JP3760336B2 - Static elimination method under reduced pressure - Google Patents

Static elimination method under reduced pressure Download PDF

Info

Publication number
JP3760336B2
JP3760336B2 JP2001250388A JP2001250388A JP3760336B2 JP 3760336 B2 JP3760336 B2 JP 3760336B2 JP 2001250388 A JP2001250388 A JP 2001250388A JP 2001250388 A JP2001250388 A JP 2001250388A JP 3760336 B2 JP3760336 B2 JP 3760336B2
Authority
JP
Japan
Prior art keywords
discharge
negative
positive
vacuum chamber
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001250388A
Other languages
Japanese (ja)
Other versions
JP2003059693A (en
Inventor
信雄 野村
善次 岡村
賢治 堀切
和朗 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasuga Denki Inc
Original Assignee
Kasuga Denki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasuga Denki Inc filed Critical Kasuga Denki Inc
Priority to JP2001250388A priority Critical patent/JP3760336B2/en
Publication of JP2003059693A publication Critical patent/JP2003059693A/en
Application granted granted Critical
Publication of JP3760336B2 publication Critical patent/JP3760336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、大気圧以下の減圧下で除電する方法に関する。
【0002】
【従来の技術】
従来の除電は、放電により空気を電離させてプラス・マイナスのイオンを同時に生成し、そのプラス・マイナスのイオンにより帯電物体を除電するのが通念で、空気(ガス分子)が希薄になる減圧下(真空中)では、空気の電離が起こりにくくなるため、プラス・マイナスのイオンが生成せず、除電できないという考えであった。
【0003】
このような観念から、除電効率を向上させたり三次元の帯電面を除電するような場合、例えば送風により空気を積極的に送っているが、高密度に除電することができず、特に、プラス・マイナス両方の極性が模様のように複雑に混在している様相の帯電(帯電模様)に対しては、除電ムラや逆帯電という問題を払拭することができなかった。
【0004】
本出願人は、上記のような帯電模様まで高密度に除電できる方法として、特許第2651476号公報に記載されているように、平面的な拡がりをもったイオン吸引電極を用い、これを正負イオン生成用除電電極に対して帯電物体を挟んで対向配置し、このイオン吸引電極に、正負が交互に逆極性になる高電圧を交互に印加し、正負イオン生成用除電電極で発生した正負のイオンをイオン吸引電極で吸引して帯電物体に強制的に照射する除電方法を提供している。
【0005】
しかし、この方法によると、帯電物体の表面積よりも大きいイオン吸引電極を必要とするため、装置規模が大きくなるうえに、イオン吸引電極及び正負イオン生成用除電電極のための電源装置も複雑になるなどの問題がある。
【0006】
また、紫外線を照射して真空中でも除電できる方法(例えば特公平5−12839号公報参照)も提案しているが、弱帯電の場合しか適用できず、また高密度の除電は期待できない。
【0007】
【発明が解決しようとする課題】
本発明の目的は、帯電物体が、強帯電であってもかつ三次元形状であっても減圧下(真空中)で高性能かつ高密度の除電ができる除電方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明の除電方法は、コンデンサを接続した放電電極を真空室内に設置し、この放電電極にコンデンサを介してプラス又はマイナスの一方の極性の高電圧を印加して、その一方の極性の放電により生ずる放電電流を検出し、その放電電流が急激に上昇するところから最高域に達する範囲の圧力となるように真空室内を減圧調整し、放電電極からグロー放電を生じさせることにより、真空室内の被除電物を放電プラズマ雰囲気で除電することを特徴とする。
【0009】
複数の放電電極を真空室内に並べて設置して、これらにプラス又はマイナスの一方の極性の高電圧を同時に印加すると、除電効率が向上する。
【0010】
放電電極にコンデンサを接続した場合、コンデンサを介してプラス又はマイナスの一方の極性のパルス状高電圧を放電電極に印加すると、抵抗接続の場合と同等の効果がある。
【0011】
放電電極の材質をチタニウム合金又はインコネル合金とすると、放電電極の損傷・摩耗が少ない。
【0012】
【発明の実施の形態】
次に、本発明の実施の形態を図面に基づいて詳細に説明する。
【0013】
図1に本発明による方法の模式図を示す。真空容器1内の所定位置に、針状の複数本(図では2本)の放電電極2・3が所定の間隔をおきかつ先端を同方向に向けて設置されている。具体的には、これら放電電極2・3は、図2に示すように、絶縁基板4に植設した有底の導電性ブッシュ5に基端部を嵌入させて絶縁基板4上に平行に保持され、各放電電極2・3には、いわゆる抵抗結合にするため、絶縁基板4の裏面に実装した抵抗6がそれぞれ接続されている。
【0014】
また、絶縁基板4の両側縁には電源配線7がプリント配線され、これら両側の電源配線7の入力端は、導電部材8にて互いに結線して図示しない高電圧給電ケーブルに接続され、放電電極2・3に電源配線7を介してプラス又はマイナスの一方の極性の高電圧を印加できるようになっている。絶縁基板4は、図3に示すように、導電性ブッシュ5及び抵抗6と共に断面C字形の電極ホルダ9内において樹脂10に埋設して、放電電極2・3の先端部を樹脂表面から突出させることにより、全体として一本の電極ユニット11となっている。この電極ユニット11を真空容器1内において架台に水平に固定することにより、放電電極2・3は真空容器1内の所定位置に固定設置されている。
【0015】
電源配線7の入力端に接続された高電圧給電ケーブルは真空容器1外の直流高電圧電源12に電気接続され、放電電極2・3には、プラス又はマイナスの一方の極性の直流高電圧が抵抗6を介して同時に印加される。
【0016】
直流高電圧電源12は、自励発振回路と昇圧回路を用いて昇圧し、倍電圧整流回路にて整流して、プラス又はマイナスの直流高電圧を生成する構成になっている。
【0017】
真空容器1は、外部から透視できるように透明になっているが、その基台13は不透明である。真空容器1内、つまり真空室1aは、外部の真空ポンプ(図示せず)により無段階に徐々に真空圧(大気圧以下)に減圧できるようになっている。
【0018】
本発明の除電方法は、このような真空式除電装置を用い、被除電物Aを真空室1a内に入れて、放電電極2・3にプラス又はマイナスの一方の極性の直流高電圧を印加したまま、放電電極2・3からグロー放電が生ずるまで真空室1a内を減圧することにより、被除電物Aを真空室1a内の放電プラズマ雰囲気で除電する。以下に本発明者らが行った実験とその結果について説明する。
【0019】
予め帯電させた被除電物A(プラスチックフィルム)を、放電電極2・3から距離L1だけ離して対向させて真空室1aに設置して、真空室1a内の真空度を上げ、放電電極2・3にプラス又はマイナスの一方の極性の直流高電圧を約1秒間印加して被除電物Aに対する除電実験を行い、被除電物Aの表裏両面(フィルム面)の帯電模様に対して除電前と除電後の状態を確認した。
【0020】
また、放電電流を測定するため、被除電物Aの後方に更に距離L2だけ離して金属の帯電板Bを真空室1a内に垂直に立てて設置し、この帯電板Bに電流計14を接続し、その接続側とは反対側の電流計の極は接地した。
【0021】
図4は、上記の条件に更に次のような条件で真空容器1a内を減圧して圧力(kPa)を下げ、放電電極2・3へプラスの直流高電圧を印加した場合に帯電板Bに流れるプラス放電電流(μA)と、マイナスの直流高電圧を印加した場合に帯電板Bに流れるマイナス放電電流(μA)を別々に測定した圧力−放電電流特性のグラフである。図5はその一部を対数目盛にして示すグラフである。
【0022】
放電電極2・3間の距離 50mm
放電電極2・3への印加電圧 プラスの場合+5kV、マイナスの場合−5kV
放電電極2・3と被除電物Aとの距離L1 50mm
帯電板Bのサイズ 150×150mm
被除電物Aと帯電板Bとの距離L2 50mm
帯電板Bの材質 ステンレス
抵抗6の抵抗値 200MΩ
【0023】
図4及び図5に示すように、プラスの直流高電圧を印加した場合のプラス放電電流及びマイナスの直流高電圧を印加した場合のマイナス放電電流ともに、20kPaあたりから急激に上昇し、その急激な上昇に従い放電電極2・3間からのグロー放電による青紫色の発光量が急激に増加するのが、肉眼でも観察され、放電電極2・3からの発光が針の先端から球形に拡がり、放電電流の急激な上昇に伴い発光の球形が膨張して拡大するのが観察された。これは真空室1aでプラズマが発生しているためであると想像される。このようなプラス又はマイナスの放電電流の上昇推移は圧力を更に下げても続き、プラス放電電流とマイナス放電電流は最高域になるまではほぼ同じような上昇カーブであるが、プラス放電電流は最高域からさほど減衰しないのに、マイナス放電電流は最高域になってから圧力の更なる低下に従い急激に減衰し、その減衰に伴い放電電極2・3の周囲の球形の発光の大きさも収縮するのが観察された。
【0024】
図6は、真空室1a内を0.01kPaに減圧して一定にし、放電電極2・3にマイナスの直流高電圧を可変して印加し、帯電板Bに流れる電流と放電電極2・3からの放電電流を測定した。図7は、同様に放電電極2・3にプラスの直流高電圧を可変して印加し、帯電板Bに流れる電流と放電電極2・3からの放電電流を測定した。いずれの場合も、真空室1aの底面、つまり基台13の金属表面は絶縁フィルムで絶縁し、抵抗6の抵抗値は200MΩとしたところ、放電電極2・3から放電した。図6及び図7において、0から90μAまでの実線は、放電電極2・3を短絡させたときに流れた短絡時の放電電流を示す。
【0025】
これらの図から分かるように、真空室1a内を減圧した場合のプラス又はマイナスの放電電流は、大気圧中に比べて大きな値(図4に示す100kPaが大気圧中での放電電流値で、この値は1μA程度)が測定されている。このことから、電気的に中性なプラズマによる導電性が最高に達したことで、短絡電流に近い放電電流が得られると同時に、放電電極2・3に印加する高電圧がプラス又はマイナスの一方だけの極性の直流高電圧であっても、電気的に中性なプラズマによる作用により、後述するように高密度の除電が可能になると思われる。
【0026】
図8は、帯電板Bのみの場合の圧力(cmHg)の変化に対するマイナス放電電流の特性グラフ、図9は同様にプラス放電電流の特性グラフである。
【0027】
プラスチックフィルムの帯電状況は、プラス・マイナス両方の極性が複雑に混在した帯電模様を呈していることから、その帯電状況と除電状況とを視覚的に把握するため、静電式複写に使用される2種のトナーを用い、プラスの帯電極性部分には青トナー、マイナスの帯電極性部分には赤トナーを付着させて、真空室1a内の圧力を80Paとしてフィルムの表面(放電電極2・3と向かい合っている面)と裏面(反対側の面)の除電状況と表面電位と観測した。直流高電圧電源11の電源オン時間はそれぞれ1秒で、印加電圧はプラスを印加する場合+5kV、マイナスを印加する場合−5kVとし、放電電極の本数は合計4本とした。
【0028】
図11〜図18にフィルムの帯電模様を示している。実際にはプラス・マイナス両方の極性が混在していることから、プラスの帯電極性部分は青色、マイナスの帯電極性部分は赤色で現れているが、カラーで図示できないため、帯電部分は全て黒で表さざるを得ないので、プラス・マイナス両方の帯電極性部分を全て黒で表現した図と、その中からプラスの帯電極性部分のみを取り出して黒で表現した図と、マイナスの帯電極性部分のみを取り出して黒で表現した図の3つに分けて示している。黒色の濃淡は帯電電位の強弱を表している。
【0029】
図11は、フィルムを真空室1a内で除電する前(空気中)のフィルムの表面に現れたプラス・マイナス両方の帯電模様(青と赤)を示した図、図12は、その中からプラスの帯電模様のみ(青のみ)を取り出した図、図13は、マイナスの帯電模様のみ(赤のみ)を取り出した図である。
【0030】
図14は、同様にフィルムを真空室1a内で除電する前のフィルムの裏面に現れたプラス・マイナス両方の帯電模様(青と赤)を示した図、図15は、その中からプラスの帯電模様のみ(青のみ)を取り出した図、図16は、マイナスの帯電模様のみ(赤のみ)を取り出した図である。
【0031】
図17は、真空室1aの圧力(真空度)を80Paにして、4本の放電電極に+5kVの直流高電圧を印加してフィルムを除電したときの図で、(A)がフィルムの表面、(B)が裏面であり、表裏両面とも帯電模様は現れなかった。
【0032】
図18は、真空室1aの圧力(真空度)を80Paにして、4本の放電電極に−5kVの直流高電圧を印加してフィルムを除電したときの図で、(A)がフィルムの表面、(B)が裏面であり、表裏両面とも帯電模様は現れなかった。
【0033】
次の表1は、同じ実験においてフィルムの表面電位を測定したもので、「サンプル1」は除電前、「サンプル2」はプラスの高電圧を印加して除電した場合、「サンプル3」はマイナスの高電圧を印加して除電した場合である。
【0034】
【表1】

Figure 0003760336
【0035】
これらの実験結果と図4〜図9に示した圧力−放電電流特性図とを対比すれば分かるように、真空室1aの圧力の低下につれて放電電流が上昇するのに伴い、放電電流が最高域になる圧力80Paのときには、図17及び図18に示すように、プラスの高電圧のみを印加した場合も、マイナスの高電圧のみを印加した場合も、フィルムの表面ばかりでなく裏面もプラス・マイナス両極性とも帯電模様は全く消滅し、高密度に綺麗に除電されていることを示している。
【0036】
これは、減圧の進行に伴う現象、つまり真空度が高くなる(圧力が低下する)に従い空気が希薄になり、電離する空気量が減少していくのに、しかもプラス・マイナスの一方の極性での放電であるにも拘わらず、除電性能が高まっていく現象は、放電電極からの放電で空気を電離させて、プラス・マイナスのイオンのみで除電していた従来の除電法の考えとは適合せず、真空室1a全体が放電プラズマ雰囲気(荷電粒子であるイオンと電子が混在して電気的に中性な状態)になっていて、電気的に中性なプラズマによりフィルムの帯電部分がプラス・マイナス両極性とも同時に除電されるからであると想像される。また、プラズマに電界が印加されると、荷電粒子であるイオンと電子の移動に伴ってプラズマ中に電流が流れてプラズマに導電性が生じ、これが上記のように測定された放電電流を引き起こし、放電電流が最高域になったところがプラズマの導電性が最高に上昇したことと符合すると思われる。
【0037】
ところが、放電電流は、真空室1aの圧力の低下に伴い上昇して最高域に達した後、更に圧力を1Paまで下げていくと減衰し、放電電極3の周囲に生じている球形の発光の大きさも収縮するのが観察された。これは、圧力を下げ過ぎると放電電流が低下し、却って除電性能が低下することを示している。
【0038】
本発明者らは、このような現象の理由を究明するために、圧力の変化に伴う分子及び電子の平均自由行程の変化について計算した。
分子及び電子の平均自由行程は近似的に次式で求められる。
【0039】
【数1】
Figure 0003760336
【0040】
ここで、λgは分子の平均自由行程、λeは電子の平均自由行程、Pは圧力[Torr]で、K[×10-3]はガスにより異なり、次の表2に示すとおりである。
【0041】
【表2】
Figure 0003760336
【0042】
上述したような除電実験を行った環境での空気の平均自由行程を求めたところ表3のようになった。図10はこれをグラフで表したものである。
【0043】
【表3】
Figure 0003760336
【0044】
図10の圧力−平均自由行程のグラフと、図4、図8及び図9の圧力−放電電流特性のグラフとを対比すれば分かるように、平均自由行程が急激に上昇する圧力域では放電電流も急激な上昇推移を呈し、平均自由行程の上昇推移と放電電流の上昇推移とは符合している。従って、放電電流の急激な上昇は、真空室1aでの空気の分子数の減少以上に、平均自由行程の急激な上昇が大きく寄与していると言える。しかし、更に圧力が低下したときには、平均自由行程は更に上昇するが、上記のようにマイナス放電電流は急激に減衰しており、これは分子数の減少に伴うイオンの急激な減少の度合いの方が大きくなったためであると思われる。
【0045】
また、放電電極2・3から抵抗結合用の抵抗6を外した状態で実験したところ、図6及び図7に示した特性のように、減圧下では導電性が向上し、短絡電流に近い放電電流が流れるため、放電電極から大きなプラズマ放電が接地体に向かって流れ、安定なグロー放電を生成することができず、上記と同等の除電効果が得られなかった。
【0046】
なお、放電電極2・3にコンデンサを接続し、コンデンサを介してプラス又はマイナスの一方の極性のパルス状高電圧を放電電極2・3に印加しても、同様のグロー放電が得られた。
【0047】
更に、本発明者らは減圧下での除電で用いる放電電極の材質を決定するため、インコネル合金の針電極とタングステン合金の針電極とチタニウム合金の針電極について、圧力を80Pa、印加電圧をプラスの場合+5kV、マイナスの場合−5kVとして耐久試験を行った。
【0048】
インコネル合金、タングステン合金、チタニウム合金のいずれの場合も針電極の使用前の先端部の形状は、図19に示すように円錐形に加工されたものであったが、+5kVをインコネル合金の場合には672時間、タングステン合金の場合には668時間、チタニウム合金の場合には624時間印加した後にそれぞれの針電極を写真撮影したところ、図20、図21、図22にそれぞれ図化したようになった。
【0049】
また、−5kVを同様にインコネル合金の場合には672時間、タングステン合金の場合には668時間、チタニウム合金の場合には624時間印加した後にそれぞれの針電極を写真撮影したところ、図23、図24、図25にそれぞれ図化したようになった。
【0050】
プラス高電圧印加時及びマイナス高電圧印加時のいずれの場合も、インコネル合金の針電極の場合は先端部の全体形状は崩れないが、表面に水滴なような溶融部分が現れた。タングステン合金の場合には先端が損壊するとともに、表面がぼろぼろに損傷し、マイナス高電圧を印加したときの方が損傷の程度が大きかった。
【0051】
チタニウム合金の針電極の場合は、ほとんど変化しなかった。
従って、放電電極の好ましい材質としては、チタニウム合金が良く、次にインコネル合金が良いという結果となった。
【0052】
【発明の効果】
以上述べたように本発明によれば、帯電物体が強帯電であっても減圧下(真空中)で高性能かつ高密度の除電ができる。また、三次元形状の帯電物体であっても、その内部まで高密度に除電でき、更に装置規模も小さくできる。
【0053】
また、大気圧下での除電では解決しない場合にも、ある減圧下で除電することで、帯電模様までしかもプラス又はマイナスの一方の極性の高電圧を印加するだけで、プラス・マイナスの帯電極性に関係なくプラス・マイナス両方とも綺麗に除電できるので、実用価値の高い新たな除電方法を提供でき、また電源も簡素になる。
【図面の簡単な説明】
【図1】本発明による方法の模式図である。
【図2】絶縁基板上におけるプラス・マイナスの放電電極の実装構造を示す一部分の斜視図である。
【図3】図2の構造を電極ホルダ内において樹脂埋設して全体として一本の放電電極ユニットとした断面図である。
【図4】真空室を減圧して圧力を下げ、帯電板に流れるプラス放電電流とマイナス放電電流とを別々に測定した圧力−放電電流特性のグラフである。
【図5】図4の一部を対数目盛にして表したグラフである。
【図6】真空室を減圧して一定にし、放電電極にマイナス高電圧を可変して印加し、帯電板に流れる電流と放電電極からの放電電流を測定した、マイナス印加電圧の変化に対する放電電流の特性グラフである。
【図7】同じく、放電電極にプラス高電圧を可変して印加し、帯電板に流れる電流と放電電極からの放電電流を測定した、プラス印加電圧の変化に対する放電電流の特性グラフである。特性グラフである。
【図8】帯電板のみの場合の圧力の変化に対するマイナス放電電流の特性グラフである。
【図9】同じくプラス放電電流の特性グラフである。
【図10】圧力の変化に伴う空気の分子及び電子の平均自由行程の変化を示すグラフである。
【図11】プラスチックフィルムを真空室内で除電する前のフィルムの表面に現れたプラス・マイナス両方の帯電模様(青と赤)を示す図である。
【図12】図11からプラスの帯電模様のみ(青のみ)を取り出した図である。
【図13】同じくマイナスの帯電模様のみ(赤のみ)を取り出した図である。
【図14】プラスチックフィルムを真空室内で除電する前のフィルムの裏面に現れたプラス・マイナス両方の帯電模様(青と赤)を示す図である。
【図15】図14からプラスの帯電模様のみ(青のみ)を取り出した図である。
【図16】同じくマイナスの帯電模様のみ(赤のみ)を取り出した図である。
【図17】真空室の圧力(真空度)を80Paにして、放電電極に+5kVの直流高電圧を印加してフィルムを除電したときの図で、(A)がフィルムの表面、(B)が裏面である。
【図18】真空室の圧力(真空度)を80Paにして、放電電極に−5kVの直流高電圧を印加してフィルムを除電したときの図で、(A)がフィルムの表面、(B)が裏面である。
【図19】放電電極である針電極の材質をインコネル合金、タングステン合金、チタニウム合金とした場合の耐久試験において、針電極の使用前の先端部の形状である。
【図20】プラスを高電圧印加した使用後のインコネル合金針電極の先端部の形状である。
【図21】プラスを高電圧印加した使用後のタングステン合金針電極の先端部の形状である。
【図22】プラスを高電圧印加した使用後のチタニウム合金針電極の先端部の形状である。
【図23】マイナスを高電圧印加した使用後のインコネル合金針電極の先端部の形状である。
【図24】マイナスを高電圧印加した使用後のタングステン合金針電極の先端部の形状である。
【図25】マイナスを高電圧印加した使用後のチタニウム合金針電極の先端部の形状である。
【符号の説明】
1 真空容器
1a 真空室
2・3 放電電極
4 絶縁基板
5 導電性ブッシュ
6 抵抗
7 電源配線
8 導電部材
9 電極ホルダ
10 樹脂
11 電極ユニット
12 直流高電圧電源
13 基台
14 電流計
A 被除電物
B 帯電板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing static electricity under reduced pressure below atmospheric pressure.
[0002]
[Prior art]
In conventional static neutralization, air is ionized by discharge to generate positive and negative ions at the same time, and it is common practice to neutralize charged objects with the positive and negative ions. Under reduced pressure where air (gas molecules) becomes diluted In (in a vacuum), since ionization of air is less likely to occur, positive and negative ions are not generated, and it was thought that static electricity cannot be removed.
[0003]
From such an idea, when neutralization efficiency is improved or when a three-dimensional charged surface is neutralized, for example, air is actively sent by blowing air, but it cannot be neutralized with high density. -The problem of charge removal unevenness and reverse charge could not be eliminated for charging (charging pattern) in which both negative polarities were mixed in a complicated manner like a pattern.
[0004]
The present applicant uses an ion-attracting electrode having a two-dimensional spread as described in Japanese Patent No. 2651476 as a method capable of removing charges at high density up to the charged pattern as described above. Positive and negative ions generated at the positive / negative ion generating static elimination electrode by placing a charged object across the charged static elimination electrode and applying a high voltage with positive and negative alternating polarity to the ion attracting electrode alternately. A method of removing electricity by forcibly irradiating a charged object by suctioning with an ion attraction electrode is provided.
[0005]
However, according to this method, an ion attracting electrode larger than the surface area of the charged object is required, so that the scale of the apparatus is increased, and the power supply device for the ion attracting electrode and the positive / negative ion generating charge eliminating electrode is complicated. There are problems such as.
[0006]
Moreover, although a method (for example, see Japanese Patent Publication No. 5-12839) that can eliminate static electricity by irradiating ultraviolet rays has been proposed, it can be applied only in the case of weak charging, and high-density neutralization cannot be expected.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a static eliminating method capable of performing high performance and high density static elimination under reduced pressure (in a vacuum) regardless of whether a charged object is strongly charged or has a three-dimensional shape.
[0008]
[Means for Solving the Problems]
In the static elimination method of the present invention, a discharge electrode to which a capacitor is connected is placed in a vacuum chamber, and a positive or negative high voltage is applied to the discharge electrode via the capacitor, and the discharge of the one polarity is performed. The discharge current generated is detected, the vacuum chamber is depressurized so that the pressure reaches a maximum range from where the discharge current suddenly rises, and glow discharge is generated from the discharge electrode, so that It is characterized in that the charge removal material is discharged in a discharge plasma atmosphere.
[0009]
If a plurality of discharge electrodes are installed side by side in a vacuum chamber and a high voltage having one of the positive and negative polarities is simultaneously applied thereto, the static elimination efficiency is improved.
[0010]
When a capacitor is connected to the discharge electrode, if a pulsed high voltage having one of the positive and negative polarities is applied to the discharge electrode via the capacitor, an effect equivalent to that of the resistance connection is obtained.
[0011]
When the material of the discharge electrode is a titanium alloy or an inconel alloy, the discharge electrode is less damaged and worn.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 shows a schematic diagram of the method according to the invention. A plurality of needle-like (two in the figure) discharge electrodes 2 and 3 are installed at predetermined positions in the vacuum vessel 1 with a predetermined interval and the tips directed in the same direction. Specifically, as shown in FIG. 2, these discharge electrodes 2 and 3 are held in parallel on the insulating substrate 4 by inserting the base end portion into a bottomed conductive bush 5 implanted in the insulating substrate 4. In addition, a resistor 6 mounted on the back surface of the insulating substrate 4 is connected to each of the discharge electrodes 2 and 3 in order to achieve so-called resistance coupling.
[0014]
Further, power supply wirings 7 are printed on both side edges of the insulating substrate 4, and input ends of the power supply wirings 7 on both sides are connected to each other by a conductive member 8 and connected to a high voltage power supply cable (not shown). A high voltage having one of the positive and negative polarities can be applied to 2 and 3 via the power supply wiring 7. As shown in FIG. 3, the insulating substrate 4 is embedded in the resin 10 together with the conductive bush 5 and the resistor 6 in the electrode holder 9 having a C-shaped cross section so that the tip ends of the discharge electrodes 2 and 3 protrude from the resin surface. Thus, one electrode unit 11 is formed as a whole. The discharge electrodes 2 and 3 are fixedly installed at predetermined positions in the vacuum vessel 1 by fixing the electrode unit 11 horizontally on the gantry in the vacuum vessel 1.
[0015]
The high-voltage power supply cable connected to the input end of the power supply wiring 7 is electrically connected to a DC high-voltage power supply 12 outside the vacuum vessel 1, and a DC high voltage having one of positive and negative polarity is applied to the discharge electrodes 2 and 3. They are simultaneously applied through the resistor 6.
[0016]
The DC high-voltage power supply 12 is configured to boost using a self-excited oscillation circuit and a booster circuit and rectify it using a voltage doubler rectifier circuit to generate a positive or negative DC high voltage.
[0017]
The vacuum vessel 1 is transparent so that it can be seen through from the outside, but its base 13 is opaque. The inside of the vacuum vessel 1, that is, the vacuum chamber 1a, can be gradually reduced to a vacuum pressure (below atmospheric pressure) steplessly by an external vacuum pump (not shown).
[0018]
The static elimination method of the present invention uses such a vacuum static elimination device, puts the static elimination object A in the vacuum chamber 1a, and applied a DC high voltage having one of the positive and negative polarities to the discharge electrodes 2 and 3. While the vacuum chamber 1a is depressurized until glow discharge is generated from the discharge electrodes 2 and 3, the object A to be discharged is discharged in the discharge plasma atmosphere in the vacuum chamber 1a. In the following, experiments conducted by the present inventors and results thereof will be described.
[0019]
A precharged object A (plastic film) is placed in the vacuum chamber 1a so as to be opposed to the discharge electrodes 2 and 3 by a distance L1 to increase the degree of vacuum in the vacuum chamber 1a. 3. Apply a DC high voltage of positive or negative polarity to 3 for about 1 second to conduct a static elimination experiment on the object A to be removed. The state after static elimination was confirmed.
[0020]
Further, in order to measure the discharge current, a metal charging plate B is set up vertically in the vacuum chamber 1a with a distance L2 further behind the object to be discharged A, and an ammeter 14 is connected to the charging plate B. And the pole of the ammeter on the side opposite to the connection side was grounded.
[0021]
FIG. 4 shows that the charging plate B is applied when a positive DC high voltage is applied to the discharge electrodes 2 and 3 by reducing the pressure (kPa) by reducing the pressure inside the vacuum vessel 1a under the following conditions. It is a graph of the pressure-discharge current characteristic which measured separately the positive discharge current (microampere) which flows, and the negative discharge current (microampere) which flows into charging board B when a minus direct current high voltage is impressed. FIG. 5 is a graph showing a part of the logarithmic scale.
[0022]
50mm distance between discharge electrodes 2 and 3
Applied voltage to discharge electrodes 2 and 3 + 5kV for positive, -5kV for negative
Distance L1 between discharge electrodes 2 and 3 and object A to be removed 50 mm
Charging plate B size 150 × 150mm
Distance L2 between object A to be charged and charging plate B 50 mm
Material of charging plate B Resistance value of stainless steel resistor 6 200MΩ
[0023]
As shown in FIGS. 4 and 5, both the positive discharge current when a positive DC high voltage is applied and the negative discharge current when a negative DC high voltage is applied rise rapidly from around 20 kPa. A sudden increase in the amount of blue-violet emission due to glow discharge from between the discharge electrodes 2 and 3 is observed with the naked eye, and the light emission from the discharge electrodes 2 and 3 spreads in a spherical shape from the tip of the needle. It was observed that the sphere of light emission expanded and expanded with a rapid rise of. This is presumably because plasma is generated in the vacuum chamber 1a. Such a positive or negative discharge current rise continues even if the pressure is further lowered, and the positive discharge current and the negative discharge current have almost the same rising curve until reaching the highest range, but the positive discharge current is the highest. Although the negative discharge current does not attenuate so much from the region, the negative discharge current rapidly attenuates as the pressure further decreases, and the magnitude of the spherical light emission around the discharge electrodes 2 and 3 contracts with the attenuation. Was observed.
[0024]
FIG. 6 shows that the vacuum chamber 1a is depressurized to 0.01 kPa to be constant, a negative high DC voltage is applied to the discharge electrodes 2 and 3 in a variable manner, the current flowing through the charging plate B and the discharge electrodes 2 and 3 The discharge current of was measured. In FIG. 7, similarly, a positive DC high voltage was applied to the discharge electrodes 2 and 3 in a variable manner, and the current flowing through the charging plate B and the discharge current from the discharge electrodes 2 and 3 were measured. In either case, the bottom surface of the vacuum chamber 1a, that is, the metal surface of the base 13 was insulated with an insulating film, and when the resistance value of the resistor 6 was 200 MΩ, the discharge electrodes 2 and 3 were discharged. 6 and 7, a solid line from 0 to 90 μA indicates a discharge current at the time of a short circuit that flows when the discharge electrodes 2 and 3 are short-circuited.
[0025]
As can be seen from these figures, the positive or negative discharge current when the vacuum chamber 1a is depressurized is a large value compared to that at atmospheric pressure (100 kPa shown in FIG. 4 is the discharge current value at atmospheric pressure, This value is about 1 μA). From this, the electric conductivity due to the electrically neutral plasma has reached the maximum, so that a discharge current close to a short-circuit current can be obtained, and at the same time, the high voltage applied to the discharge electrodes 2 and 3 is either positive or negative. Even with a DC high voltage of only polarity, it is considered that high-density static elimination becomes possible as described later by the action of electrically neutral plasma.
[0026]
FIG. 8 is a characteristic graph of the minus discharge current with respect to a change in pressure (cmHg) when only the charging plate B is used, and FIG. 9 is a characteristic graph of the plus discharge current similarly.
[0027]
Since the charging state of plastic film has a charging pattern with both positive and negative polarities mixed in a complicated manner, it is used for electrostatic copying to visually grasp the charging state and the neutralization state. Two types of toner are used, blue toner is attached to the positive charged polarity portion, and red toner is attached to the negative charged polarity portion, and the pressure in the vacuum chamber 1a is set to 80 Pa, and the surface of the film (discharge electrodes 2 and 3 and The surface charge and the surface charge were observed on the opposite side) and back side (on the opposite side). The DC high-voltage power supply 11 has a power-on time of 1 second, an applied voltage of +5 kV when applying a positive voltage, −5 kV when applying a negative voltage, and a total of four discharge electrodes.
[0028]
FIGS. 11 to 18 show the charging pattern of the film. Actually, both positive and negative polarities are mixed, so the positive charged polarity part appears in blue and the negative charged polarity part appears in red, but it cannot be shown in color, so the charged part is all black. Because it must be expressed, both the positive and negative charged polar parts are all represented in black, only the positive charged polar parts are extracted from them, and the negative charged polar parts are represented only in black. Are extracted and shown in black in three parts. Black shading represents the strength of the charging potential.
[0029]
FIG. 11 is a diagram showing both positive and negative charged patterns (blue and red) appearing on the surface of the film before discharging (in the air) in the vacuum chamber 1a, and FIG. FIG. 13 is a diagram in which only the negative charge pattern (only blue) is extracted, and FIG. 13 is a diagram in which only the negative charge pattern (only red) is extracted.
[0030]
FIG. 14 is a diagram showing both positive and negative charging patterns (blue and red) appearing on the back surface of the film before discharging the film in the vacuum chamber 1a, and FIG. FIG. 16 shows only the pattern (only blue), and FIG. 16 shows only the negative charged pattern (only red).
[0031]
FIG. 17 is a diagram when the pressure (vacuum degree) of the vacuum chamber 1a is 80 Pa and a film is discharged by applying a DC high voltage of +5 kV to the four discharge electrodes, where (A) is the surface of the film, (B) is the back surface, and no charged pattern appeared on both the front and back surfaces.
[0032]
FIG. 18 is a diagram when the film is discharged by applying a DC high voltage of −5 kV to the four discharge electrodes with the pressure (degree of vacuum) in the vacuum chamber 1a being 80 Pa, and (A) is the surface of the film. , (B) is the back surface, and no charging pattern appeared on both the front and back surfaces.
[0033]
The following Table 1 shows the measurement of the surface potential of the film in the same experiment. “Sample 1” is before static elimination, “Sample 2” is negative by applying a positive high voltage, and “Sample 3” is negative. This is a case where the static electricity is removed by applying a high voltage.
[0034]
[Table 1]
Figure 0003760336
[0035]
As can be seen by comparing these experimental results with the pressure-discharge current characteristics shown in FIGS. 4 to 9, the discharge current increases to the highest range as the discharge current increases as the pressure in the vacuum chamber 1a decreases. When the pressure becomes 80 Pa, as shown in FIGS. 17 and 18, not only the surface of the film but also the back surface is plus or minus when only a positive high voltage is applied or only a negative high voltage is applied. In both polarities, the charged pattern disappears completely, indicating that the charge is removed neatly at high density.
[0036]
This is a phenomenon accompanying the progress of decompression, that is, as the degree of vacuum increases (the pressure decreases), the air becomes thinner and the amount of air to be ionized decreases. The phenomenon in which the static elimination performance increases despite the fact that it is a discharge of is compatible with the idea of the conventional static elimination method in which air is ionized by the discharge from the discharge electrode and the static electricity is eliminated only with positive and negative ions. The whole vacuum chamber 1a is in a discharge plasma atmosphere (electrically charged ions and electrons are mixed and electrically neutral), and the charged portion of the film is added by the electrically neutral plasma.・ It is assumed that both negative and negative polarities are discharged at the same time. In addition, when an electric field is applied to the plasma, current flows in the plasma as the ions and electrons that are charged particles move, causing the plasma to become conductive, which causes the discharge current measured as described above, It seems that the point where the discharge current reaches the highest range is consistent with the highest increase in plasma conductivity.
[0037]
However, the discharge current rises as the pressure in the vacuum chamber 1a decreases and reaches the highest range, and then attenuates as the pressure is further reduced to 1 Pa. The spherical light emission generated around the discharge electrode 3 is attenuated. It was observed that the size also contracted. This indicates that if the pressure is lowered too much, the discharge current decreases, and on the contrary, the charge removal performance decreases.
[0038]
In order to investigate the reason for such a phenomenon, the present inventors calculated the change in the mean free path of molecules and electrons accompanying the change in pressure.
The mean free path of molecules and electrons can be approximately calculated by the following equation.
[0039]
[Expression 1]
Figure 0003760336
[0040]
Here, λg is the mean free path of the molecule, λe is the mean free path of the electron, P is the pressure [Torr], and K [× 10 −3 ] varies depending on the gas, as shown in Table 2 below.
[0041]
[Table 2]
Figure 0003760336
[0042]
Table 3 shows the mean free path of air in the environment where the static elimination experiment as described above was performed. FIG. 10 is a graphical representation of this.
[0043]
[Table 3]
Figure 0003760336
[0044]
As can be seen by comparing the pressure-mean free path graph of FIG. 10 with the pressure-discharge current characteristics graphs of FIGS. 4, 8, and 9, the discharge current is increased in the pressure range where the mean free path increases rapidly. Also show a sharp rise, and the mean free path rise and the discharge current coincide with each other. Therefore, it can be said that the rapid increase of the discharge current greatly contributed to the rapid increase of the mean free path more than the decrease of the number of molecules of air in the vacuum chamber 1a. However, when the pressure is further reduced, the mean free path further increases, but the negative discharge current is rapidly attenuated as described above, which is the degree of the rapid decrease in ions accompanying the decrease in the number of molecules. It seems that this is because of
[0045]
Further, when an experiment was conducted in a state where the resistance 6 for resistance coupling was removed from the discharge electrodes 2 and 3, as shown in the characteristics shown in FIG. 6 and FIG. Since a current flows, a large plasma discharge flows from the discharge electrode toward the grounding body, a stable glow discharge cannot be generated, and a charge removal effect equivalent to the above cannot be obtained.
[0046]
A similar glow discharge was obtained even when a capacitor was connected to the discharge electrodes 2 and 3 and a pulsed high voltage having one of the positive and negative polarities was applied to the discharge electrodes 2 and 3 via the capacitor.
[0047]
Furthermore, in order to determine the material of the discharge electrode used for static elimination under reduced pressure, the present inventors added a pressure of 80 Pa and an applied voltage of the Inconel alloy needle electrode, the tungsten alloy needle electrode, and the titanium alloy needle electrode. The durability test was conducted at +5 kV for negative and -5 kV for negative.
[0048]
In any case of Inconel alloy, tungsten alloy, and titanium alloy, the shape of the tip portion before use of the needle electrode was processed into a conical shape as shown in FIG. 19, but +5 kV was used in the case of Inconel alloy. Was photographed after applying 672 hours, 668 hours in the case of tungsten alloy, and 624 hours in the case of titanium alloy, as shown in FIGS. 20, 21, and 22, respectively. It was.
[0049]
Similarly, when -5 kV was applied for 672 hours in the case of Inconel alloy, 668 hours in the case of tungsten alloy, and 624 hours in the case of titanium alloy, each needle electrode was photographed. 24 and FIG. 25, respectively.
[0050]
In both cases of applying a plus high voltage and applying a minus high voltage, in the case of an Inconel alloy needle electrode, the entire shape of the tip portion was not broken, but a molten portion such as a water droplet appeared on the surface. In the case of a tungsten alloy, the tip was damaged and the surface was damaged to a shabby, and the degree of damage was greater when a minus high voltage was applied.
[0051]
In the case of a titanium alloy needle electrode, there was almost no change.
Therefore, as a preferable material for the discharge electrode, a titanium alloy is preferable, and then an Inconel alloy is preferable.
[0052]
【The invention's effect】
As described above, according to the present invention, high-performance and high-density static elimination can be performed under reduced pressure (in a vacuum) even when a charged object is strongly charged. Further, even a charged object having a three-dimensional shape can be discharged with high density up to the inside thereof, and the apparatus scale can be reduced.
[0053]
In addition, even if static electricity removal under atmospheric pressure does not solve the problem, by removing electricity under a certain reduced pressure, it is possible to apply positive or negative charge polarity only by applying a high voltage of one of the positive or negative polarity to the charged pattern. Regardless of whether it is positive or negative, it is possible to remove static electricity neatly, so it is possible to provide a new static elimination method with high practical value, and the power supply is simplified.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a method according to the invention.
FIG. 2 is a partial perspective view showing a mounting structure of plus / minus discharge electrodes on an insulating substrate.
FIG. 3 is a cross-sectional view of a single discharge electrode unit as a whole by embedding resin in the electrode holder in the structure of FIG.
FIG. 4 is a graph of pressure-discharge current characteristics in which a positive discharge current and a negative discharge current flowing through a charging plate are separately measured by reducing the pressure by reducing the vacuum chamber.
FIG. 5 is a graph showing a part of FIG. 4 on a logarithmic scale.
FIG. 6 shows a discharge current corresponding to a change in a negative applied voltage, in which a vacuum chamber is depressurized to be constant, a negative high voltage is variably applied to the discharge electrode, and a current flowing through the charging plate and a discharge current from the discharge electrode are measured. It is a characteristic graph.
FIG. 7 is a characteristic graph of the discharge current with respect to a change in the positive applied voltage, in which a plus high voltage is applied to the discharge electrode in a variable manner and the current flowing through the charging plate and the discharge current from the discharge electrode are measured. It is a characteristic graph.
FIG. 8 is a characteristic graph of a negative discharge current with respect to a change in pressure when only a charging plate is used.
FIG. 9 is a characteristic graph of the positive discharge current in the same manner.
FIG. 10 is a graph showing a change in mean free path of air molecules and electrons accompanying a change in pressure.
FIG. 11 is a diagram showing both positive and negative charging patterns (blue and red) appearing on the surface of the film before the plastic film is neutralized in the vacuum chamber.
12 is a diagram in which only a positive charged pattern (only blue) is extracted from FIG.
FIG. 13 is a view in which only a negative charging pattern (only red) is taken out.
FIG. 14 is a diagram showing both positive and negative charged patterns (blue and red) appearing on the back surface of the film before discharging the plastic film in the vacuum chamber.
15 is a diagram in which only a positive charged pattern (only blue) is extracted from FIG.
FIG. 16 is a diagram in which only a negative charged pattern (only red) is taken out.
FIG. 17 is a view when the film is discharged by applying a +5 kV DC high voltage to the discharge electrode with the vacuum chamber pressure (vacuum degree) set to 80 Pa, (A) is the surface of the film, and (B) is the surface. It is the back side.
FIG. 18 is a diagram when the film is discharged by applying a DC high voltage of −5 kV to the discharge electrode with the pressure (vacuum degree) in the vacuum chamber set to 80 Pa, (A) is the surface of the film, and (B) Is the back side.
FIG. 19 shows the shape of the tip of the needle electrode before use in a durability test when the material of the needle electrode that is the discharge electrode is an Inconel alloy, a tungsten alloy, or a titanium alloy.
FIG. 20 shows the shape of the tip of an Inconel alloy needle electrode after use with high voltage applied to plus.
FIG. 21 shows the shape of the tip of a tungsten alloy needle electrode after use with a high voltage applied to plus.
FIG. 22 shows the shape of the tip of a titanium alloy needle electrode after use with a high voltage applied to plus.
FIG. 23 shows the shape of the tip of the Inconel alloy needle electrode after use with a negative high voltage applied.
FIG. 24 shows the shape of the tip of a tungsten alloy needle electrode after use with a negative high voltage applied.
FIG. 25 shows the shape of the tip of a titanium alloy needle electrode after use with negative high voltage applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum container 1a Vacuum chamber 2/3 Discharge electrode 4 Insulating substrate 5 Conductive bushing 6 Resistance 7 Power supply wiring 8 Conductive member 9 Electrode holder 10 Resin 11 Electrode unit 12 DC high voltage power supply 13 Base 14 Ammeter A Electric discharge object B Charging plate

Claims (5)

コンデンサを接続した放電電極を真空室内に設置し、この放電電極にコンデンサを介してプラス又はマイナスの一方の極性の高電圧を印加して、その一方の極性の放電により生ずる放電電流を検出し、その放電電流が急激に上昇するところから最高域に達する範囲の圧力となるように真空室内を減圧調整し、放電電極からグロー放電を生じさせることにより、真空室内の被除電物を放電プラズマ雰囲気で除電することを特徴とする減圧下での除電方法。 A discharge electrode to which a capacitor is connected is placed in a vacuum chamber, and a high voltage having one of the positive and negative polarities is applied to the discharge electrode via the capacitor, and a discharge current generated by the discharge of the one polarity is detected. The vacuum chamber is depressurized so that the pressure reaches a maximum range from where the discharge current suddenly rises, and glow discharge is generated from the discharge electrode. A method of removing static electricity under reduced pressure, characterized by removing electricity. 複数の放電電極を真空室内に並べて設置して、これらにプラス又はマイナスの一方の極性の高電圧を同時に印加することを特徴とする請求項1に記載の減圧下での除電方法。  2. The method of removing electricity under reduced pressure according to claim 1, wherein a plurality of discharge electrodes are installed side by side in a vacuum chamber, and a high voltage having one of positive and negative polarities is simultaneously applied thereto. 真空室内を20kPa〜1Paまで減圧することを特徴とする請求項1又は2に記載の減圧下での除電方法。  The static elimination method under reduced pressure according to claim 1 or 2, wherein the pressure in the vacuum chamber is reduced to 20 kPa to 1 Pa. 放電電極の材質をチタニウム合金としたことを請求項1、2又は3に記載の減圧下での除電方法。  The method for removing static electricity under reduced pressure according to claim 1, 2 or 3, wherein the discharge electrode is made of a titanium alloy. 放電電極の材質をインコネル合金としたことを請求項1、2又は3に記載の減圧下での除電方法。  The method for removing static electricity under reduced pressure according to claim 1, 2 or 3, wherein the material of the discharge electrode is an Inconel alloy.
JP2001250388A 2001-08-21 2001-08-21 Static elimination method under reduced pressure Expired - Fee Related JP3760336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001250388A JP3760336B2 (en) 2001-08-21 2001-08-21 Static elimination method under reduced pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001250388A JP3760336B2 (en) 2001-08-21 2001-08-21 Static elimination method under reduced pressure

Publications (2)

Publication Number Publication Date
JP2003059693A JP2003059693A (en) 2003-02-28
JP3760336B2 true JP3760336B2 (en) 2006-03-29

Family

ID=19079213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001250388A Expired - Fee Related JP3760336B2 (en) 2001-08-21 2001-08-21 Static elimination method under reduced pressure

Country Status (1)

Country Link
JP (1) JP3760336B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833933B (en) * 2012-08-30 2016-08-10 深圳南玻显示器件科技有限公司 Neutralizing method and Destaticizing device
DE102013210114B4 (en) * 2013-05-29 2016-02-18 LK Luftqualität AG Luftionisationsmodul
KR102090991B1 (en) * 2013-10-10 2020-03-20 삼성디스플레이 주식회사 Apparatus and method for removing substrate electrostatic
JP6464457B2 (en) * 2015-06-26 2019-02-06 春日電機株式会社 Surface potential measuring device and switch release area setting method

Also Published As

Publication number Publication date
JP2003059693A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
DE3937904C2 (en) Improvement of the ignition behavior on an underwater spark gap
TW200537991A (en) Corona discharge type ionizer
JP5914015B2 (en) Static eliminator and method
RU2012106425A (en) ADVANCED DEVICE AND METHOD FOR REDUCING THE QUANTITY OR REMOVAL OF PARTICLES
JPWO2004109875A1 (en) Ion generator
JP3760336B2 (en) Static elimination method under reduced pressure
Chua et al. Design, fabrication, and testing of a microfabricated corona ionizer
JP2008262746A (en) Ion balance adjusting electrode and static eliminator provided with the same
KR20080072928A (en) Aerosol charge neutralizing device
CN112319865A (en) Protective device and method for satellite structure potential control
JP2011054308A (en) Static eliminator and static elimination method
JP3619987B2 (en) Static elimination method under reduced pressure
JP2001310141A (en) Dust precipitator
JP3002581B2 (en) Static eliminator
JP3619989B2 (en) Static elimination method under reduced pressure
JP2000340393A (en) Prevention of sputtering phenomenon ozone generation, and light emission of discharge electrode or electricity removal electrode for high voltage applying electricity removal device or electrification removal device in vacuum layer and its manufacture
El-Bahy et al. Onset voltage of negative corona on dielectric-coated electrodes in air
JP2001110590A (en) Direct current electricity removing apparatus
Jánský et al. Numerical simulation of back discharge ignition
JP5049060B2 (en) Ion generation method, ion generation apparatus, and static elimination method and static elimination apparatus using the ion generation method
KR101673798B1 (en) Portable ionizer
JP7417259B2 (en) Static eliminator
WO2016120416A1 (en) Electrostatic precipitator
JPS6342753A (en) Electrifying method for material and device therefor
KR102549253B1 (en) Silicon-based charge neutralization system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3760336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees