Publication Number Publication Date
JPH10258128A JPH10258128A (en) 1998-09-29
JP3620206B2 true JP3620206B2 (en) 2005-02-16

Family

ID=13310180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06624197A Expired - Lifetime JP3620206B2 (en) 1997-03-19 1997-03-19 Thermal low-frequency treatment conductor and low-frequency treatment device

Country Status (1)

Country Link
JP (1) JP3620206B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755916B2 (en) * 2005-02-22 2011-08-24 つちやゴム株式会社 Biological tissue normalization device
EP2446865A1 (en) * 2010-10-28 2012-05-02 Louise Mohn Thermostimulation apparatus
KR102585675B1 (en) * 2021-05-12 2023-10-06 트라이캠테크놀로지주식회사 Low frequency pad

Also Published As

Publication number Publication date
JPH10258128A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US11425796B2 (en) Conformable heating blanket
JP6116566B2 (en) Electrode array and electrosurgical gripping device
JP2004510481A (en) Floating electrode
JP3620206B2 (en) Thermal low-frequency treatment conductor and low-frequency treatment device
JP6487723B2 (en) Medical treatment device
CN210932172U (en) Electric skin-friendly sheet
JP5860323B2 (en) Bioelectrode for electrical stimulation
CN216629422U (en) Massage unit and have its massage appearance
CN209490384U (en) A kind of health care is pasted with body-building
JP4029025B2 (en) Sheet heater
KR20030080955A (en) A plate heater type of carbon film
JPH0528712Y2 (en)
CN114099949A (en) Massage unit and have its massage appearance
CN109152111A (en) A kind of Electric radiant Heating Film
CN213432583U (en) Conducting strip, electrode subassembly, massage head and massage appearance
EP4205709B1 (en) Patch having intelligent determination system and used for thermal signal transmission
CN218640718U (en) Graphene acupoint physiotherapy module, automobile seat backrest and automobile seat
CN214070184U (en) Graphene woven heating membrane
WO2021103568A1 (en) Heating band, massage assembly, and neck massage instrument
TWM609385U (en) Heating electrotherapy patch
JP2617929B2 (en) Biological electrode
JP2559963Y2 (en) Planar heating element
CN118267613A (en) Electrode plate
JP4104428B2 (en) Sheet heater
JP2003079745A (en) Viscous leader for electric stimulator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

EXPY Cancellation because of completion of term