JP3619312B2 - Seismic isolation structure of fill dam body - Google Patents

Seismic isolation structure of fill dam body Download PDF

Info

Publication number
JP3619312B2
JP3619312B2 JP03036096A JP3036096A JP3619312B2 JP 3619312 B2 JP3619312 B2 JP 3619312B2 JP 03036096 A JP03036096 A JP 03036096A JP 3036096 A JP3036096 A JP 3036096A JP 3619312 B2 JP3619312 B2 JP 3619312B2
Authority
JP
Japan
Prior art keywords
dam
fill
isolation structure
seismic isolation
fill dam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03036096A
Other languages
Japanese (ja)
Other versions
JPH09221735A (en
Inventor
紀彦 国峯
Original Assignee
株式会社間組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社間組 filed Critical 株式会社間組
Priority to JP03036096A priority Critical patent/JP3619312B2/en
Publication of JPH09221735A publication Critical patent/JPH09221735A/en
Application granted granted Critical
Publication of JP3619312B2 publication Critical patent/JP3619312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、フィルダム堤体の免震構造に関する。
【0002】
【従来の技術】
均一型、ゾーン型および表面遮水壁型の三形式に大別されるフィルダムにおいて、地震による被害事例として以下のようなものが報告されている。
▲1▼堤頂付近にダム軸に平行な亀裂が入り、パイピングを誘発する。
▲2▼堤頂が沈下して余裕高が減少し、越流による侵食の可能性が増加する。
▲3▼ダム上下流面に深層すべり、または浅層すべりが発生する。
▲4▼ダム上下流法面にふくらみが発生する。
【0003】
【発明が解決しようとする課題】
以上のような被害は、地震によりダム堤体が弾性体として水平方向に揺れて、ダム堤頂部に基礎地盤よりも大きな水平加速度が生じ、ダム堤体の塑性力が減少することにより発生するものである。
【0004】
本発明は上記問題点を解決せんとしたものであり、その目的は、フィルダムの耐震性を向上することができる免震構造を提供することにある。
【0005】
また本発明の別の目的は、フィルダム堤体の水平振動を減衰することができると共に、フィル材料間に生じる剪断力への強い耐力を有するフィルダム堤体の免震構造を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、前記目的に鑑みてなされたものであり、その要旨は、フィルダムの堤体内部に水平多段状に層状補強材を埋設し、該層状補強材は、所定間隔で略上下流方向に延長する複数の帯状部材を略ダム軸方向に延長する帯状部材で連結して形成し、垂直方向にそれぞれ隣合う層状補強材間を層間連結材で連結してなるフィルダム堤体の免震構造にある。
【0007】
本発明のフィルダム堤体の免震構造において、前記帯状部材の周りには、これを巻くように土質材料を配置しても良い。かように土質材料を配置すれば、帯状部材に沿って水が浸透して水みちが形成されるのを防止でき、さらに、フィルダム材料に対する帯状部材の摩擦抵抗を高めることができ、フィルダム材料と帯状部材との間での滑りを生じ難くすることができる。
【0008】
本発明のフィルダム堤体の免震構造において、前記帯状部材は、土、砂礫及び岩石等のフィルダム材料から受ける摩擦力や引張力により破断しない程度の耐力を有する材料で形成すれば良く、また、前記層状補強材は、地震等の外力によりフィルダム堤体内に発生しようとする変形を拘束できるように、帯状部材を適当な間隔及び密度で配置して形成する。かような帯状部材としては、例えば、塩化ビニール樹脂等の材料、またはゴム製二次製品等により、厚さ10〜20mm程度で幅300〜500mm程度に形成したものを採用することができる。
【0009】
また本発明のフィルダム堤体の免震構造において、前記層間連結材は、層状補強材間に介在して、各層状補強材に発生した応力を他の層状補強材に伝達する媒体として作用することができる部材であれば良く、例えば、前記帯状部材と同様の材料によって同様な形状に形成しても良い。
【0010】
【実施例】
以下に、本発明の実施例を添付図面に基づいて詳細に説明する。
図1は本発明のフィルダム堤体の免震構造を示す上下流方向の断面図であり、図2は図1のフィルダムのダム軸方向の断面図であり、図3は図1のフィルダムの平面図である。
【0011】
図1乃至図3では、本発明の免震構造を適用するフィルダム堤体として中央土質遮水壁型ロックフィルダムの堤体20を例示したが、本発明の免震構造は、この中央土質遮水壁型ロックフィルダムに限定されず、他の構成から成るフィルダムの堤体にも適用することができる。ここで前記中央土質遮水壁型ロックフィルダムの堤体とは、中央に土質材料を配置して形成したコア部21と、このコア部21の上下流方向両側に砂礫材料を配置して形成したフィルター部22と、さらにフィルター部22の上下流方向両側に岩石材料を配置して形成したシェル部23とを備える堤体をいう。
【0012】
本発明のフィルダム堤体の免震構造は、複数の上下流方向ストリップ11aと、これら上下流方向ストリップ11aを連結するダム軸方向ストリップ11bとからなる層状補強材11を水平多段状に配置し、これら層状補強材11間を層間連結ストリップ12で連結して形成する。
【0013】
ここで前記上下流方向ストリップ11a、前記ダム軸方向ストリップ11bおよび前記層間連結ストリップ材12としては、塩化ビニール樹脂材料で厚さ10〜20mm程度、幅300〜500mm程度に形成した帯状材を使用する。そして、この上下流方向ストリップ11aは、フィルダム堤体内部の全ての部分、すなわちコア部21、フィルター部22及びシェル部23にわたって略上下流方向に延長するように所定間隔で複数本を配置する。また前記ダム軸方向ストリップ11bは、全ての上下流方向ストリップ11aを連結してフィルダム堤体のコア部21に延設する。さらに、前記層間連結ストリップ材12は、各層状補強材11のダム軸方向ストリップ11bどうしを所定間隔ごとに連結するように配置する。
【0014】
なお、層間連結ストリップ材12は、上下流方向ストリップ11aとダム軸方向ストリップ11bとの連結部どうしを連結するように配置しても良い。また上下流方向ストリップ11aとダム軸方向ストリップ11bとは、図4(a)に示した水平接合材15を用いて連結しても良く、ダム軸方向ストリップ11bと層間連結ストリップ材12とは、図4(b)に示した垂直接合材16を用いて連結しても良い。さらに、図7に示したように、上下流方向ストリップ11aの周りを被うように、その上下面及び両側面に、コア部21に用いた土質材料21aを配置しても良い。
【0015】
次に、本発明のフィルダム堤体の免震構造の作用について説明する。
図5に示したように地震等の水平力を受けると、フィルダム堤体20は弾性体として水平方向に振動し、堤頂部に最大の水平加速度を生じ、フィルダム堤体20には点線で示したような面で滑りを発生させようと剪断応力が作用する。この剪断応力は、さらに図6に矢印で示したような引張応力として上下流方向ストリップ11aに伝達される。
【0016】
これに対して、上下流方向ストリップ11aは層間連結ストリップ12と伴に引張抵抗を示し、その表面に巻かれた土質材料を介する摩擦力により、フィルダム堤体を構成する材料を拘束して滑りの発生を防止する。
【0017】
また堤体20の水平振動時には、最上層の上下流方向ストリップ11aに最も強い水平加速度が作用するが、最上層の上下流方向ストリップ11aは、層間連結ストリップ12を介して他の層状補強材11に支持されているため、ダム堤頂付近に生じる応力は、ダム軸方向ストリップ11bや層間連結ストリップ12に伝達して分散し、堤頂部20bの水平振動は抑制されると共に大きく減衰される
【0018】

【発明の効果】
本発明のフィルダム堤体の免震構造では、堤体内部の上下流方向及びダム軸方向に延設した帯状部材を連結して層状補強材を形成し、この層状補強材を水平多段上に配置して、さらに、これら層状補強材間を層間連結材で連結したので、堤体内部には帯状部材と層間連結材とからなる補強材の連続体が形成される。したがって、地震等の外力によりダム堤体内で垂直方向に不均一な応力が作用しても、帯状部材と層間連結材とによって応力が伝達して分散されると共に、それぞれの帯状部材や層間連結材がフィルダムを構成する材料を拘束するため、特に、ダム堤頂付近に生じる水平振動を減衰することができる。
【0019】
また上下流方向に延設した帯状部材が、堤体材料に作用する剪断力に引張抵抗を示すため、堤頂付近に生じる亀裂、沈下およびダム上下流面の滑りやふくらみを防止することができる。
【図面の簡単な説明】
【図1】本発明のフィルダム堤体の免震構造を示す上下流方向の断面図である。
【図2】図1のフィルダムのダム軸方向の断面図である。
【図3】図1のフィルダムの平面図である。
【図4】(a)は、上下流方向とダム軸方向との帯状部材を連結する接合材であり、(b)は層状補強材と層間連結材とを連結する接合材である。
【図5】本発明のフィルダム堤体の免震構造に作用する外力を説明するための概略断面図である。
【図6】図5のフィルダム堤体における帯状部材と層間連結材とに作用する応力を示した概略断面図である。
【図7】土質材料で巻いた上下流方向ストリップを示す断面図である。
【符号の説明】
11 層状補強材
11a 上下流方向ストリップ(帯状部材)
11b ダム軸方向ストリップ(帯状部材)
12 層間連結ストリップ(層間連結材)
20 フィルダム堤体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation structure for a fill dam body.
[0002]
[Prior art]
The following cases have been reported as examples of damage caused by earthquakes in fill dams roughly divided into three types: uniform type, zone type and surface impermeable wall type.
(1) A crack parallel to the dam axis enters near the top of the levee and induces piping.
(2) The height of the levee sinks and the margin height decreases, increasing the possibility of erosion due to overflow.
(3) Deep slip or shallow slip occurs on the upstream and downstream surfaces of the dam.
(4) Swelling occurs on the dam upstream and downstream slopes.
[0003]
[Problems to be solved by the invention]
The damage described above occurs when the dam body is shaken in the horizontal direction as an elastic body due to an earthquake, causing a greater horizontal acceleration than the foundation ground at the top of the dam, and reducing the plastic force of the dam body. It is.
[0004]
The present invention has been made to solve the above problems, and an object thereof is to provide a seismic isolation structure that can improve the earthquake resistance of the fill dam.
[0005]
Another object of the present invention is to provide a seismic isolation structure for a fill dam body that can damp horizontal vibrations of the fill dam body and has a strong resistance to a shear force generated between the fill materials.
[0006]
[Means for Solving the Problems]
The present invention has been made in view of the above-described object, and the gist thereof is that a layered reinforcing material is embedded in a horizontal multi-stage shape inside a dam body of a fill dam, and the layered reinforcing material is arranged substantially upstream and downstream at a predetermined interval. A seismic isolation structure for a fill dam dam body that is formed by connecting a plurality of extending strip members with strip members extending substantially in the dam axis direction, and connecting layer reinforcing members adjacent to each other in the vertical direction with interlayer connecting members. is there.
[0007]
In the seismic isolation structure for a fill dam bank according to the present invention, a soil material may be disposed around the belt-like member so as to wind it. By arranging the soil material in this way, water can be prevented from penetrating along the belt-shaped member to form a water channel, and further, the frictional resistance of the belt-shaped member against the fill dam material can be increased. Sliding between the belt-like members can be made difficult to occur.
[0008]
In the seismic isolation structure of the fill dam embankment of the present invention, the band member may be formed of a material having a proof strength that does not break due to frictional force or tensile force received from a fill dam material such as soil, gravel, and rock, The layered reinforcing material is formed by arranging strip-like members at appropriate intervals and density so as to constrain deformation to be generated in the fill dam body by an external force such as an earthquake. As such a band-shaped member, for example, a material formed of a material such as vinyl chloride resin or a rubber secondary product and having a thickness of about 10 to 20 mm and a width of about 300 to 500 mm can be employed.
[0009]
Further, in the seismic isolation structure of the fill dam dam body according to the present invention, the interlayer connecting material is interposed between the layered reinforcing materials and acts as a medium for transmitting the stress generated in each layered reinforcing material to the other layered reinforcing materials. For example, the member may be formed in the same shape using the same material as that of the belt-like member.
[0010]
【Example】
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
1 is a cross-sectional view in the upstream and downstream directions showing the seismic isolation structure of the fill dam body of the present invention, FIG. 2 is a cross-sectional view in the dam axial direction of the fill dam in FIG. 1, and FIG. 3 is a plan view of the fill dam in FIG. FIG.
[0011]
1 to 3, the dam body 20 of the central soil impermeable wall type rock fill dam is illustrated as the fill dam dam body to which the seismic isolation structure of the present invention is applied. However, the seismic isolation structure of the present invention is the central soil impermeable structure. The present invention is not limited to the wall-type rock fill dam, and can be applied to a dam body of a fill dam having another configuration. Here, the dam body of the central soil impermeable wall type rockfill dam is formed by disposing a core portion 21 formed by disposing a soil material in the center, and a gravel material disposed on both upstream and downstream sides of the core portion 21. An embankment including a filter portion 22 and a shell portion 23 formed by disposing a rock material on both sides of the filter portion 22 in the upstream and downstream directions.
[0012]
The seismic isolation structure of the fill dam dam body according to the present invention includes a plurality of upstream and downstream direction strips 11a and laminar reinforcing members 11 including dam axial strips 11b that connect these upstream and downstream direction strips 11a in a horizontal multi-stage shape, These layered reinforcing members 11 are connected by an interlayer connecting strip 12.
[0013]
Here, as the upstream / downstream strip 11a, the dam axial strip 11b, and the interlayer connecting strip member 12, a strip-shaped member made of a vinyl chloride resin material and having a thickness of about 10 to 20 mm and a width of about 300 to 500 mm is used. . The upstream / downstream strips 11a are arranged at a predetermined interval so as to extend substantially in the upstream / downstream direction across all the parts inside the fill dam bank body, that is, the core part 21, the filter part 22 and the shell part 23. The dam axial strip 11b extends to the core portion 21 of the fill dam body by connecting all the upstream and downstream strips 11a. Further, the interlayer connecting strip member 12 is arranged so as to connect the dam axial strips 11b of the respective layered reinforcing members 11 at predetermined intervals.
[0014]
The interlayer connecting strip material 12 may be arranged so as to connect the connecting portions between the upstream / downstream strip 11a and the dam axial strip 11b. Further, the upstream / downstream strip 11a and the dam axial strip 11b may be connected by using the horizontal joining material 15 shown in FIG. 4A, and the dam axial strip 11b and the interlayer connecting strip 12 are You may connect using the vertical joining material 16 shown in FIG.4 (b). Furthermore, as shown in FIG. 7, the soil material 21a used for the core portion 21 may be disposed on the upper and lower surfaces and both side surfaces so as to cover the upstream / downstream direction strip 11a.
[0015]
Next, the effect | action of the seismic isolation structure of the fill dam dam body of this invention is demonstrated.
As shown in FIG. 5, when receiving a horizontal force such as an earthquake, the fill dam body 20 vibrates in the horizontal direction as an elastic body, generating the maximum horizontal acceleration at the top of the dam, and the fill dam body 20 is indicated by a dotted line. Shear stress acts to cause slippage on such a surface. This shear stress is further transmitted to the upstream / downstream strip 11a as a tensile stress as indicated by an arrow in FIG.
[0016]
On the other hand, the upstream and downstream direction strips 11a exhibit tensile resistance together with the interlayer connecting strips 12, and the material constituting the fill dam body is restrained by the frictional force through the soil material wound around the surface of the strips 11a. Prevent occurrence.
[0017]
Further, during horizontal vibration of the dam body 20, the strongest horizontal acceleration acts on the uppermost and lowermost strips 11 a, and the uppermost and lowermost strips 11 a are connected to the other layered reinforcing material 11 via the interlayer connection strip 12. Therefore, the stress generated in the vicinity of the dam bank top is transmitted and dispersed to the dam axial strip 11b and the interlayer connecting strip 12, and the horizontal vibration of the bank top part 20b is suppressed and greatly damped. ]
.
【The invention's effect】
In the seismic isolation structure of the fill dam dam body according to the present invention, a layered reinforcing material is formed by connecting strip members extending in the upstream and downstream direction and the dam axial direction inside the dam body, and the layered reinforcing material is disposed on horizontal multistages. Further, since these layered reinforcing members are connected by the interlayer connecting material, a continuous body of reinforcing material composed of the strip-shaped member and the interlayer connecting material is formed inside the bank body. Therefore, even if non-uniform stress is applied in the vertical direction in the dam body due to an external force such as an earthquake, the stress is transmitted and dispersed by the belt-like member and the interlayer coupling material, and each belt-like member and interlayer coupling material Restrains the material that forms the fill dam, and in particular, it can damp horizontal vibrations that occur near the top of the dam.
[0019]
In addition, the strip-shaped member extending in the upstream / downstream direction exhibits a tensile resistance to the shearing force acting on the dam body material, so that it is possible to prevent cracks, subsidence near the ridge top, and slipping and swelling of the dam upstream and downstream surfaces. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in an upstream / downstream direction showing a seismic isolation structure of a fill dam bank according to the present invention.
FIG. 2 is a cross-sectional view of the fill dam of FIG. 1 in the dam axis direction.
FIG. 3 is a plan view of the fill dam of FIG. 1;
FIG. 4A is a bonding material for connecting the band-shaped members in the upstream and downstream directions and the dam axis direction, and FIG. 4B is a bonding material for connecting the layered reinforcing material and the interlayer connection material.
FIG. 5 is a schematic cross-sectional view for explaining an external force acting on the seismic isolation structure of a fill dam bank according to the present invention.
6 is a schematic cross-sectional view showing the stress acting on the belt-like member and the interlayer connecting member in the fill dam bank of FIG.
FIG. 7 is a cross-sectional view showing an upstream / downstream strip wound with a soil material.
[Explanation of symbols]
11 Layered reinforcement 11a Up / down direction strip (band-shaped member)
11b Dam axial strip (band-shaped member)
12 Interlayer connection strip (interlayer connection material)
20 Fill dam body

Claims (2)

フィルダムの堤体内部に水平多段状に層状補強材を埋設し、
該層状補強材は、所定間隔で略上下流方向に延長する複数の帯状部材を略ダム軸方向に延長する帯状部材で連結して形成し、
垂直方向にそれぞれ隣合う層状補強材間を層間連結材で連結してなるフィルダム堤体の免震構造。
Layered reinforcing materials are buried in multiple horizontal stages inside the dam body of the fill dam,
The layered reinforcing material is formed by connecting a plurality of band-like members extending substantially in the upstream / downstream direction at predetermined intervals with band-like members extending substantially in the dam axis direction,
A seismic isolation structure for a fill dam embankment in which layered reinforcement members that are adjacent to each other in the vertical direction are connected by an interlayer connection material.
前記帯状部材を土質材料で巻いたことを特徴とする請求項1記載のフィルダム堤体の免震構造。2. The seismic isolation structure for a fill dam body according to claim 1, wherein the belt-shaped member is wound with a soil material.
JP03036096A 1996-02-19 1996-02-19 Seismic isolation structure of fill dam body Expired - Lifetime JP3619312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03036096A JP3619312B2 (en) 1996-02-19 1996-02-19 Seismic isolation structure of fill dam body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03036096A JP3619312B2 (en) 1996-02-19 1996-02-19 Seismic isolation structure of fill dam body

Publications (2)

Publication Number Publication Date
JPH09221735A JPH09221735A (en) 1997-08-26
JP3619312B2 true JP3619312B2 (en) 2005-02-09

Family

ID=12301703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03036096A Expired - Lifetime JP3619312B2 (en) 1996-02-19 1996-02-19 Seismic isolation structure of fill dam body

Country Status (1)

Country Link
JP (1) JP3619312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605750A (en) * 2012-01-11 2012-07-25 河海大学 Grouting reinforcement and earthquake resisting method for earth and rockfill dam

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261053B (en) * 2011-05-12 2013-03-06 河海大学 Aseismatic measure of high earth-rock dam and construction method thereof
CN102912768A (en) * 2012-11-02 2013-02-06 中国水电顾问集团华东勘测设计研究院 Earthquake resistant structure of high earth-rock dam in earthquake region
CN104060619B (en) * 2013-03-22 2017-02-22 中国水电顾问集团贵阳勘测设计研究院 Construction method and structure of hydraulic core-wall rockfill dam without cofferdams
CN104131535B (en) * 2014-07-07 2015-09-23 河海大学 A kind of composite reinforced earth and rockfill dam earthquake resistant structure of high polymer and construction method thereof
CN104452676B (en) * 2014-11-11 2017-01-25 河海大学 High-polymer composite reinforcing anti-seismic high earth and rockfill dam and construction method thereof
CN105421297B (en) * 2015-12-08 2017-10-27 李星明 A kind of rock-fill dam structure
CN107167111B (en) * 2017-05-23 2019-09-13 南昌工程学院 A kind of subsidence monitoring of foundation system
CN112681238A (en) * 2021-01-22 2021-04-20 鲁东大学 High earth-rock dam composite anti-seismic structure and construction method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605750A (en) * 2012-01-11 2012-07-25 河海大学 Grouting reinforcement and earthquake resisting method for earth and rockfill dam
CN102605750B (en) * 2012-01-11 2014-11-19 河海大学 Grouting reinforcement and earthquake resisting method for earth and rockfill dam

Also Published As

Publication number Publication date
JPH09221735A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
JP3619312B2 (en) Seismic isolation structure of fill dam body
US6027285A (en) Mat installation
JPH0653644U (en) Seismic shielding
US4184786A (en) Earth dam protective covering
JP3627771B2 (en) Base isolation structure
JPS6042084Y2 (en) Structure of underwater formwork sealing material
JPS59134230A (en) Earthquake-resistant pile
JP6128726B2 (en) breakwater
JP3627772B2 (en) Base isolation structure
JP3536169B2 (en) Method for suppressing lateral flow of liquefied layer and its members
JP6871583B1 (en) Washing prevention unit and washing prevention structure
JP2014214509A (en) Liquefaction countermeasure structure of foundation by structure load
RU190167U1 (en) Rug sealing
JP2918550B1 (en) Improved rigidity ground
JP2013019133A (en) Breakwater
JPS5913613B2 (en) Ground vibration isolation wall structure
JP2763335B2 (en) Waterproof sheet
JP2623589B2 (en) Seismic isolation structure
JP2839441B2 (en) Caisson joint
CN112900456A (en) Novel protection architecture of many emergence areas of earthquake side slope
JPS63165607A (en) Breakwater
JP3431905B2 (en) Improved soil structure of sandy soil layer and improvement method
JPH06987B2 (en) Filled steel pipe pile
JP2510831Y2 (en) Sand protection sheet for civil engineering work
JPH10131208A (en) Construction method for preventing ground from lateral flow

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term