JP3619989B2 - Static elimination method under reduced pressure - Google Patents

Static elimination method under reduced pressure Download PDF

Info

Publication number
JP3619989B2
JP3619989B2 JP2000293081A JP2000293081A JP3619989B2 JP 3619989 B2 JP3619989 B2 JP 3619989B2 JP 2000293081 A JP2000293081 A JP 2000293081A JP 2000293081 A JP2000293081 A JP 2000293081A JP 3619989 B2 JP3619989 B2 JP 3619989B2
Authority
JP
Japan
Prior art keywords
discharge
pressure
discharge electrode
vacuum chamber
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000293081A
Other languages
Japanese (ja)
Other versions
JP2002110396A (en
Inventor
泰幸 田畠
信雄 野村
善次 岡村
賢治 堀切
和朗 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasuga Denki Inc
Original Assignee
Kasuga Denki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasuga Denki Inc filed Critical Kasuga Denki Inc
Priority to JP2000293081A priority Critical patent/JP3619989B2/en
Publication of JP2002110396A publication Critical patent/JP2002110396A/en
Application granted granted Critical
Publication of JP3619989B2 publication Critical patent/JP3619989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、大気圧以下の減圧下で除電する方法に関する。
【0002】
【従来の技術】
従来の除電は、放電により空気を電離させてプラス・マイナスのイオンを生成し、そのプラス・マイナスのイオンにより帯電物体を除電するのが通念で、空気(ガス分子)が希薄になる減圧下(真空中)では、空気の電離が起こりにくくなるため、プラス・マイナスのイオンが生成せず、除電できないという考えであった。
【0003】
このような観念から、除電効率を向上させたり三次元の帯電面を除電するような場合、例えば送風により空気を積極的に送っているが、高密度に除電することができず、特に、プラス・マイナス両方の極性が模様のように複雑に混在している様相の帯電(帯電模様)に対しては、除電ムラや逆帯電という問題を払拭することができなかった。
【0004】
本出願人は、上記のような帯電模様まで高密度に除電できる方法として、特許第2651476号公報に記載されているように、平面的な拡がりをもったイオン吸引電極を用い、これを正負イオン生成用除電電極に対して帯電物体を挟んで対向配置し、このイオン吸引電極に、正負が交互に逆極性になる高電圧を交互に印加し、正負イオン生成用除電電極で発生した正負のイオンをイオン吸引電極で吸引して帯電物体に強制的に照射する除電方法を提供している。
【0005】
しかし、この方法によると、帯電物体の表面積よりも大きいイオン吸引電極を必要とするため、装置規模が大きくなるうえに、イオン吸引電極及び正負イオン生成用除電電極のための電源装置も複雑になるなどの問題がある。
【0006】
また、紫外線を照射して真空中でも除電できる方法(例えば特公平5−12839号公報参照)も提案しているが、弱帯電の場合しか適用できず、また高密度の除電は期待できない。
【0007】
【発明が解決しようとする課題】
本発明の目的は、帯電物体が、強帯電であってもかつ三次元形状であっても減圧下(真空中)で高性能かつ高密度の除電ができる除電方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明の除電方法は、放電電極を真空室内に設置して交流高電圧を印加し、放電電極からグロー放電が生ずるまで真空室内を減圧して、被除電物を真空室内の放電プラズマ雰囲気で除電することを特徴とする。
【0009】
複数の放電電極を真空室内に並べて設置して、これらに交流高電圧を同時に印加すると、除電効率が向上する。真空室内の減圧は、放電電流が急激に上昇するところから最大域までの範囲内で行う。その減圧は、真空室内のガスが空気の場合、31.3kPa〜1Paである。なお、ここで1Paは、実施例で示しているようにマイナス放電電流値が最大になるところでなく、最大になってから下降したところであり、本発明で言う「最大域」とは、このように最大値から下降したところまでを含めた意味である。
【0010】
安定したグロー放電にするため、放電電極にコンデンサ又は抵抗を接続し、コンデンサ又は抵抗を介して(容量結合又は抵抗結合により)交流高電圧を放電電極に印加する。
【0011】
【発明の実施の形態】
次に、本発明の実施の形態を図面に基づいて詳細に説明する。
【0012】
図1(A)に本発明による方法の模式図、同図(B)にそれに用いる放電電極ユニットを示す。真空容器1内の所定位置に、針状の複数本の放電電極(電極針)2が所定の間隔をおきかつ先端を同方向に向けて設置されている。具体的には、これら放電電極2は、図2に示すようにその一本一本が鍔付きの誘電体コア3に植設され、横長のプリント基板4に等間隔に設けられたスルホール5に誘電体コア3に嵌合させることにより、放電電極2は、プリント基板4上に等間隔(例えば15mmピッチ)で一列に突設されている。図3に示すように各スルホール5の内周縁には導電層6が形成され、全スルホール5の導電層6は、プリント基板4の裏面にプリントされた配線パターン7により電気接続されている。従って、各放電電極2は、共通の給電線となる配線パターン7に対してそれぞれの誘電体コア3により容量結合されていることになる。
【0013】
このように複数本の放電電極2を保持したプリント基板4を、図4に示すように断面U字状のボディ8内に配置して絶縁モールド9中に埋設し、放電電極2の先端部のみを絶縁モールド9の表面から突出させることにより、全体として一本の放電電極ユニット10となっている。この放電電極ユニット10を真空容器1内において架台に水平に固定することにより、複数本の放電電極2は真空容器1内の所定位置に水平に固定設置されている。
【0014】
プリント基板4の裏面にプリントされた配線パターン7は、高圧ケーブル11を介して真空容器1外の交流高電圧電源12に電気接続され、複数本の放電電極2には、それぞれの誘電体コア3によるコンデンサを介して交流高電圧が同時に印加される。誘電体コア3に代えて抵抗体コアを用いれば、抵抗結合となり、抵抗を介して交流高電圧が同時に印加されることになる。
【0015】
真空容器1は、外部から透視できるように透明になっている。真空容器1内、つまり真空室1aは、外部の真空ポンプ13により無段階に徐々に真空圧(大気圧以下)に減圧できるようになっている。
【0016】
本発明の除電方法は、このような真空式除電装置を用い、図1(A)に示すように、被除電物Aを放電電極2から距離L1だけ離して真空室1a内に入れ、複数本の放電電極2に交流高電圧を印加したまま、これら放電電極2からグロー放電が生ずるまで真空室1a内を減圧することにより、被除電物Aを真空室1a内の放電プラズマ雰囲気で除電する。以下に本発明者らが行った実験とその結果について説明する。
【0017】
除電電流を測定するため、被除電物Aの設置位置から後方に更に距離L2だけ離して金属の帯電板Bを真空室1a内に垂直に立てて設置し、この帯電板Bに、図5に示すように電圧計14と抵抗15(抵抗値100KΩ)を接地に対して並列接続して、帯電板Bに流れ込む電流を測定する第1の電流測定(電圧計での測定)を行った。また、放電電極2に印加する電圧を一定として真空度を徐々に上げたときの電流と、真空度を一定として放電電極2に印加する電圧を徐々に上げたときの電流について測定した。また、放電電極2を誘電体コア3に植設して容量結合とした放電電極ユニット10と、誘電体コア3に代えて抵抗体コアに放電電極2を植設して抵抗結合とした放電電極ユニットの2つのタイプについて行った。
【0018】
放電電極2と被除電物Aと帯電板Bは次のような条件とした。
放電電極2と被除電物Aとの距離L1 70mm
帯電板Bのサイズ 150×150mm
被除電物Aと帯電板Bとの距離L2 50mm
帯電板Bの材質 ステンレス
【0019】
図6は、容量結合した放電電極ユニット10を用い、それへの印加電圧は5kVと一定にして真空容器1a内を減圧して圧力(kPa)を徐々に下げ、帯電板Bに流れる放電電流(μA)を電圧計を用いて測定した放電電流−圧力特性のグラフで、対数目盛にして表す。
【0020】
図7は、同じく容量結合した放電電極ユニット10を用い、真空容器1a内の圧力は0.01kPaと一定にして放電電極ユニット10へ印加する電圧を1kVずつ上昇させ、帯電板Bに流れる放電電流を電圧計を用いて測定した放電電流−電圧特性のグラフである。
【0021】
図8は、抵抗結合した放電電極ユニットを用い、それへの印加電圧は5kVと一定にして真空容器1a内を減圧して圧力を徐々に下げ、帯電板Bに流れる放電電流を電圧計を用いて測定した放電電流−圧力特性のグラフである。
【0022】
図9は、同じく抵抗結合した放電電極ユニットを用い、真空容器1a内の圧力は0.01kPaと一定にして放電電極ユニットへ印加する電圧を1kVずつ上昇させ、帯電板Bに流れる放電電流を電圧計を用いて測定した放電電流−電圧特性のグラフである。
【0023】
図6〜図9から分かるように、容量結合及び抵抗結合のいずれの場合も、帯電板Bに流れる放電電流は、印加電圧に比例して上昇したが、印加電圧を一定して真空容器1a内の圧力を徐々に低下させて行った場合、圧力があるところまで低下してから急激に上昇した。その急激な上昇に従い放電電極2からグロー放電による青紫色の発光量が急激に増加して球形に膨張するのが、肉眼でも観察された。放電電流の上昇推移は圧力を更に下げても続き、放電電流が最高域になるまではほぼ同じような上昇カーブであるが、最高域になってから圧力の更なる低下に従い減衰し、その減衰に伴い放電電極2の周囲の球形の発光の大きさも収縮するのが観察された。なお、抵抗結合の場合の図12に示す測定結果では、最高域に達した後の減衰が数値として現れなかったが、発光の減衰は確認できた。
【0024】
また、予め帯電させた被除電物A(プラスチックフィルム)を、放電電極2から距離L1(70mm)だけ離して対向させて真空室1aに設置し、放電電極2に印加する交流高電圧は5kVと一定にして、真空室1aの真空度を徐々に上げて(圧力を徐々に下げる)被除電物Aに対する除電実験をし、被除電物Aの表面(フィルム面)の帯電模様に対する除電を確認した。
【0025】
プラスチックフィルムの帯電状況は、プラス・マイナス両方の極性が複雑に混在した帯電模様を呈していることから、その帯電状況と除電状況とを視覚的に把握するため、静電式複写に使用される2種のトナーを用い、プラスの帯電極性部分には青トナー、マイナスの帯電極性部分には赤トナーを付着させて、真空室1a内の圧力の変化に対するフィルム表面の除電状況を観測した。交流高電圧電源12の電源オン時間はそれぞれ1秒である。
【0026】
図10〜図25にフィルムの帯電模様を示している。実際にはプラス・マイナス両方の極性が混在していることから、プラスの帯電極性部分は青色、マイナスの帯電極性部分は赤色で現れているが、カラーで図示できないため、帯電部分は全て黒で表さざるを得ないので、プラス・マイナス両方の帯電極性部分を全て黒で表現した図と、その中からプラスの帯電極性部分のみを取り出して黒で表現した図と、マイナスの帯電極性部分のみを取り出して黒で表現した図の3つに分けて示している。黒色の濃淡は帯電電位の強弱を表している。
【0027】
図10は、フィルムを真空室1a内で除電する前(空気中)のフィルム表面に現れたプラス・マイナス両方の帯電模様(青と赤)を示した図、図11は、その中からプラスの帯電模様のみ(青のみ)を取り出した図、図12は、マイナスの帯電模様のみ(赤のみ)を取り出した図である。
【0028】
図13は、真空室1aの圧力(真空度)を91.3kPaにしてフィルムを除電したときのプラス・マイナス両方の帯電模様を示した図、図14は、その中からプラスの帯電模様のみを取り出した図、図15は、マイナスの帯電模様のみを取り出した図である。
【0029】
図16は、真空度を71.3kPaにして除電したときのプラス・マイナス両方の帯電模様を示した図、図17は、その中からプラスの帯電模様のみを取り出した図、図18は、マイナスの帯電模様のみを取り出した図である。
【0030】
図19は、真空度を51.3kPaにして除電したときのプラス・マイナス両方の帯電模様を示した図、図20は、その中からプラスの帯電模様のみを取り出した図、図21は、マイナスの帯電模様のみを取り出した図である。
【0031】
図22は、真空度を41.3kPaにして除電したときのプラス・マイナス両方の帯電模様を示した図、図23は、その中からプラスの帯電模様のみを取り出した図、図24は、マイナスの帯電模様のみを取り出した図である。
【0032】
図25は、真空度を31.3kPaにして除電したときのフィルム表面で、帯電模様は現れなかった。真空度を21.3kPa、11.3kPaにしたときも帯電模様は現れなかった。
【0033】
これらの帯電模様図と図6、図8に示した放電電流−圧力特性図とを対比すれば分かるように、真空室1aの圧力のあるところまで低下して放電電流が急激に上昇すると、プラス・マイナス両極性とも帯電模様は全く消滅し、高密度に綺麗に除電されていることを示している。
【0034】
これは、被除電物Aであるプラスチックフィルムの裏面(放電電極2とは反対側)にトナー付着させた場合も同様であった。このような減圧の進行に伴う現象、つまり真空度が高くなる(圧力が低下する)に従い空気が希薄になり、電離する空気量が減少していくのに、除電性能が高まっていく現象は、放電電極からの放電で空気を電離させて、プラス・マイナスのイオンのみで除電していた従来の除電法の考えとは適合せず、真空室1a全体が放電プラズマ雰囲気(荷電粒子であるイオンと電子が混在して電気的に中性な状態)になっていて、中性なプラズマによりフィルムの帯電部分がプラス・マイナス両極性とも同時に除電されるからであると想像される。また、プラズマに電界が印加されると、荷電粒子であるイオンと電子の移動に伴ってプラズマ中に電流が流れてプラズマに導電性が生じ、これが上記のように測定された放電電流を引き起こし、放電電流が最高域になったところがプラズマの導電性が最高に上昇したことと符合すると思われる。
【0035】
ところが、放電電流は、真空室1aの圧力の低下に伴い上昇して最高域に達した後、更に圧力を1Paまで下げていくと減衰し、放電電極3の周囲に生じている球形の発光の大きさも収縮するのが観察された。これは、圧力を下げ過ぎると放電電流が低下し、却って除電性能が低下することを示している。
【0036】
本発明者らは、このような現象の理由を究明するために、圧力の変化に伴う分子及び電子の平均自由行程の変化について計算した。
分子及び電子の平均自由行程は近似的に次式で求められる。
【0037】
【数1】

Figure 0003619989
【0038】
ここで、λgは分子の平均自由行程、λeは電子の平均自由行程、Pは圧力[Torr]で、K[×10−3]はガスにより異なり、次の表1に示すとおりである。
【0039】
【表1】
Figure 0003619989
【0040】
上述したような除電実験を行った環境での空気の平均自由行程を求めたところ表2のようになった。図26はこれをグラフで表したものである。
【0041】
【表2】
Figure 0003619989
【0042】
図26の圧力−平均自由行程のグラフと、図6及び図8の放電電流−圧力特性のグラフとを対比すれば分かるように、平均自由行程が急激に上昇する圧力域では放電電流も急激な上昇推移を呈し、平均自由行程の上昇推移と放電電流の上昇推移とは符合している。従って、放電電流の急激な上昇は、真空室1aでの空気の分子数の減少以上に、平均自由行程の急激な上昇が大きく寄与していると言える。しかし、更に圧力が低下したときには、平均自由行程は更に上昇するが、上記のように放電電流は減衰しており、これは分子数の減少に伴うイオンの急激な減少の度合いの方が大きくなったためであると思われる。
【0043】
真空室1a内を減圧して最高域に達したときの放電電流は、大気圧中での放電に比べてはるかに大きな値で、放電電極間が短絡したときの短絡電流に近く、このことから、プラズマによる導電性が最高に達したことで、これが高密度の除電に有効に寄与していると思われる。
【0044】
また、容量結合及び抵抗結合しない放電電極で実験したところ、減圧下では導電性が向上して、短絡電流に近い放電電流が流れるため、1個の放電電極から集中して大きなプラズマ放電が接地体に向かって流れ、安定なグロー放電を生成することができず、上記と同等の除電効果が得られなかった。
【0045】
【発明の効果】
以上述べたように本発明によれば、帯電物体を強帯電であっても減圧下(真空中)で高性能かつ高密度の除電ができる。また、三次元形状の帯電物体であっても、その内部まで高密度に除電でき、更に装置規模も小さくできる。
【0046】
また、大気圧下での除電では解決しない場合にも、ある減圧下で除電することで、帯電模様までしかもプラス・マイナスの帯電極性に関係なく綺麗に除電できるので、実用価値の高い新たな除電方法を提供できる。
【図面の簡単な説明】
【図1】(A)は本発明による方法の模式図で、(B)はそれにおいて用いる放電電極ユニットの正面図である。
【図2】放電電極ユニットにおける放電電極のプリント基板上での実装構造を示す一部分の断面図である。
【図3】プリント基板の裏面図である。
【図4】放電電極ユニットの断面図である。
【図5】図1の方法にて実験した放電電流の測定手法を示す模式図である。
【図6】容量結合した放電電極ユニットを用い、それへの印加電圧は一定にして真空容器内を減圧して圧力を徐々に下げ、帯電板に流れる放電電流を電圧計を用いて測定した放電電流−圧力特性のグラフである。
【図7】同じく容量結合した放電電極ユニットを用い、真空容器内の圧力は一定にして放電電極ユニットへ印加する電圧を上昇させ、帯電板に流れる放電電流を電圧計を用いて測定した放電電流−電圧特性のグラフである。
【図8】抵抗結合した放電電極ユニットを用い、それへの印加電圧は一定にして真空容器内を減圧して圧力を徐々に下げ、帯電板に流れる放電電流を電圧計を用いて測定した放電電流−圧力特性のグラフである。
【図9】同じく抵抗結合した放電電極ユニットを用い、真空容器内の圧力は一定にして放電電極ユニットへ印加する電圧を上昇させ、帯電板に流れる放電電流を電圧計を用いて測定した放電電流−電圧特性のグラフである。
【図10】プラスチックフィルムを真空室内で除電する前のフィルム面に現れたプラス・マイナス両方の帯電模様を示す図である。
【図11】図10からプラスの帯電模様のみ(青のみ)を取り出した図である。
【図12】同じくマイナスの帯電模様のみを取り出した図である。
【図13】真空室の圧力を91.3kPaにしてフィルムを除電したときのプラス・マイナス両方の帯電模様を示した図である。
【図14】図13からプラスの帯電模様のみを取り出した図である。
【図15】同じくマイナスの帯電模様のみを取り出した図である。
【図16】真空室の圧力を71.3kPaにしてフィルムを除電したときのプラス・マイナス両方の帯電模様を示した図である。
【図17】図16からプラスの帯電模様のみを取り出した図である。
【図18】同じくマイナスの帯電模様のみを取り出した図である。
【図19】真空室の圧力を51.3kPaにしてフィルムを除電したときのプラス・マイナス両方の帯電模様を示した図である。
【図20】図19からプラスの帯電模様のみを取り出した図である。
【図21】同じくマイナスの帯電模様のみを取り出した図である。
【図22】真空室の圧力を41.3kPaにしてフィルムを除電したときのプラス・マイナス両方の帯電模様を示した図である。
【図23】図22からプラスの帯電模様のみを取り出した図である。
【図24】同じくマイナスの帯電模様のみを取り出した図である。
【図25】真空室の圧力を31.3kPaにしてフィルムを除電したときのプラス・マイナス両方の帯電模様を示した図である。
【図26】圧力の変化に伴う空気の分子及び電子の平均自由行程の変化を示すグラフである。
【符号の説明】
A 被除電物
B 帯電板
1 真空容器
1a 真空室
2 放電電極
3 誘電体コア
4 プリント基板
5 スルホール
6 導電層
7 配線パターン
8 ボディ
9 絶縁モールド
10 放電電極ユニット
11 高圧ケーブル
12 交流高電圧電源
13 真空ポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing static electricity under reduced pressure below atmospheric pressure.
[0002]
[Prior art]
In conventional static elimination, it is common practice to ionize the air by discharge to generate positive and negative ions, and to remove the charged object with the positive and negative ions. Under reduced pressure (air molecules become dilute) ( In vacuum), ionization of air is less likely to occur, so that positive and negative ions are not generated, and the charge cannot be eliminated.
[0003]
From such an idea, when neutralization efficiency is improved or when a three-dimensional charged surface is neutralized, for example, air is actively sent by blowing air, but it cannot be neutralized with high density. -The problem of charge removal unevenness and reverse charge could not be eliminated for charging (charging pattern) in which both negative polarities were mixed in a complicated manner like a pattern.
[0004]
The present applicant uses an ion-attracting electrode having a two-dimensional spread as described in Japanese Patent No. 2651476 as a method capable of removing charges at high density up to the charged pattern as described above. Positive and negative ions generated at the positive / negative ion generating static elimination electrode by placing a charged object across the charged static elimination electrode and applying a high voltage with positive and negative alternating polarity to the ion attracting electrode alternately. A static elimination method is provided in which a charged object is forcibly irradiated by sucking an ion with an ion attraction electrode.
[0005]
However, according to this method, an ion attracting electrode larger than the surface area of the charged object is required, so that the scale of the apparatus is increased, and the power supply device for the ion attracting electrode and the positive / negative ion generating charge eliminating electrode is complicated. There are problems such as.
[0006]
Moreover, although a method (for example, see Japanese Patent Publication No. 5-12839) that can eliminate static electricity by irradiating ultraviolet rays has been proposed, it can be applied only in the case of weak charging, and high-density neutralization cannot be expected.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a static eliminating method capable of performing high performance and high density static elimination under reduced pressure (in a vacuum) regardless of whether a charged object is strongly charged or has a three-dimensional shape.
[0008]
[Means for Solving the Problems]
In the static elimination method of the present invention, a discharge electrode is placed in a vacuum chamber, an alternating high voltage is applied, the vacuum chamber is decompressed until glow discharge is generated from the discharge electrode, and the charge is eliminated in a discharge plasma atmosphere in the vacuum chamber. It is characterized by doing.
[0009]
If a plurality of discharge electrodes are installed side by side in a vacuum chamber and an alternating high voltage is simultaneously applied to them, the static elimination efficiency is improved. The decompression in the vacuum chamber is performed within a range from the point where the discharge current rapidly increases to the maximum range. The decompression is 31.3 kPa to 1 Pa when the gas in the vacuum chamber is air. Here, 1 Pa is not the place where the negative discharge current value becomes the maximum as shown in the embodiment, but the place where the negative discharge current value has decreased, and the “maximum range” referred to in the present invention is as described above. It means to include the point where it falls from the maximum value.
[0010]
In order to obtain a stable glow discharge, a capacitor or a resistor is connected to the discharge electrode, and an alternating high voltage is applied to the discharge electrode via the capacitor or the resistor (by capacitive coupling or resistance coupling).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 (A) shows a schematic diagram of the method according to the present invention, and FIG. 1 (B) shows a discharge electrode unit used therefor. A plurality of needle-like discharge electrodes (electrode needles) 2 are installed at predetermined positions in the vacuum vessel 1 with a predetermined interval and the tips directed in the same direction. Specifically, as shown in FIG. 2, each of these discharge electrodes 2 is implanted in a dielectric core 3 with a hook, and in a through hole 5 provided at equal intervals on a horizontally long printed board 4. By being fitted to the dielectric core 3, the discharge electrodes 2 are projected in a row on the printed board 4 at equal intervals (for example, 15 mm pitch). As shown in FIG. 3, a conductive layer 6 is formed on the inner periphery of each through hole 5, and the conductive layers 6 of all the through holes 5 are electrically connected by a wiring pattern 7 printed on the back surface of the printed board 4. Accordingly, each discharge electrode 2 is capacitively coupled by the respective dielectric core 3 to the wiring pattern 7 serving as a common feeder line.
[0013]
The printed circuit board 4 holding the plurality of discharge electrodes 2 as described above is arranged in a body 8 having a U-shaped cross section as shown in FIG. Is made to protrude from the surface of the insulating mold 9, thereby forming a single discharge electrode unit 10 as a whole. By fixing the discharge electrode unit 10 horizontally on the gantry in the vacuum vessel 1, the plurality of discharge electrodes 2 are fixedly installed horizontally at predetermined positions in the vacuum vessel 1.
[0014]
The wiring pattern 7 printed on the back surface of the printed circuit board 4 is electrically connected to an AC high voltage power supply 12 outside the vacuum vessel 1 via a high voltage cable 11, and a plurality of discharge electrodes 2 are provided with respective dielectric cores 3. AC high voltage is simultaneously applied through the capacitor. If a resistor core is used instead of the dielectric core 3, resistance coupling is established, and an alternating high voltage is simultaneously applied via the resistor.
[0015]
The vacuum vessel 1 is transparent so that it can be seen through from the outside. The inside of the vacuum vessel 1, that is, the vacuum chamber 1a, can be gradually reduced to a vacuum pressure (below atmospheric pressure) steplessly by an external vacuum pump 13.
[0016]
The static elimination method of the present invention uses such a vacuum static elimination device, and as shown in FIG. 1 (A), the object A to be eliminated is separated from the discharge electrode 2 by a distance L1 and placed in the vacuum chamber 1a. While the AC high voltage is being applied to the discharge electrodes 2, the inside of the vacuum chamber 1 a is depressurized until glow discharge is generated from these discharge electrodes 2, so that the object A to be discharged is discharged in the discharge plasma atmosphere in the vacuum chamber 1 a. In the following, experiments conducted by the present inventors and results thereof will be described.
[0017]
In order to measure the static elimination current, a metal charging plate B is set up vertically in the vacuum chamber 1a with a distance L2 further rearward from the installation position of the object A to be removed, and this charging plate B is shown in FIG. As shown, a voltmeter 14 and a resistor 15 (resistance value 100 KΩ) were connected in parallel to the ground, and a first current measurement (measurement with a voltmeter) was performed to measure the current flowing into the charging plate B. Further, a current when the voltage applied to the discharge electrode 2 was constant and the vacuum was gradually increased and a current when the voltage applied to the discharge electrode 2 was gradually increased while maintaining a constant vacuum were measured. Further, a discharge electrode unit 10 in which the discharge electrode 2 is implanted in the dielectric core 3 to be capacitively coupled, and a discharge electrode in which the discharge electrode 2 is implanted in a resistor core in place of the dielectric core 3 to be resistively coupled Performed for two types of units.
[0018]
The discharge electrode 2, the object A to be discharged, and the charging plate B were subjected to the following conditions.
Distance L1 between discharge electrode 2 and object A to be removed L1 70 mm
Charging plate B size 150 × 150mm
Distance L2 between object A to be charged and charging plate B 50 mm
Material of charging plate B Stainless steel [0019]
FIG. 6 shows a discharge current flowing through the charging plate B using a capacitively coupled discharge electrode unit 10 with a constant applied voltage of 5 kV and reducing the pressure (kPa) gradually by reducing the pressure inside the vacuum vessel 1a. μA) is a graph of discharge current-pressure characteristics measured using a voltmeter, and is expressed on a logarithmic scale.
[0020]
FIG. 7 shows a discharge current flowing in the charging plate B by using the discharge electrode unit 10 that is also capacitively coupled, increasing the voltage applied to the discharge electrode unit 10 by 1 kV with the pressure in the vacuum vessel 1a kept constant at 0.01 kPa. Is a graph of discharge current-voltage characteristics measured using a voltmeter.
[0021]
FIG. 8 uses a resistance-coupled discharge electrode unit, the applied voltage is kept constant at 5 kV, the inside of the vacuum vessel 1a is reduced to gradually reduce the pressure, and the discharge current flowing through the charging plate B is measured using a voltmeter. It is the graph of the discharge current-pressure characteristic measured in this way.
[0022]
FIG. 9 shows a similar discharge-coupled discharge electrode unit, the pressure in the vacuum vessel 1a is kept constant at 0.01 kPa, the voltage applied to the discharge electrode unit is increased by 1 kV, and the discharge current flowing through the charging plate B is expressed as a voltage. It is the graph of the discharge current-voltage characteristic measured using the meter.
[0023]
As can be seen from FIGS. 6 to 9, in both cases of capacitive coupling and resistance coupling, the discharge current flowing through the charging plate B increased in proportion to the applied voltage, but the applied voltage was kept constant in the vacuum chamber 1a. When the pressure was gradually reduced, the pressure suddenly increased after decreasing to a certain level. It was also observed with the naked eye that the amount of blue-violet light emitted from the discharge electrode 2 suddenly increased and expanded into a spherical shape with the rapid rise. The rise of the discharge current continues even if the pressure is further lowered, and it is almost the same rise curve until the discharge current reaches the maximum range, but after the peak range, it decays as the pressure further decreases, and the decay Along with this, it was observed that the magnitude of the spherical light emission around the discharge electrode 2 contracted. In the measurement results shown in FIG. 12 in the case of resistance coupling, the attenuation after reaching the maximum range did not appear as a numerical value, but the attenuation of light emission could be confirmed.
[0024]
Further, a precharged object A (plastic film) is placed in the vacuum chamber 1a so as to be opposed to the discharge electrode 2 by a distance L1 (70 mm), and the AC high voltage applied to the discharge electrode 2 is 5 kV. The static electricity was removed from the object A to be removed by gradually increasing the degree of vacuum in the vacuum chamber 1a (gradually decreasing the pressure), and the charge removal on the surface (film surface) of the object A was confirmed. .
[0025]
Since the charging state of plastic film has a charging pattern with both positive and negative polarities mixed in a complicated manner, it is used for electrostatic copying to visually grasp the charging state and the neutralization state. Two types of toners were used, and a blue toner was attached to the positive charged polarity portion and a red toner was attached to the negative charged polarity portion, and the static elimination state on the film surface with respect to the pressure change in the vacuum chamber 1a was observed. The power-on time of the AC high voltage power supply 12 is 1 second each.
[0026]
10 to 25 show the charging pattern of the film. Actually, both positive and negative polarities are mixed, so the positive charged polarity part appears in blue and the negative charged polarity part appears in red, but it cannot be shown in color, so the charged part is all black. Because it must be expressed, both the positive and negative charged polar parts are all represented in black, only the positive charged polar parts are extracted from them, and the negative charged polar parts are represented only in black. Are extracted and shown in black in three parts. Black shading represents the strength of the charging potential.
[0027]
FIG. 10 is a diagram showing both positive and negative charged patterns (blue and red) appearing on the film surface before discharging (in the air) in the vacuum chamber 1a, and FIG. FIG. 12 shows only the charged pattern (only blue), and FIG. 12 shows only the minus charged pattern (only red).
[0028]
FIG. 13 is a diagram showing both positive and negative charged patterns when the film is neutralized with the pressure (vacuum degree) of the vacuum chamber 1a set to 91.3 kPa, and FIG. 14 shows only the positive charged patterns among them. FIG. 15 is a diagram in which only a negative charged pattern is extracted.
[0029]
FIG. 16 is a diagram showing both positive and negative charging patterns when the degree of vacuum is 71.3 kPa, and FIG. 17 is a diagram in which only positive charging patterns are taken out from FIG. It is the figure which took out only the electrification pattern.
[0030]
FIG. 19 is a diagram showing both positive and negative charged patterns when the degree of vacuum is 51.3 kPa, and FIG. 20 is a diagram in which only positive charged patterns are taken out from FIG. It is the figure which took out only the electrification pattern.
[0031]
FIG. 22 is a diagram showing both positive and negative charge patterns when the degree of vacuum is 41.3 kPa, and FIG. 23 is a diagram in which only the positive charge patterns are taken out from FIG. It is the figure which took out only the electrification pattern.
[0032]
In FIG. 25, no charge pattern appeared on the film surface when the degree of vacuum was 31.3 kPa and the charge was removed. Even when the degree of vacuum was 21.3 kPa and 11.3 kPa, no charged pattern appeared.
[0033]
As can be seen by comparing these charging pattern diagrams with the discharge current-pressure characteristic diagrams shown in FIGS. 6 and 8, if the discharge current rises sharply as the pressure in the vacuum chamber 1a decreases to a certain level,・ In both negative and negative polarities, the charged pattern disappears completely, indicating that the charge is removed neatly at high density.
[0034]
This was the same when the toner was adhered to the back surface (the side opposite to the discharge electrode 2) of the plastic film as the object A to be discharged. The phenomenon associated with the progress of such depressurization, that is, as the degree of vacuum increases (the pressure decreases), the air becomes thinner and the amount of air to be ionized decreases, but the static elimination performance increases. The vacuum chamber 1a as a whole is in a discharge plasma atmosphere (charged ions and ions are not compatible with the idea of the conventional static elimination method in which air is ionized by discharge from the discharge electrode and static elimination is performed only with positive and negative ions. It is assumed that this is because electrons are mixed and are in an electrically neutral state), and the charged portion of the film is neutralized at the same time in both positive and negative polarities by neutral plasma. In addition, when an electric field is applied to the plasma, current flows in the plasma as the ions and electrons that are charged particles move, causing the plasma to become conductive, which causes the discharge current measured as described above, It seems that the point where the discharge current reaches the highest range is consistent with the highest increase in plasma conductivity.
[0035]
However, the discharge current rises as the pressure in the vacuum chamber 1a decreases and reaches the highest range, and then attenuates as the pressure is further reduced to 1 Pa. The spherical light emission generated around the discharge electrode 3 is attenuated. It was observed that the size also contracted. This indicates that if the pressure is lowered too much, the discharge current decreases, and on the contrary, the charge removal performance decreases.
[0036]
In order to investigate the reason for such a phenomenon, the present inventors calculated the change in the mean free path of molecules and electrons accompanying the change in pressure.
The mean free path of molecules and electrons can be approximately calculated by the following equation.
[0037]
[Expression 1]
Figure 0003619989
[0038]
Here, λg is the mean free path of the molecule, λe is the mean free path of the electron, P is the pressure [Torr], and K [× 10 −3 ] varies depending on the gas, as shown in Table 1 below.
[0039]
[Table 1]
Figure 0003619989
[0040]
Table 2 shows the mean free path of air in the environment where the static elimination experiment as described above was performed. FIG. 26 is a graphical representation of this.
[0041]
[Table 2]
Figure 0003619989
[0042]
As can be seen by comparing the pressure-mean free path graph of FIG. 26 with the discharge current-pressure characteristic graphs of FIGS. 6 and 8, the discharge current is also abrupt in the pressure range where the mean free path increases rapidly. It shows an increasing trend, and the rising trend of the mean free path and the rising trend of the discharge current coincide. Therefore, it can be said that the rapid increase of the discharge current greatly contributed to the rapid increase of the mean free path more than the decrease of the number of molecules of air in the vacuum chamber 1a. However, when the pressure is further reduced, the mean free path further increases, but the discharge current is attenuated as described above. This is because the degree of abrupt decrease in ions accompanying the decrease in the number of molecules becomes larger. This is probably because of
[0043]
The discharge current when the vacuum chamber 1a is depressurized and reaches the maximum range is much larger than the discharge at atmospheric pressure, and is close to the short-circuit current when the discharge electrodes are short-circuited. It seems that the plasma conductivity has reached the highest level, and this contributes effectively to high-density static elimination.
[0044]
In addition, when an experiment was conducted with a discharge electrode that was not capacitively coupled or resistively coupled, the conductivity was improved under reduced pressure, and a discharge current close to a short-circuit current flows, so that a large plasma discharge concentrated from one discharge electrode was grounded. And a stable glow discharge could not be generated, and the same static elimination effect as described above could not be obtained.
[0045]
【The invention's effect】
As described above, according to the present invention, high-performance and high-density static elimination can be performed under reduced pressure (in a vacuum) even if a charged object is strongly charged. Further, even a charged object having a three-dimensional shape can be discharged with high density up to the inside thereof, and the apparatus scale can be further reduced.
[0046]
In addition, even if static electricity removal under atmospheric pressure does not solve the problem, by removing electricity under a certain reduced pressure, it is possible to remove static electricity up to a charged pattern, regardless of the positive or negative charge polarity. Can provide a method.
[Brief description of the drawings]
FIG. 1A is a schematic view of a method according to the present invention, and FIG. 1B is a front view of a discharge electrode unit used therein.
FIG. 2 is a partial cross-sectional view showing a mounting structure of a discharge electrode on a printed board in the discharge electrode unit.
FIG. 3 is a rear view of the printed circuit board.
FIG. 4 is a cross-sectional view of a discharge electrode unit.
FIG. 5 is a schematic diagram showing a method for measuring a discharge current, which was tested by the method of FIG.
FIG. 6 shows a discharge in which a capacitively coupled discharge electrode unit is used, the voltage applied to the discharge electrode unit is kept constant, the pressure inside the vacuum vessel is reduced, the pressure is gradually lowered, and the discharge current flowing through the charging plate is measured using a voltmeter. It is a graph of an electric current-pressure characteristic.
FIG. 7 shows a discharge current obtained by measuring a discharge current flowing through a charging plate using a voltmeter by increasing a voltage applied to the discharge electrode unit while using a discharge electrode unit that is also capacitively coupled and keeping the pressure in the vacuum vessel constant. -A graph of voltage characteristics.
FIG. 8 shows a discharge electrode in which a resistance-coupled discharge electrode unit is used, the voltage applied to the discharge electrode unit is kept constant, the pressure inside the vacuum vessel is reduced, the pressure is gradually lowered, and the discharge current flowing through the charging plate is measured using a voltmeter. It is a graph of an electric current-pressure characteristic.
FIG. 9 shows a discharge current obtained by measuring a discharge current flowing through a charging plate using a voltmeter, using a discharge electrode unit that is also resistance-coupled, increasing the voltage applied to the discharge electrode unit while keeping the pressure in the vacuum vessel constant. -A graph of voltage characteristics.
FIG. 10 is a diagram showing both positive and negative charging patterns appearing on the film surface before the plastic film is neutralized in the vacuum chamber.
11 is a diagram in which only a positive charged pattern (only blue) is extracted from FIG.
FIG. 12 is a view in which only a negatively charged pattern is taken out.
FIG. 13 is a diagram showing both positive and negative charging patterns when a film is discharged with a vacuum chamber pressure of 91.3 kPa.
FIG. 14 is a diagram in which only a positive charging pattern is extracted from FIG.
FIG. 15 is a view in which only a negatively charged pattern is taken out.
FIG. 16 is a diagram showing both positive and negative charging patterns when a film is discharged with a vacuum chamber pressure of 71.3 kPa.
FIG. 17 is a diagram in which only a positive charging pattern is extracted from FIG.
FIG. 18 is a view in which only a negatively charged pattern is taken out.
FIG. 19 is a diagram showing both positive and negative charging patterns when a film is discharged with a vacuum chamber pressure of 51.3 kPa.
FIG. 20 is a diagram in which only a positive charged pattern is extracted from FIG.
FIG. 21 is a view in which only a negatively charged pattern is taken out.
FIG. 22 is a diagram showing both positive and negative charging patterns when a film is discharged with a vacuum chamber pressure of 41.3 kPa.
23 is a diagram in which only a positive charged pattern is extracted from FIG.
FIG. 24 is a view in which only a negatively charged pattern is taken out.
FIG. 25 is a diagram showing both positive and negative charging patterns when a film is discharged with a vacuum chamber pressure of 31.3 kPa.
FIG. 26 is a graph showing a change in mean free path of air molecules and electrons accompanying a change in pressure.
[Explanation of symbols]
A Charged object B Charged plate 1 Vacuum vessel 1a Vacuum chamber 2 Discharge electrode 3 Dielectric core 4 Printed circuit board 5 Through hole 6 Conductive layer 7 Wiring pattern 8 Body 9 Insulating mold 10 Discharge electrode unit 11 High voltage cable 12 AC high voltage power supply 13 Vacuum pump

Claims (2)

コンデンサ又は抵抗を接続した放電電極を真空室内に設置し、この放電電極にコンデンサ又は抵抗を介して交流高電圧を印加して、その放電により生ずる放電電流を測定し、放電電流が急激に上昇するところから最大域に達する範囲で真空室内を減圧して、放電電極からグロー放電を生じさせることにより、真空室内の被除電物をプラズマ雰囲気で除電することを特徴とする減圧下での除電方法。A discharge electrode to which a capacitor or resistor is connected is installed in the vacuum chamber, an AC high voltage is applied to the discharge electrode via the capacitor or resistor, the discharge current generated by the discharge is measured, and the discharge current rises rapidly. A static elimination method under reduced pressure, wherein the vacuum chamber is depressurized within a range reaching the maximum region and glow discharge is generated from the discharge electrode, thereby neutralizing an object to be eliminated in the vacuum chamber in a plasma atmosphere. 真空室内を31.3kPa〜1Paまで減圧することを特徴とする請求項1に記載の減圧下での除電方法。The method for removing static electricity under reduced pressure according to claim 1, wherein the pressure in the vacuum chamber is reduced to 31.3 kPa to 1 Pa.
JP2000293081A 2000-09-26 2000-09-26 Static elimination method under reduced pressure Expired - Fee Related JP3619989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000293081A JP3619989B2 (en) 2000-09-26 2000-09-26 Static elimination method under reduced pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000293081A JP3619989B2 (en) 2000-09-26 2000-09-26 Static elimination method under reduced pressure

Publications (2)

Publication Number Publication Date
JP2002110396A JP2002110396A (en) 2002-04-12
JP3619989B2 true JP3619989B2 (en) 2005-02-16

Family

ID=18775924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000293081A Expired - Fee Related JP3619989B2 (en) 2000-09-26 2000-09-26 Static elimination method under reduced pressure

Country Status (1)

Country Link
JP (1) JP3619989B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833933B (en) * 2012-08-30 2016-08-10 深圳南玻显示器件科技有限公司 Neutralizing method and Destaticizing device
JP6579635B1 (en) 2018-09-12 2019-09-25 春日電機株式会社 Static eliminator and plasma generator

Also Published As

Publication number Publication date
JP2002110396A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
KR960008925B1 (en) High-frequency ion source
TW200537991A (en) Corona discharge type ionizer
KR20170084130A (en) Balanced barrier discharge neutralization in variable pressure environments
US7455030B2 (en) Plasma generating apparatus
US4391773A (en) Method of purifying air and negative field generator
JP5937918B2 (en) Ion generator and static eliminator provided with the same
JP2012186148A (en) Apparatus and method for eliminating static electricity
JPH08508852A (en) Plasma forming plug for sputter etching control
JP3619989B2 (en) Static elimination method under reduced pressure
CN110174595B (en) Spark-based combustion testing system
JP3760336B2 (en) Static elimination method under reduced pressure
KR20080072928A (en) Aerosol charge neutralizing device
JP2011054308A (en) Static eliminator and static elimination method
JP2000340393A (en) Prevention of sputtering phenomenon ozone generation, and light emission of discharge electrode or electricity removal electrode for high voltage applying electricity removal device or electrification removal device in vacuum layer and its manufacture
JP2001310141A (en) Dust precipitator
JP3619987B2 (en) Static elimination method under reduced pressure
US6967334B2 (en) Ion source and ion beam device
JP6712216B2 (en) Static elimination checker
JPH062166A (en) Ion beam etching device
Mandache et al. The characterization of pre-ionization-controlled electron beams produced in open-ended hollow-cathode transient discharges
Benocci et al. I–V characteristics and photocurrents of a He corona discharge under flow conditions
US5159196A (en) Apparatus and method for discharging a specimen disposed in an evacuated chamber
He et al. Study of the discharge mode in micro-hollow cathode
Manabe et al. Formation mechanism of surface corona on dielectric plates under negative impulse voltage in atmospheric air
CN105702548B (en) Screening arrangement and the plasma processing apparatus with the screening arrangement

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3619989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees