JP3618658B2 - Heat treatment equipment for strained workpieces - Google Patents

Heat treatment equipment for strained workpieces Download PDF

Info

Publication number
JP3618658B2
JP3618658B2 JP2000295400A JP2000295400A JP3618658B2 JP 3618658 B2 JP3618658 B2 JP 3618658B2 JP 2000295400 A JP2000295400 A JP 2000295400A JP 2000295400 A JP2000295400 A JP 2000295400A JP 3618658 B2 JP3618658 B2 JP 3618658B2
Authority
JP
Japan
Prior art keywords
heat treatment
strained
workpiece
heat
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000295400A
Other languages
Japanese (ja)
Other versions
JP2002105532A (en
Inventor
雅行 小山
Original Assignee
富士電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電子工業株式会社 filed Critical 富士電子工業株式会社
Priority to JP2000295400A priority Critical patent/JP3618658B2/en
Publication of JP2002105532A publication Critical patent/JP2002105532A/en
Application granted granted Critical
Publication of JP3618658B2 publication Critical patent/JP3618658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱処理が要求される面とこの面に連続する熱処理が要求されない面とを有する板カム等の歪形ワークに熱処理を施す高周波熱処理装置等に利用される歪形ワークの熱処理装置に関する。
【0002】
【従来の技術】
従来のこの種の歪形ワークの熱処理装置の代表例として、板カムの高周波焼入装置がある。前記板カムの形状は、後述の発明の実施の形態で説明している図2に示された板カムWと同じである。
【0003】
従来の高周波焼入装置は、板カムの外周面(熱処理が要求される面)を加熱する円形の加熱導体部を有する高周波加熱コイル体と、前記円形の加熱導体部の中心に、板カムの使用時回転中心を合わせた状態で板カムを回転させる回転機構等とを備えている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の高周波焼入装置で、板カムを熱処理すると、板カムの基本円部分よりも突出した部分に形成された硬化層が他の部分のそれに比べて厚くなる、いわゆる焼ムラが出来ていた。板カムの突出した部分が基本円部分よりも加熱導体部に接近した状態で誘導加熱されるからである。
【0005】
また、板カムの基本円部分よりも突出した部分の方が曲率半径が小さい分、突出した部分の方がマスが小さいため、基本円部分よりも突出した部分の方が硬化層が厚くなる傾向となっていた。このように、マスの大きさの違いによっても焼ムラが出来ていた。
【0006】
更に、板カムは、外周面と側面との交点が角となるので、その角に、他の部分よりも誘導電流が集中しやすい。即ち、板カムは両側面側の方が内側よりも硬化層が厚くなる傾向となっていた。これによっても焼ムラが出来ていた。
【0007】
これらが原因の焼ムラによって、板カムに歪や焼割れ等を生じるおそれがあった。
【0008】
また、熱処理が大気中、即ち、有酸素中で行われていたので、スケールができていた。このスケールができると光輝性のない状態となる。そのため、スケールは研磨により取り除かれていた。なお、前記歪も研磨により矯正されていた。これらの研磨は、硬化層の表面側を削ることになるので、研磨時間が長くかかるとともに、研磨具の磨耗が激しいので、板カムのコストアップの要因となっていた。
【0009】
これらのことはワークが板カムであるときの特有の問題ではなく、ワークが歪形であるときに共通して言える事項である。また、高周波加熱コイル体を使用する高周波誘導加熱だけでなく、一般の抵抗加熱でも同様の問題が指摘されている。
【0010】
本発明の主たる目的は、歪形ワークの硬化層をより均一に形成可能な歪形ワークの熱処理装置を提供することにある。
【0011】
【課題を解決するための手段】
上記問題を解決するために、本発明の請求項1に係る歪形ワークの熱処理装置は、熱処理が要求される面とこの外周面に連続する熱処理が要求されない面とを有する板カムである歪形ワークに熱処理を施す熱処理装置であって、歪形ワークの熱処理が要求される面を加熱する加熱コイル体と、前記歪形ワークが加熱されるときに前記歪形ワークの熱処理が要求されない面に押し当てられる放熱用当板と、前記歪形ワークが熱処理されるときに前記歪形ワーク又は前記加熱導体部を回動させる回動機構とを具備しており、前記加熱コイル体は前記歪形ワークの熱処理が要求される面としての外周面を加熱する円形の加熱導体部を有しており、前記放熱用当板の外周の形状は、前記歪形ワークの熱処理が要求されない面の外周の形状を縮小した相似形または略相似形とされ、前記放熱用当板は、前記歪形ワークの熱処理が要求されない面の外周の形状を縮小した位置またはその付近に前記放熱用当板の外周が位置するように押し当てられるようになっており、前記歪形ワークを側面視して、歪形ワークの使用時回転中心から最も遠い位置の最外端部と前記使用時回転中心との間の距離をr1、両者を結ぶ直線の延長線上の位置の反対側端部と前記使用時回転中心との間の距離をr2、前記円形の加熱導体部の内側半径をd1、前記歪形ワークが加熱されるときに前記円形の加熱導体部の中心に合わせられる前記回動機構の回動中心と前記反対側端部との間の距離をrとしたとき、d1>r≒(r1+r2)/2に設定されることを特徴としている
【0012】
本発明の請求項2に係る歪形ワークの熱処理装置は、前記放熱用当板は、導電性を有している。
【0014】
本発明の請求項に係る歪形ワークの熱処理装置は、前記最外端部での曲率半径が、前記反対側端部での曲率半径よりも小さいときには、前記rはd1>r≒(r1+r2)/2の代わりにd1>r>(r1+r2)/2とする。
【0015】
本発明の請求項に係る歪形ワークの熱処理装置は、前記歪形ワークが熱処理されるときに前記歪形ワークの周囲を無酸化性ガスまたは無酸化性冷却液で充たす無酸化処理機構を備えている。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態に係る歪形ワークの熱処理装置として板カムの高周波焼入装置を図1および図2を参照しつつ説明する。
図1は本発明の実施の形態に係る板カムの高周波焼入装置を示す概略的説明図、図2は本発明の実施の形態に係る板カムの高周波焼入装置に用いられる高周波加熱コイル体と放熱用当板と板カムとを示す概略的説明図であって、同図(A)は平面図、同図(B)はA−A線矢視断面図である。
【0017】
熱処理が要求される面とこの面に連続する熱処理が要求されない面とを有する歪形ワークとしての板カムWは、自動車等のカムシャフトに用いられるものである。特に板カムWはシャフトに取り付けられるカム、即ち、いわゆる組立式カムシャフトに用いられるカムである。よって、板カムWには、前記シャフトが嵌まり込む穴WHが設けられている。この穴WHには、スプライン等の前記シャフトとの固定手段が形成されることが多いが、そのスプライン等は図示省略した。穴WHを側面視したときの中心が、板カムWの使用時回転中心P0である。板カムWは、使用時回転中心P0から最も遠い位置の最外端部P1と使用時回転中心P0との間の距離がr1、両者を結ぶ直線の延長線上の位置の反対側端部P2と使用時回転中心P0との間の距離がr2(<r1)となっている。
【0018】
前記熱処理が要求される面とは、図2に示す板カムWの外周面WGであり、この面に連続する前記熱処理が要求されない面とは板カムWの両側面WS、WSである。熱処理が要求されない面としての側面WSは、熱処理が要求されないものの、熱処理が要求される面としての外周面WGと直交して連続しているから、図2(B)に示されるように、硬化層WKの深さ方向の部分がたまたま側面WSの一部に現れる。したがって、本発明において熱処理が要求されない面とは、硬化層が全く形成されない面だけを言うのではなく、それ以外に、側面WSのように、その面を直接的に熱処理する意図がなく、別の面を熱処理したときにたまたま硬化層が一部に現れる面をも言う。
【0019】
本発明の実施の形態に係る板カムの高周波焼入装置10は、板カムWの外周面WGを加熱する円形の加熱導体部110を有する高周波加熱コイル体100と、この加熱導体部110の下方に設けられた円形の冷却ジャケット150と、投入された板カムWを加熱導体部110および冷却ジャケット150の中心軸方向に挟持して移動させ且つ焼入時に加熱導体部110間および冷却ジャケット150間にセットさせて回動させる放熱用当板210付の回動機構200と、これらを無酸化状態に閉塞するチャンバー300と、このチャンバー300の入口側に延設された入口側予備雰囲気室340と、チャンバー300の出口側に延設された出口側予備雰囲気室380とを備えている。
【0020】
また、高周波焼入装置10は、入口側予備雰囲気室340内および出口側予備雰囲気室380内にそれぞれ設けられたワーク搬送機構400と、高周波加熱コイル体100に電力を供給する電源部(図示省略)と、チャンバー300および入口側予備雰囲気室340並びに出口側予備雰囲気室380内に非酸化性の雰囲気ガスGを供給するガス供給手段500と、冷却ジャケット150および高周波加熱コイル体100に供給するための冷却液Lを貯留するとともに冷却ジャケット150から噴射された冷却液Lを受ける冷却液タンク600と、この冷却液タンク600の冷却液Lを冷却ジャケット150および高周波加熱コイル体100に送るポンプ機構(図示省略)と、入口側予備雰囲気室340外から入口側予備雰囲気室340内のワーク搬送機構400に板カムWを供給するワーク自動供給機構(図示省略)と、出口側予備雰囲気室380内のワーク搬送機構400から板カムWを受け取るワーク自動搬出機構(図示省略)と、これらを制御する制御部(図示省略)とを備えている。
【0021】
前記高周波加熱コイル体100は、円形の加熱導体部110と、この加熱導体部110の端から外側に遠ざかるように突設された一対の給電導体部120とを有する。なお、加熱導体部110は、正確に言えば完全な円形ではなく、円形の一部をカットして間隙Sが設けられた形状をしている。一対の給電導体部120間も間隙Sが設けられている。この間隙Sには、図示しない絶縁板が設けられている。間隙Sは、高周波加熱コイル体100に交流高電圧がかけられるため必然的に設けられるものである。
【0022】
この間隙Sで円形の加熱導体部110の磁界の途切れができるとともに、理想的には影響ない一対の給電導体部120からの磁界が現実には多少影響して、加熱導体部110の内側の磁界が、間隙S付近で乱れる。この磁界の乱れの影響を、板カムWが熱処理時に停止状態で受けると加熱ムラの原因の1つになるため、後述するように回動機構200を設けて、加熱時に板カムWを回動させて、前記影響が板カムWの周囲全体に分散されるようにして前記加熱ムラを抑えている。なお、高周波加熱コイル体100の内部には、自身の加熱を抑えるための冷却液が循環されている。また、円形の加熱導体部110の内側の半径をd1とする。高周波加熱コイル体100は、チャンバー300内に固定されている。
【0023】
前記冷却ジャケット150は、その内側に図示しない複数の冷却液噴射用穴が設けられている。冷却ジャケット150は、チャンバー300内に固定されている。前記複数の冷却液噴射用穴は、板カムWの冷却ムラが発生しにくいように多数設けられているものの、板カムWが停止された状態で冷却液Lを噴射すると冷却ムラがやや発生する。そのため、後述するように回動機構200を設けて、冷却液L噴射時に板カムWを回動させて、前記冷却ムラを抑えている。
【0024】
前記回動機構200は、上側回動機構201と下側回動機構206とからなる。上側回動機構201は、チャンバー300内の上部側に固定された本体部201Aと、この本体部201Aの下部に取り付けられた台座201Bとこの台座201Bの下部に固定された放熱用当板210とを有する。本体部201Aは、台座201Bを昇降自在且つ回動自在に支えるものである。下側回動機構206は、チャンバー300の下方側に設けられた冷却液タンク600の上に固定された本体部206Aと、この本体部206Aの上部に取り付けられた台座206Bと、この台座206Bの上部に固定された放熱用当板210とを有する。本体部201A、206Aは、図示しないモータと、このモータを昇降させる図示しないシリンダーと、前記モータの回動角度を検出する図示しないセンサと、これらを覆う図示しないハウジングとをそれぞれ備える。
【0025】
本体部201A、206Aのモータは、板カムWを自転させるためのものである。図2のP3は、図1の本体部201A、206Aのモータの回動軸201A1、206A1の回動中心、即ち、回動機構200の回動中心を示す。なお、P3は、図1の台座201B、206Bの回動中心でもあり、また、円形の加熱導体部110や冷却ジャケット150の中心でもある。
【0026】
本体部201A、206Aは、板カムWを加熱するときに、台座201B、206Bに固定された放熱用当板210、210間に板カムWを挟んで回動させる。上述した間隙S付近での磁界の乱れの影響を上述したように回動させて分散させる方が好ましいからである。また、板カムWに冷却液を噴射するときに、本体部201A、206Aは、台座201B、206Bに固定された放熱用当板210、210間に挟まれたままの板カムWを回動させる。冷却ムラ、究極的には形成される硬化層の厚みムラを抑えるためである。
【0027】
前記放熱用当板210は、板カムWの外周面WG側から内側に伝導してくる熱のうちの板カムWの外周面WG側の均一な加熱を妨げる余計な熱を放熱するという作用と、板カムWの外周面WG側の均一な加熱を妨げる余計な電磁誘導の発生を抑えるという作用と、両側面WS、WS側での余計な誘導電流をバイパスさせるという作用とを果たすものである。そのために放熱用当板210は、外周の形状が、板カムWの側面WSの外周の形状を縮小した相似形である。放熱用当板210は、板カムWの側面WSの外周の形状を縮小した位置に押し当てられるものである。
【0028】
放熱用当板210には、板カムWの穴WHと同様の穴210Hが設けられている。この穴210Hの中心は、板カムWの使用時回転中心P0に合わせられることになる。放熱用当板210は、板カムWの側面WSと相似形であるから、板カムWの最外端部P1と反対側端部P2とに対応した最外端部P4と反対側端部P5とを有する。ただし、最外端部P4は、放熱用当板210において穴210Hの中心から最も遠い位置であり、反対側端部P5は、放熱用当板210において最外端部P4と穴210Hの中心とを結ぶ直線の延長線上の位置である。
【0029】
また、放熱用当板210は、放熱性能の高い材質とするのはもちろんのこと、導電性も有するものにする。放熱用当板210の導電率は高い方が放熱用当板210自身が加熱導体部110からの磁界によって加熱されにくいのでよく、また、板カムWに発生している不要な誘導電流を効率よくバイパスさせることができるのでよい。更に、放熱用当板210は、繰り返し使用しても磨耗しにくい材質のものが好ましい。よって、放熱用当板210は、例えば銅、真鍮、ステンレス、鉄等からなる。
【0030】
このような放熱用当板210は、台座201B、206Bにそれぞれ、放熱用当板210の最外端部P4と反対側端部P5との中点を、台座201B、206Bの回動中心(即ちP3)に合わせるようにして固定される。このように固定された放熱用当板210が板カムWの側面WSの外周の形状を縮小した位置に押し当てられると、放熱用当板210、210間に挟持された板カムWの最外端部P1と加熱導体部110との間の距離は、反対側端部P2と加熱導体部110との間の距離に一致する。即ち、回動中心P3と反対側端部P2との間の距離をrとしたとき、d1>r=(r1+r2)/2に設定される。
【0031】
このようにd1>r=(r1+r2)/2に設定されると、上述したように加熱導体部110と最外端部P1との間の距離が、加熱導体部110と反対側端部P2との間の距離に一致するので、板カムWの外周面WGと加熱導体部110の内面との間の距離の最大値と最小値との差が従来よりも小さくなる。これによっても、従来よりも硬化層の均一化が図られる。なお、きっちりとd1>r=(r1+r2)/2に設定しない状態、即ち、d1>r≒(r1+r2)/2としても従来よりも硬化層の均一化が図られる。
【0032】
ただし、板カムWは、最外端部P1での曲率半径が、反対側端部P2での曲率半径よりも小さいので、マスの違いを更に考慮すると、前記rはd1>r≒(r1+r2)/2の代わりにd1>r>(r1+r2)/2とした方が、更に硬化層の均一化が図られる。なお、以下、説明を簡略化するため、前記rはd1>r=(r1+r2)/2であるとする。
【0033】
このように台座201B、206Bにそれぞれ固定された放熱用当板210に対して、板カムWを上述のように位置合わせしてセットするために、台座206Bに固定された放熱用当板210の上に板カムWがワーク搬送機構400によってセットされるまでに、放熱用当板210の最外端部P4の方向は、予め決められた1つの方向(以下、この方向を「初期方向」とも呼ぶ。)になるように本体部201A、206Aのモータが制御されている。
【0034】
前記チャンバー300は、下方が開放され、その開放された下方が冷却液Lに浸漬されている。チャンバー300には、入口側予備雰囲気室340側の側面に入口側シャッタS2が設けられ、出口側予備雰囲気室380側の側面に出口側シャッタS3が設けられている。また、チャンバー300には、下部にガス供給手段500からの雰囲気ガスGを取り込むガス供給孔310が設けられ、天井部分に雰囲気ガスGを排出するガス排出孔305が設けられている。チャンバー300内は、雰囲気ガスGが充たされて無酸素状態にされている。
【0035】
前記入口側予備雰囲気室340は、下方が開放され、その開放された下方が冷却液Lに浸漬されている。入口側予備雰囲気室340には、入口側にシャッタS1が設けられている。また、入口側予備雰囲気室340には、下部にガス供給手段500からの雰囲気ガスGを取り込むガス供給孔341が設けられ、天井部分に雰囲気ガスGを排出するガス排出孔345が設けられている。入口側予備雰囲気室340内は、雰囲気ガスGが充たされて無酸素状態にされている。
【0036】
前記出口側予備雰囲気室380は、下方が開放され、その開放された下方が冷却液Lに浸漬されている。出口側予備雰囲気室380には、出口側にシャッタS4が設けられている。また、出口側予備雰囲気室380には、下部にガス供給手段500からの雰囲気ガスGを取り込むガス供給孔381が設けられ、天井部分に雰囲気ガスGを排出するガス排出孔385が設けられている。出口側予備雰囲気室380内は、雰囲気ガスGが充たされて無酸素状態にされている。
【0037】
なお、前記雰囲気ガスGは、窒素やアルゴン等の非酸化性のガスである。冷却液Lは焼入油である。前記シャッタS1〜S4は、図示しないシリンダで昇降されるようになっている。
【0038】
前記ワーク搬送機構400は、ロボットアームである。入口側予備雰囲気室340内のワーク搬送機構400は、台座206Bに固定された放熱用当板210の上に板カムWをセットしたときに、板カムWの最外端部P1の方向が、放熱用当板210の最外端部P4の方向(即ち、前記初期方向)と一致するように、板カムWを搬送するようになっている。
【0039】
前記ポンプ機構は、ポンプと、このポンプに接続された管と、この管の途中に設けられた冷却機構とを備えている。前記冷却機構は、冷却液タンク600の冷却液Lを冷却ジャケット150等に送る際、焼入に適した温度に冷却液Lを冷却するものである。
【0040】
このように構成された本発明の実施の形態に係る板カムの高周波焼入装置10は、次のように機能する。
【0041】
シャッタS1が開かれ、ワーク自動供給機構によって板カムWが、入口側予備雰囲気室340内のワーク搬送機構400に供給される。シャッタS1が閉じられた後、シャッタS2が開かれる。板カムWが、ワーク搬送機構400によって、下側回動機構206の台座206Bに固定された放熱用当板210上に上述したように位置合わせされて置かれる。前記放熱用当板210上の板カムWは、本体部206Aのシリンダーによって、加熱導体部110間まで上昇させられる。他方、前記板カムWの上面を押さえるように、上側回動機構201の台座201Bに固定された放熱用当板210が本体部201Aのシリンダーによって下降させられる。
【0042】
これにより、板カムWは放熱用当板210、210間に所定の状態で挟持される。即ち、放熱用当板210は、板カムWの側面WSの外周の形状を縮小した位置に放熱用当板210の外周が位置するように押し当てられ、回動中心P3と反対側端部P2との間の距離rは、d1>r=(r1+r2)/2であり、また、加熱導体部110と最外端部P1との間の距離が、加熱導体部110と反対側端部P2との間の距離に一致する。
【0043】
このような状態で、高周波加熱コイル体100に通電される一方、放熱用当板210、210間に挟持された板カムWは回動される。通電が終了した後、板カムWは、放熱用当板210、210間に挟持されたまま、冷却ジャケット150の間まで移動させられ、冷却ジャケット150から冷却液Lを噴射される。冷却液Lを噴射されている間も、板カムWは、放熱用当板210、210間に挟持されたまま回動させられる。
【0044】
冷却液Lの噴射が完了した後、回動は停止される。回動が停止されたとき、放熱用当板210、210の方向は回動開始時と同じ方向(即ち、前記初期方向)になるようにしている。上側回動機構201の台座201Bに固定された放熱用当板210が本体部201Aのシリンダーによって上昇させられて初期位置に戻される一方、下側回動機構206の台座206Bに固定された放熱用当板210が本体部206Aのシリンダーによって下降させられて初期位置に戻される。
【0045】
シャッタS3が開かれ、出口側予備雰囲気室380内のワーク搬送機構400によって、板カムWが取り出される。シャッタS3が閉じられ、シャッタS4が開かれて、板カムWがワーク搬送機構400からワーク自動搬出機構へ渡されて、一連の焼入が完了する。
【0046】
次のワークである板カムWは、前記一連の焼入が完了した後に、ワーク自動供給機構によって供給されたのでもよいが、早いタイミングで焼入処理したい場合には、例えば次のタイミングとなるようにワーク自動供給機構によって供給される。前記シャッタS3が開かれた際に、シャッタS2を開け、先の板カムWがワーク搬送機構400によって下側回動機構206の放熱用当板210上から取り出された後に、次の板カムWを、下側回動機構206側の放熱用当板210上に載置させる。
【0047】
ただし、いくら早いタイミングで焼入処理したい場合であっても、シャッタS2を開けているときには、シャッタS1を開けないようにする方がよい。同様に、シャッタS3を開けているときには、シャッタS4を開けないようにする方がよい。チャンバー300内まで一気に外気が入り込んでしまうと、チャンバー300内が無酸素状態に戻るまで時間がかかるからである。
【0048】
このようにして焼入された板カムWは、放熱用当板210が、板カムWの側面WSの外周の形状を縮小した位置(即ち、硬化層の深さが均一となるライン)に放熱用当板210の外周が位置するように押し当てられて熱処理されたので、板カムWの外周と加熱導体部110との間の距離がたとえ一定でなくても、また、板カムW内でのマスの違いがあっても、更に、板カムWの角の誘導電流の集中に対しても、放熱用当板210が有効に機能し、従来よりも硬化層の均一化が図られる。放熱用当板210が、硬化層の深さが均一となるラインの内側に押し当てられ、板カムWの外周面WG側から内側に伝導してくる熱のうちの前記ライン内に入り込んで来ようとする余計な熱を放熱しようとするからである。また、放熱用当板210が、前記ライン内での電磁誘導の発生を抑えるためである。更に、放熱用当板210が、余計な誘導電流をバイパスさせるからである。
【0049】
また、板カムWと高周波加熱コイル体100との位置関係が上述のようにされて、板カムWの外周と加熱導体部110との間の距離の最大値と最小値との差が、従来よりも小さくなっているので、従来よりも硬化層の均一化が図られる。
【0050】
なお、本発明の実施の形態に係るカムシャフトの製造装置は、上述の構成に限定しない。例えば次のように変更してもよい。
【0051】
(1)高周波加熱コイル体100は固定されているとし、この高周波加熱コイル体100に対して、回動機構200は板カムWを回動させたが、その代わりに、板カムWを停止した状態で高周波加熱コイル体100を回動させてもよい。これによっても加熱ムラを抑えることができるからである。
【0052】
(2)板カムWを加熱するための加熱コイル体は、高周波加熱コイル体の代わりに一般的な抵抗加熱コイル体を用いてもよい。
【0053】
(3)冷却ジャケットは高周波加熱コイル体と別体としたが、一体としてもよい。即ち、高周波加熱コイル体の加熱導体部の内側面に冷却液を噴射する複数の穴を設けてもよい。
(4)板カムWに冷却液Lを噴射するときには、板カムWを回動させたが、その代わりに、板カムWを停止した状態で冷却ジャケット150を回動させてもよい。これによっても冷却ムラを抑えることができるからである。
【0054】
(5)板カムWは、冷却ジャケット150によって焼入油を噴射することで焼入の急冷却を行ったが、その代わりに、冷却液Lへの浸漬によって焼入の急冷却を行ってもよい。この場合、タンク600の冷却液Lに板カムWを浸漬することになる。よって、下側回動機構206は、板カムWを載置した状態で、その板カムWを冷却液面下に移動させることができるように配置される。タンク600の冷却液Lは、冷却機構によって焼入に適した温度に冷却されるようにする。板カムWは、冷却液Lに浸漬されたとき、回動されて冷却ムラを抑える。また、冷却液面下に、冷却液Lを板カムWに吹きつける冷却ジャケットを設けると更によい。板カムWの前記回動の代わりに、前記冷却ジャケットを回動させて板カムWの冷却ムラを抑えてもよい。
【0055】
なお、浸漬による場合、チャンバー300の下をくぐらせてチャンバー300の外側へ焼入後の板カムWを取り出すようにしてもよい。このようにした場合、出口側予備雰囲気室380やチャンバー300の出口側シャッタS3は不要である。
【0056】
(6)板カムWが熱処理されるときに板カムWの周囲を無酸化性ガスで充たしたが、その代わりに、板カムWを無酸化性冷却液である焼入油に浸漬した状態で加熱し、浸漬した状態で板カムWを回動させたり、焼入油を板カムWに吹きつける等して急冷却する、いわゆる液中焼入による無酸化処理を行ってもよい。この場合、チャンバー300や入口側予備雰囲気室340や出口側予備雰囲気室380やガス供給手段500は不要である。また、下側回動機構206は、板カムWを載置した状態で、当該板カムWを冷却液面下に移動させることができるように配置される。高周波加熱コイル体100や冷却ジャケット150ももちろん冷却液面下に配置される。
【0057】
(7)無酸化焼入処理を行っているが、光輝性を要求しないのならば、その代わりに、スケールができるものの大気中での一般焼入処理を行ってもよい。この場合、冷却液としては、焼入油以外に冷却水を用いることもできる。また、チャンバー300や入口側予備雰囲気室340や出口側予備雰囲気室380やガス供給手段500は不要である。
【0058】
(8)高周波加熱コイル体100と冷却ジャケット150とを固定し、板カムWを移動させたが、その代わりに、板カムWを移動させないで高周波加熱コイル体100と冷却ジャケット150とを移動させてもよい。
【0059】
(9)放熱用当板210は回動機構200の一部として設けたが、その代わりに、回動機構から放熱用当板210を取り去り、供給する板カムWに放熱用当板210を着脱自在に予め取り付けてもよい。
【0060】
(10)供給する板カムWに放熱用当板210を着脱自在に予め取り付ける場合、例えば次のようにしてもよい。板カムWの穴部WHにシャフトを嵌め込み、このシャフトに一対の放熱用当板210も嵌め込む。上述したように板カムWの上下に放熱用当板210を配置して焼入する場合には、前記シャフトの軸方向も上下方向となるため、前記シャフトに嵌め込まれた板カムWと一対の放熱用当板210とが抜け落ちないように、前記シャフトには、下側に嵌め込まれる放熱用当板210を支える位置に鍔状部が予め設けられる。
【0061】
また、例えば前記シャフトの周囲と、前記板カムWの穴WHと一対の放熱用当板210の穴210Hとには、スプラインが設けられているか、または、前記シャフトと、前記板カムWの穴WHおよび一対の放熱用当板210の穴210Hとの間にキー溝とキーとが設けられていることで、前記シャフトを回動させても、このシャフトに嵌め込まれている板カムWと一対の放熱用当板210とが空回りしないようにされている。
【0062】
焼入するときには、前記シャフトの上下をチャックとセンターとで挟む。前記チャックとセンターとは、回動機構の上側回動機構の台座または下側回動機構の台座のどちらか一方に取り付けられる。前記チャックとセンターとは、前記シャフトを介して板カムWを回動中心P0で挟むことになる。よって、前記チャックとセンターとは、回動機構の上側回動機構の台座または下側回動機構の台座上において、その台座の回動中心P3から、P0とP3との間の距離である(r1−r2)/2だけ離れた位置に設けられる。即ち、前記チャックとセンターとは、回動機構の回動中心P3を中心として公転移動させられる構成となる。前記チャックとセンターとに挟まれた板カムWは、回動中心P3を中心として回動されるのは上述の場合と変わらない。
【0063】
したがって、例えば、上述したようにマスを考慮して、板カムWの位置をd1>r>(r1+r2)/2とする場合には、前記距離をd1>r>(r1+r2)/2とすればよい。
【0064】
なお、このように板カムWの穴部WHにシャフトを嵌め込む場合には、放熱用当板210に、穴210Hと同様の穴が必要であるが、上述したように、放熱用当板210を台座201B、206Bに取り付ける場合には、穴210Hを省くことも可能である。
【0065】
(11)放熱用当板210の形状は、板カムWの外周の形状を縮小した相似形としたが、略相似形でももちろんよい。略相似形とは、相似形に対してなだらかに凹凸を設けてもよいし、極端に凹凸を設けてもよい。マスの違い等により余計に放熱させたい場合は相似形に対して凸とし、その逆は凹とすればよい。なお、放熱用当板210の形状が略相似形の場合は、板カムWの側面の外周の形状を縮小した位置に押し当てることにはならないで、前記位置付近に押し当てることになる。
【0066】
(12)本発明の実施の形態に係るカムシャフトの製造装置の特殊な例として、冷却ジャケット150からの冷却液Lの噴射で急冷却された板カムWの温度を、供給された板カムWの温度よりも高めとした状態で出口側予備雰囲気室380のワーク搬送機構400に受け渡したい場合、即ち、板カムWを、組立式カムシャフトのシャフトへの焼嵌に適した温度(例えば150℃〜180℃程度)にした状態で取り出したい場合がある。このような場合、放熱用当板210、210の温度も高めとなった状態で次の板カムWが供給されるのはよくない。よって、この場合、例えば、放熱用当板210、210を雰囲気ガスGの噴射で冷却する機構をチャンバー300内に追加して設け、この機構で次の板カムWが供給され前に放熱用当板210、210を冷却するとよい。
【0067】
(13)歪形ワークは板カムWであるとしたが、これ以外でもよいことは言うまでもない。例えば歪形ワークは、板カムWのように両側面が外周に対して垂直である必要はなく、両側面が外周に対して傾斜していてももちろんよい。
【0068】
(14)以上、熱処理が焼入であるとして説明したが、焼入後に焼き戻し処理も行う熱処理等でもよいことは言うまでもない。
【0069】
【発明の効果】
以上説明したように、本発明の請求項1に係る歪形ワークの熱処理装置は、熱処理が要求される面とこの外周面に連続する熱処理が要求されない面とを有する板カムである歪形ワークに熱処理を施す熱処理装置であって、歪形ワークの熱処理が要求される面を加熱する加熱コイル体と、前記歪形ワークが加熱されるときに前記歪形ワークの熱処理が要求されない面に押し当てられる放熱用当板と、前記歪形ワークが熱処理されるときに前記歪形ワーク又は前記加熱導体部を回動させる回動機構とを具備しており、前記加熱コイル体は前記歪形ワークの熱処理が要求される面としての外周面を加熱する円形の加熱導体部を有しており、前記放熱用当板の外周の形状は、前記歪形ワークの熱処理が要求されない面の外周の形状を縮小した相似形または略相似形とされ、前記放熱用当板は、前記歪形ワークの熱処理が要求されない面の外周の形状を縮小した位置またはその付近に前記放熱用当板の外周が位置するように押し当てられるようになっており、前記歪形ワークを側面視して、歪形ワークの使用時回転中心から最も遠い位置の最外端部と前記使用時回転中心との間の距離をr1、両者を結ぶ直線の延長線上の位置の反対側端部と前記使用時回転中心との間の距離をr2、前記円形の加熱導体部の内側半径をd1、前記歪形ワークが加熱されるときに前記円形の加熱導体部の中心に合わせられる前記回動機構の回動中心と前記反対側端部との間の距離をrとしたとき、d1>r≒(r1+r2)/2に設定されることを特徴としている。
【0070】
よって、本発明の請求項1に係る歪形ワークの熱処理装置の場合には、前記放熱用当板を備えているので、歪形ワークの硬化層をより均一に形成可能である。したがって、焼割れや歪の発生が抑えられて、歪形ワークの低コスト化が図られる。しかも、歪形ワークとしての板カムの外周面と加熱導体部との間の距離の最大値と最小値との差が従来よりも小さくなるので、板カムの硬化層を更に均一に形成可能である。したがって、焼割れや歪の発生が更に抑えられて、板カムの低コスト化が更に図られる。
【0071】
本発明の請求項2に係る歪形ワークの熱処理装置は、前記放熱用当板は、導電性を有している。
【0072】
よって、本発明の請求項2に係る歪形ワークの熱処理装置の場合には、導電性を有する放熱用当板によって、歪形ワークの両側面側の過度の誘導電流をバイパスできるので、歪形ワークの硬化層を更に均一に形成可能である。したがって、焼割れや歪の発生が更に抑えられて、歪形ワークの低コスト化が更に図られる。
【0074】
よって、本発明の請求項3に係る歪形ワークの熱処理装置の場合には、歪形ワークとしての板カムの外周面と加熱導体部との間の距離の最大値と最小値との差が従来よりも小さくなるので、板カムの硬化層を更に均一に形成可能である。したがって、焼割れや歪の発生が更に抑えられて、板カムの低コスト化が更に図られる。
【0075】
本発明の請求項に係る歪形ワークの熱処理装置は、前記最外端部での曲率半径が、前記反対側端部での曲率半径よりも小さいときには、前記rはd1>r≒(r1+r2)/2の代わりにd1>r>(r1+r2)/2とする。
【0076】
よって、本発明の請求項に係る歪形ワークの熱処理装置の場合には、歪形ワークとしての板カムの曲率半径の違いによるマスの違いを考慮して、マスが大きい板カムの反対側端部側を加熱導体部に近づけて熱処理するので、板カムの硬化層を更に均一に形成可能である。したがって、焼割れや歪の発生が更に抑えられて、板カムの低コスト化が更に図られる。
【0077】
本発明の請求項に係る歪形ワークの熱処理装置は、前記歪形ワークが熱処理されるときに前記歪形ワークの周囲を無酸化性ガスまたは無酸化性冷却液で充たす無酸化処理機構を備えている。
【0078】
よって、本発明の請求項に係る歪形ワークの熱処理装置の場合には、無酸化処理によってスケールができない。したがって、スケールを取り除くための研磨は必要ないので、歪形ワークの低コスト化が更に図られる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る板カムの高周波焼入装置を示す概略的説明図である。
【図2】本発明の実施の形態に係る板カムの高周波焼入装置に用いられる高周波加熱コイル体と放熱用当板と板カムとを示す概略的説明図であって、同図(A)は平面図、同図(B)はA−A線矢視断面図である。
【符号の説明】
W 板カムW
WG 外周面(熱処理が要求される面)
WS 側面(熱処理が要求されない面)
100 高周波加熱コイル体(加熱コイル体)
110 加熱導体部
210 放熱用当板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat treatment apparatus for a strained workpiece that is used in a high-frequency heat treatment apparatus or the like that heat-treats a strained workpiece such as a plate cam having a surface that requires heat treatment and a surface that does not require a continuous heat treatment. .
[0002]
[Prior art]
A typical example of a conventional heat treatment apparatus for strained workpieces of this type is a plate cam induction hardening apparatus. The shape of the plate cam is the same as that of the plate cam W shown in FIG. 2 described in the embodiment of the invention described later.
[0003]
A conventional induction hardening apparatus includes a high frequency heating coil body having a circular heating conductor portion for heating an outer peripheral surface (a surface requiring heat treatment) of a plate cam, and a plate cam at the center of the circular heating conductor portion. And a rotation mechanism for rotating the plate cam in a state in which the rotation center is matched when in use.
[0004]
[Problems to be solved by the invention]
However, when the plate cam is heat-treated with a conventional induction hardening apparatus, a so-called burn-out unevenness has occurred in which the hardened layer formed on the protruding portion of the plate cam is thicker than that of the other portions. It was. This is because the protruding portion of the plate cam is induction-heated in a state closer to the heating conductor portion than the basic circular portion.
[0005]
Also, since the radius of curvature of the protruding portion is smaller than the basic circle portion of the plate cam, the protruding portion has a smaller mass, and therefore the hardened layer tends to be thicker in the protruding portion than the basic circle portion. It was. In this way, uneven burning was also caused by the difference in the size of the cells.
[0006]
Further, since the intersection of the outer peripheral surface and the side surface of the plate cam is a corner, the induced current is more likely to concentrate at that corner than the other portions. That is, the hardened layer of the plate cam tends to be thicker on the both side surfaces than on the inner side. This also caused uneven burning.
[0007]
There is a possibility that distortion or burn cracking may occur in the plate cam due to uneven burning due to these.
[0008]
Moreover, since the heat treatment was performed in the atmosphere, that is, in an aerobic state, the scale was formed. If this scale is made, it will be in the state without glitter. Therefore, the scale was removed by polishing. The distortion was also corrected by polishing. Since these polishings cut the surface side of the hardened layer, it takes a long time to polish, and the wear of the polishing tool is severe, which causes an increase in the cost of the plate cam.
[0009]
These are not problems peculiar when the work is a plate cam, but are common matters when the work is distorted. Similar problems have been pointed out not only in high-frequency induction heating using a high-frequency heating coil body but also in general resistance heating.
[0010]
A main object of the present invention is to provide a heat treatment apparatus for a strained workpiece capable of forming a hardened layer of the strained workpiece more uniformly.
[0011]
[Means for Solving the Problems]
In order to solve the above problem, the strained workpiece heat treatment apparatus according to claim 1 of the present invention has a surface that requires heat treatment and a surface that does not require continuous heat treatment on the outer peripheral surface.It is a plate camA heat treatment apparatus for performing heat treatment on a strained workpiece, wherein a heating coil body that heats a surface that requires heat treatment of the strained workpiece, and heat treatment of the strained workpiece is not required when the strained workpiece is heated. With a heat dissipation plate pressed against the surfaceA rotating mechanism that rotates the strained workpiece or the heating conductor when the strained workpiece is heat treated, and the heating coil body is a surface on which heat treatment of the strained workpiece is required. Has a circular heating conductor to heat the outer peripheral surface asThe shape of the outer periphery of the heat radiating plate is similar or substantially similar to the shape of the outer periphery of the surface where the heat treatment of the strained workpiece is not required, and the heat radiating plate is made of the strained workpiece. The heat dissipation plate is pressed so that the outer periphery of the heat sink plate is positioned at or near the position where the shape of the outer periphery of the surface where heat treatment is not required is reduced.When the strained workpiece is viewed from the side, the distance between the outermost end portion farthest from the rotation center when the strained workpiece is used and the rotation center when used is r1, and a straight line connecting the two The distance between the opposite end of the position on the extension line and the rotation center in use is r2, the inner radius of the circular heating conductor is d1, and the circular heating conductor is heated when the strained workpiece is heated. D1> r≈ (r1 + r2) / 2, where r is the distance between the rotation center of the rotation mechanism that is aligned with the center of the portion and the opposite end..
[0012]
In the strained workpiece heat treatment apparatus according to claim 2 of the present invention, the heat dissipation plate has conductivity.
[0014]
Claims of the invention3When the radius of curvature at the outermost end is smaller than the radius of curvature at the opposite end, the r is replaced with d1> r≈ (r1 + r2) / 2. d1> r> (r1 + r2) / 2.
[0015]
Claims of the invention4The strained workpiece heat treatment apparatus according to the present invention includes a non-oxidation processing mechanism that fills the periphery of the strained workpiece with a non-oxidizing gas or a non-oxidizing coolant when the strain-shaped workpiece is heat-treated.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
A plate cam induction hardening apparatus as a strained workpiece heat treatment apparatus according to an embodiment of the present invention will be described below with reference to FIGS.
1 is a schematic explanatory view showing an induction hardening apparatus for a plate cam according to an embodiment of the present invention, and FIG. 2 is an induction heating coil body used in the induction hardening apparatus for a plate cam according to an embodiment of the present invention. 2A and 2B are schematic explanatory views showing a heat releasing plate and a plate cam, wherein FIG. 1A is a plan view, and FIG. 2B is a cross-sectional view taken along line AA.
[0017]
A plate cam W as a distorted workpiece having a surface requiring heat treatment and a surface not requiring continuous heat treatment is used for a camshaft of an automobile or the like. In particular, the plate cam W is a cam attached to a shaft, that is, a cam used for a so-called assembly type camshaft. Therefore, the plate cam W is provided with a hole WH into which the shaft is fitted. In this hole WH, a fixing means for the shaft such as a spline is often formed, but the spline and the like are not shown. The center when the hole WH is viewed from the side is the rotation center P0 when the plate cam W is used. The plate cam W has a distance r1 between the outermost end P1 farthest from the rotation center P0 in use and the rotation center P0 in use, and an end P2 opposite to the position on the extended line of the straight line connecting the two. The distance from the rotation center P0 in use is r2 (<r1).
[0018]
The surface that requires the heat treatment is the outer peripheral surface WG of the plate cam W shown in FIG. 2, and the surfaces that do not require the heat treatment that are continuous with the surface are both side surfaces WS and WS of the plate cam W. The side surface WS as a surface that does not require heat treatment is continuous with the outer peripheral surface WG as a surface that requires heat treatment, although it does not require heat treatment. Therefore, as shown in FIG. A portion in the depth direction of the layer WK happens to appear in a part of the side surface WS. Therefore, in the present invention, the surface that does not require heat treatment does not mean only a surface on which a hardened layer is not formed at all, but other than that, there is no intention of directly heat-treating the surface like the side surface WS. It also refers to a surface where a hardened layer appears partly when the surface is heat-treated.
[0019]
A plate cam induction hardening apparatus 10 according to an embodiment of the present invention includes a high frequency heating coil body 100 having a circular heating conductor portion 110 that heats an outer peripheral surface WG of a plate cam W, and a lower portion of the heating conductor portion 110. The circular cooling jacket 150 provided on the heating plate 110 and the inserted plate cam W are moved while being sandwiched in the direction of the central axis of the heating conductor 110 and the cooling jacket 150 and between the heating conductor 110 and the cooling jacket 150 during quenching. A rotating mechanism 200 with a heat releasing plate 210 that is set and rotated, a chamber 300 that closes these in a non-oxidizing state, and an inlet side preliminary atmosphere chamber 340 that extends to the inlet side of the chamber 300, , And an outlet side preliminary atmosphere chamber 380 extending on the outlet side of the chamber 300.
[0020]
The induction hardening apparatus 10 includes a work transfer mechanism 400 provided in each of the inlet side preliminary atmosphere chamber 340 and the outlet side preliminary atmosphere chamber 380, and a power supply unit (not shown) for supplying electric power to the high frequency heating coil body 100. ), Gas supply means 500 for supplying the non-oxidizing atmosphere gas G into the chamber 300, the inlet side preliminary atmosphere chamber 340, and the outlet side preliminary atmosphere chamber 380, and the cooling jacket 150 and the high-frequency heating coil body 100. The cooling liquid tank 600 that stores the cooling liquid L and receives the cooling liquid L injected from the cooling jacket 150, and a pump mechanism that sends the cooling liquid L from the cooling liquid tank 600 to the cooling jacket 150 and the high-frequency heating coil body 100 ( (Not shown) and the inside of the inlet side auxiliary atmosphere chamber 340 from the outside of the inlet side auxiliary atmosphere chamber 340. Automatic workpiece supply mechanism (not shown) for supplying the plate cam W to the workpiece transfer mechanism 400, automatic workpiece unloading mechanism (not shown) for receiving the plate cam W from the workpiece transfer mechanism 400 in the outlet side preliminary atmosphere chamber 380, these And a control unit (not shown) for controlling.
[0021]
The high-frequency heating coil body 100 includes a circular heating conductor portion 110 and a pair of power feeding conductor portions 120 that protrude outward from the end of the heating conductor portion 110. In addition, the heating conductor part 110 is not a perfect circle to be exact, but has a shape in which a gap S is provided by cutting a part of the circle. A gap S is also provided between the pair of power supply conductor portions 120. In the gap S, an insulating plate (not shown) is provided. The gap S is inevitably provided because an alternating high voltage is applied to the high-frequency heating coil body 100.
[0022]
In this gap S, the magnetic field of the circular heating conductor 110 can be interrupted, and the magnetic field from the pair of power supply conductors 120 that is not ideally influenced is actually somewhat affected, so that the magnetic field inside the heating conductor 110 is Is disturbed near the gap S. When the plate cam W receives the influence of the disturbance of the magnetic field in a stopped state at the time of heat treatment, it becomes one of the causes of heating unevenness. Therefore, as will be described later, a rotation mechanism 200 is provided to rotate the plate cam W at the time of heating. Thus, the heating unevenness is suppressed in such a manner that the influence is distributed over the entire periphery of the plate cam W. Note that a coolant for suppressing heating of itself is circulated inside the high-frequency heating coil body 100. In addition, the inner radius of the circular heating conductor 110 is d1. The high-frequency heating coil body 100 is fixed in the chamber 300.
[0023]
The cooling jacket 150 is provided with a plurality of coolant injection holes (not shown) inside. The cooling jacket 150 is fixed in the chamber 300. Although the plurality of cooling liquid injection holes are provided so that the unevenness of the cooling of the plate cam W is less likely to occur, the unevenness of cooling slightly occurs when the coolant L is injected while the plate cam W is stopped. . Therefore, a rotation mechanism 200 is provided as will be described later, and the plate cam W is rotated when the coolant L is jetted to suppress the cooling unevenness.
[0024]
The turning mechanism 200 includes an upper turning mechanism 201 and a lower turning mechanism 206. The upper turning mechanism 201 includes a main body 201A fixed to the upper side in the chamber 300, a base 201B attached to the lower part of the main body 201A, and a heat dissipation plate 210 fixed to the lower part of the base 201B. Have The main body 201A supports the pedestal 201B so as to be movable up and down and rotatable. The lower rotation mechanism 206 includes a main body portion 206A fixed on a coolant tank 600 provided on the lower side of the chamber 300, a pedestal 206B attached to the upper portion of the main body portion 206A, and the pedestal 206B. And a heat-dissipating contact plate 210 fixed to the upper portion. Each of the main body parts 201A and 206A includes a motor (not shown), a cylinder (not shown) that moves the motor up and down, a sensor (not shown) that detects a rotation angle of the motor, and a housing (not shown) that covers these.
[0025]
The motors of the main body portions 201A and 206A are for rotating the plate cam W. P3 in FIG. 2 indicates the rotation centers of the rotation shafts 201A1 and 206A1 of the motors of the main body portions 201A and 206A in FIG. Note that P3 is also the center of rotation of the pedestals 201B and 206B in FIG. 1, and is also the center of the circular heating conductor 110 and the cooling jacket 150.
[0026]
When heating the plate cam W, the main body portions 201A and 206A rotate with the plate cam W sandwiched between the heat dissipation plates 210 and 210 fixed to the bases 201B and 206B. This is because it is preferable that the influence of the disturbance of the magnetic field in the vicinity of the gap S described above is rotated and dispersed as described above. Further, when the coolant is sprayed onto the plate cam W, the main body portions 201A and 206A rotate the plate cam W while being sandwiched between the heat dissipation plates 210 and 210 fixed to the bases 201B and 206B. . This is to suppress cooling unevenness and ultimately thickness unevenness of the formed hardened layer.
[0027]
The heat-dissipating contact plate 210 radiates excess heat that hinders uniform heating on the outer peripheral surface WG side of the plate cam W among heat conducted from the outer peripheral surface WG side of the plate cam W to the inside. The function of suppressing the generation of extra electromagnetic induction that hinders uniform heating on the outer peripheral surface WG side of the plate cam W and the action of bypassing extra induced currents on the side surfaces WS and WS are achieved. . Therefore, the heat-dissipating contact plate 210 has a similar shape in which the outer peripheral shape is reduced from the outer peripheral shape of the side surface WS of the plate cam W. The heat-dissipating contact plate 210 is pressed against a position where the outer peripheral shape of the side surface WS of the plate cam W is reduced.
[0028]
The heat releasing plate 210 is provided with a hole 210H similar to the hole WH of the plate cam W. The center of the hole 210H is aligned with the rotation center P0 when the plate cam W is used. Since the heat radiating plate 210 is similar to the side surface WS of the plate cam W, the outermost end portion P4 and the opposite end portion P5 corresponding to the outermost end portion P1 and the opposite end portion P2 of the plate cam W are provided. And have. However, the outermost end portion P4 is the farthest position from the center of the hole 210H in the heat radiating plate 210, and the opposite side end portion P5 is the center of the outermost end portion P4 and the hole 210H in the heat radiating plate 210. It is the position on the extension line of the straight line connecting
[0029]
The heat dissipation plate 210 is not only made of a material having a high heat dissipation performance but also has conductivity. If the heat dissipation plate 210 has a higher conductivity, the heat dissipation plate 210 itself is less likely to be heated by the magnetic field from the heating conductor 110, and unnecessary induced current generated in the plate cam W can be efficiently generated. It can be bypassed. Furthermore, the heat dissipation plate 210 is preferably made of a material that does not easily wear even after repeated use. Therefore, the heat dissipation plate 210 is made of, for example, copper, brass, stainless steel, iron or the like.
[0030]
In such a heat dissipation plate 210, the pedestals 201B and 206B respectively have the center points of the outermost end portion P4 and the opposite end portion P5 of the heat dissipation contact plate 210 as the rotation centers (that is, the pedestals 201B and 206B). It is fixed so as to match with P3). When the heat dissipating contact plate 210 fixed in this manner is pressed to a position where the outer peripheral shape of the side surface WS of the plate cam W is reduced, the outermost plate cam W sandwiched between the heat dissipating contact plates 210 and 210 is pressed. The distance between the end P1 and the heating conductor 110 is equal to the distance between the opposite end P2 and the heating conductor 110. That is, d1> r = (r1 + r2) / 2 is set, where r is the distance between the rotation center P3 and the opposite end P2.
[0031]
When d1> r = (r1 + r2) / 2 is set as described above, the distance between the heating conductor portion 110 and the outermost end portion P1 is, as described above, the heating conductor portion 110 and the opposite end portion P2. Therefore, the difference between the maximum value and the minimum value of the distance between the outer peripheral surface WG of the plate cam W and the inner surface of the heating conductor 110 becomes smaller than in the conventional case. This also makes the cured layer more uniform than in the past. Even when d1> r = (r1 + r2) / 2 is not set exactly, that is, d1> r≈ (r1 + r2) / 2, the cured layer can be made more uniform than in the prior art.
[0032]
However, since the radius of curvature at the outermost end portion P1 of the plate cam W is smaller than the radius of curvature at the opposite end portion P2, the above-mentioned r is d1> r≈ (r1 + r2) in consideration of the difference in mass. If d1> r> (r1 + r2) / 2 instead of / 2, the cured layer can be made more uniform. Hereinafter, in order to simplify the description, it is assumed that r is d1> r = (r1 + r2) / 2.
[0033]
In order to set and align the plate cam W as described above with respect to the heat dissipation plate 210 fixed to the bases 201B and 206B in this way, the heat dissipation plate 210 fixed to the base 206B is set. Before the plate cam W is set by the workpiece conveying mechanism 400, the direction of the outermost end portion P4 of the heat dissipation plate 210 is one predetermined direction (hereinafter, this direction is also referred to as “initial direction”). The motors of the main body portions 201A and 206A are controlled so that
[0034]
The chamber 300 is opened at the bottom, and the opened bottom is immersed in the coolant L. The chamber 300 is provided with an inlet shutter S2 on the side surface on the inlet side preliminary atmosphere chamber 340 side, and with an outlet side shutter S3 on the side surface on the outlet side preliminary atmosphere chamber 380 side. Further, the chamber 300 is provided with a gas supply hole 310 for taking in the atmospheric gas G from the gas supply means 500 in the lower part and a gas exhaust hole 305 for discharging the atmospheric gas G in the ceiling part. The chamber 300 is filled with the atmospheric gas G and is in an oxygen-free state.
[0035]
The entrance side preliminary atmosphere chamber 340 is opened at the lower side, and the opened lower side is immersed in the coolant L. In the entrance side preliminary atmosphere chamber 340, a shutter S1 is provided on the entrance side. In addition, the inlet side preliminary atmosphere chamber 340 is provided with a gas supply hole 341 for taking in the atmospheric gas G from the gas supply means 500 at the lower portion and a gas exhaust hole 345 for discharging the atmospheric gas G at the ceiling portion. . The entrance side preliminary atmosphere chamber 340 is filled with the atmosphere gas G and is in an oxygen-free state.
[0036]
The outlet side preliminary atmosphere chamber 380 is opened at the bottom, and the opened bottom is immersed in the coolant L. The outlet side preliminary atmosphere chamber 380 is provided with a shutter S4 on the outlet side. In addition, the outlet side preliminary atmosphere chamber 380 is provided with a gas supply hole 381 for taking in the atmospheric gas G from the gas supply means 500 at the lower part and a gas exhaust hole 385 for discharging the atmospheric gas G at the ceiling part. . The outlet side preliminary atmosphere chamber 380 is filled with the atmosphere gas G and is in an oxygen-free state.
[0037]
The atmosphere gas G is a non-oxidizing gas such as nitrogen or argon. The coolant L is a quenching oil. The shutters S1 to S4 are moved up and down by a cylinder (not shown).
[0038]
The workpiece transfer mechanism 400 is a robot arm. When the plate cam W is set on the heat dissipation plate 210 fixed to the pedestal 206B, the workpiece transfer mechanism 400 in the inlet side preliminary atmosphere chamber 340 has the direction of the outermost end portion P1 of the plate cam W to be The plate cam W is conveyed so as to coincide with the direction of the outermost end portion P4 of the heat dissipation plate 210 (that is, the initial direction).
[0039]
The pump mechanism includes a pump, a pipe connected to the pump, and a cooling mechanism provided in the middle of the pipe. The cooling mechanism cools the coolant L to a temperature suitable for quenching when the coolant L in the coolant tank 600 is sent to the cooling jacket 150 or the like.
[0040]
The plate cam induction hardening apparatus 10 according to the embodiment of the present invention configured as described above functions as follows.
[0041]
The shutter S1 is opened, and the plate cam W is supplied to the work transport mechanism 400 in the inlet side preliminary atmosphere chamber 340 by the work automatic supply mechanism. After the shutter S1 is closed, the shutter S2 is opened. The plate cam W is positioned and positioned as described above on the heat radiating contact plate 210 fixed to the base 206B of the lower rotation mechanism 206 by the work transfer mechanism 400. The plate cam W on the heat releasing plate 210 is raised to the space between the heating conductor portions 110 by the cylinder of the main body portion 206A. On the other hand, the heat-dissipating contact plate 210 fixed to the base 201B of the upper turning mechanism 201 is lowered by the cylinder of the main body 201A so as to hold down the upper surface of the plate cam W.
[0042]
As a result, the plate cam W is sandwiched between the heat releasing plates 210 and 210 in a predetermined state. That is, the heat dissipation plate 210 is pressed so that the outer periphery of the heat dissipation plate 210 is located at a position where the outer periphery shape of the side surface WS of the plate cam W is reduced, and the end portion P2 opposite to the rotation center P3. The distance r between the heating conductor 110 and the outermost end P1 is d1> r = (r1 + r2) / 2, and the distance between the heating conductor 110 and the outermost end P1 is Match the distance between.
[0043]
In such a state, the high-frequency heating coil body 100 is energized, while the plate cam W sandwiched between the heat dissipation plates 210 and 210 is rotated. After the energization is completed, the plate cam W is moved between the cooling jackets 150 while being sandwiched between the heat-dissipating contact plates 210 and 210, and the coolant L is injected from the cooling jacket 150. While the cooling liquid L is being injected, the plate cam W is rotated while being sandwiched between the heat dissipation plates 210 and 210.
[0044]
After the injection of the coolant L is completed, the rotation is stopped. When the rotation is stopped, the direction of the heat-dissipating plates 210 and 210 is set to be the same as that at the start of the rotation (that is, the initial direction). The heat releasing plate 210 fixed to the base 201B of the upper rotating mechanism 201 is raised by the cylinder of the main body 201A and returned to the initial position, while the heat releasing plate fixed to the base 206B of the lower rotating mechanism 206 is used. The contact plate 210 is lowered by the cylinder of the main body portion 206A and returned to the initial position.
[0045]
The shutter S3 is opened, and the plate cam W is taken out by the workpiece transfer mechanism 400 in the outlet side preliminary atmosphere chamber 380. The shutter S3 is closed, the shutter S4 is opened, and the plate cam W is transferred from the workpiece transfer mechanism 400 to the workpiece automatic carry-out mechanism, and a series of quenching is completed.
[0046]
The plate cam W which is the next workpiece may be supplied by the workpiece automatic supply mechanism after the series of quenching is completed. However, when quenching processing is desired at an early timing, for example, the next timing is reached. The workpiece is supplied by the automatic supply mechanism. When the shutter S3 is opened, the shutter S2 is opened, and the previous plate cam W is taken out from the heat releasing plate 210 of the lower rotation mechanism 206 by the work transport mechanism 400, and then the next plate cam W. Is placed on the heat releasing plate 210 on the lower rotation mechanism 206 side.
[0047]
However, it is better not to open the shutter S1 when the shutter S2 is opened, no matter how early the quenching process is desired. Similarly, it is better not to open the shutter S4 when the shutter S3 is open. This is because if outside air enters the chamber 300 at once, it takes time until the chamber 300 returns to the oxygen-free state.
[0048]
The plate cam W thus hardened radiates heat to the position where the heat-dissipating contact plate 210 has reduced the outer peripheral shape of the side surface WS of the plate cam W (that is, the line where the depth of the hardened layer is uniform). Since the outer periphery of the contact plate 210 is pressed and heat-treated, even if the distance between the outer periphery of the plate cam W and the heating conductor 110 is not constant, Even if there is a difference between the squares, the heat-dissipating contact plate 210 effectively functions against the concentration of the induced current at the corners of the plate cam W, and the hardened layer can be made more uniform than before. The heat dissipation plate 210 is pressed against the inside of the line where the depth of the hardened layer is uniform, and enters the line out of the heat conducted inward from the outer peripheral surface WG side of the plate cam W. It is because it is going to radiate the extra heat which tries. Further, the heat dissipation plate 210 is for suppressing the occurrence of electromagnetic induction in the line. Furthermore, this is because the heat dissipation plate 210 bypasses an extra induced current.
[0049]
Further, the positional relationship between the plate cam W and the high-frequency heating coil body 100 is as described above, and the difference between the maximum value and the minimum value of the distance between the outer periphery of the plate cam W and the heating conductor portion 110 is the conventional value. Therefore, the cured layer can be made more uniform than in the prior art.
[0050]
The camshaft manufacturing apparatus according to the embodiment of the present invention is not limited to the above-described configuration. For example, you may change as follows.
[0051]
(1) It is assumed that the high-frequency heating coil body 100 is fixed, and the rotation mechanism 200 rotates the plate cam W with respect to the high-frequency heating coil body 100, but instead the plate cam W is stopped. The high-frequency heating coil body 100 may be rotated in the state. This is also because heating unevenness can be suppressed.
[0052]
(2) As the heating coil body for heating the plate cam W, a general resistance heating coil body may be used instead of the high-frequency heating coil body.
[0053]
(3) The cooling jacket is separate from the high-frequency heating coil body, but may be integrated. That is, you may provide the several hole which injects a cooling fluid in the inner surface of the heating conductor part of a high frequency heating coil body.
(4) When injecting the cooling liquid L to the plate cam W, the plate cam W is rotated, but instead, the cooling jacket 150 may be rotated while the plate cam W is stopped. This is also because the cooling unevenness can be suppressed.
[0054]
(5) The plate cam W was quenched by injecting quenching oil with the cooling jacket 150, but instead, quenching by quenching by immersion in the coolant L Good. In this case, the plate cam W is immersed in the coolant L of the tank 600. Therefore, the lower rotation mechanism 206 is disposed so that the plate cam W can be moved below the coolant level in a state where the plate cam W is placed. The coolant L in the tank 600 is cooled to a temperature suitable for quenching by a cooling mechanism. When the plate cam W is immersed in the coolant L, the plate cam W is rotated to suppress uneven cooling. It is further preferable to provide a cooling jacket for blowing the cooling liquid L to the plate cam W below the cooling liquid level. Instead of the rotation of the plate cam W, the cooling jacket may be rotated to suppress uneven cooling of the plate cam W.
[0055]
In the case of immersion, the plate cam W after quenching may be taken out of the chamber 300 by passing under the chamber 300. In this case, the exit side preliminary atmosphere chamber 380 and the exit side shutter S3 of the chamber 300 are not necessary.
[0056]
(6) When the plate cam W is heat-treated, the periphery of the plate cam W is filled with the non-oxidizing gas. Instead, the plate cam W is immersed in the quenching oil which is a non-oxidizing coolant. The plate cam W may be rotated in a heated and immersed state, or may be subjected to non-oxidation treatment by so-called submerged quenching, in which quenching oil is sprayed onto the plate cam W, for example. In this case, the chamber 300, the inlet side preliminary atmosphere chamber 340, the outlet side preliminary atmosphere chamber 380, and the gas supply means 500 are unnecessary. Further, the lower rotation mechanism 206 is arranged so that the plate cam W can be moved below the coolant level in a state where the plate cam W is placed. Of course, the high-frequency heating coil body 100 and the cooling jacket 150 are also arranged below the coolant surface.
[0057]
(7) Although a non-oxidation quenching process is performed, if no glitter is required, a general quenching process in the atmosphere may be performed instead of a scale. In this case, as the coolant, cooling water can be used in addition to the quenching oil. Further, the chamber 300, the inlet side preliminary atmosphere chamber 340, the outlet side preliminary atmosphere chamber 380, and the gas supply means 500 are unnecessary.
[0058]
(8) The high-frequency heating coil body 100 and the cooling jacket 150 are fixed and the plate cam W is moved. Instead, the high-frequency heating coil body 100 and the cooling jacket 150 are moved without moving the plate cam W. May be.
[0059]
(9) Although the heat dissipation plate 210 is provided as a part of the rotation mechanism 200, the heat dissipation plate 210 is removed from the rotation mechanism, and the heat dissipation plate 210 is attached to and detached from the plate cam W to be supplied. You may attach freely beforehand.
[0060]
(10) When the heat releasing plate 210 is detachably attached in advance to the plate cam W to be supplied, for example, the following may be performed. A shaft is fitted into the hole WH of the plate cam W, and a pair of heat dissipation plates 210 are also fitted into the shaft. As described above, when the heat-dissipating contact plates 210 are disposed above and below the plate cam W for quenching, the axial direction of the shaft is also in the vertical direction, so that the plate cam W fitted on the shaft and a pair of In order to prevent the heat dissipation plate 210 from falling off, the shaft is previously provided with a hook-like portion at a position for supporting the heat dissipation plate 210 fitted on the shaft.
[0061]
Further, for example, a spline is provided around the shaft, the hole WH of the plate cam W, and the hole 210H of the pair of heat-dissipating contact plates 210, or the shaft and the hole of the plate cam W are provided. Since the key groove and the key are provided between the WH and the hole 210H of the pair of heat-dissipating contact plates 210, even if the shaft is rotated, the plate cam W fitted to the shaft and the pair The heat releasing plate 210 is prevented from spinning freely.
[0062]
When quenching, the upper and lower sides of the shaft are sandwiched between the chuck and the center. The chuck and the center are attached to either the base of the upper rotation mechanism or the base of the lower rotation mechanism of the rotation mechanism. The chuck and the center sandwich the plate cam W at the rotation center P0 through the shaft. Therefore, the chuck and the center are the distances between P0 and P3 from the rotation center P3 of the pedestal on the pedestal of the upper rotation mechanism of the rotation mechanism or the pedestal of the lower rotation mechanism ( It is provided at a position separated by r1-r2) / 2. That is, the chuck and the center are configured to revolve around the rotation center P3 of the rotation mechanism. The plate cam W sandwiched between the chuck and the center is rotated about the rotation center P3 as in the above case.
[0063]
Therefore, for example, in the case where the position of the plate cam W is d1> r> (r1 + r2) / 2 in consideration of the mass as described above, the distance is set as d1> r> (r1 + r2) / 2. Good.
[0064]
When the shaft is fitted into the hole WH of the plate cam W in this way, the heat releasing plate 210 needs to have the same hole as the hole 210H. However, as described above, the heat releasing plate 210. When attaching to the bases 201B and 206B, the hole 210H can be omitted.
[0065]
(11) The shape of the heat releasing plate 210 is a similar shape obtained by reducing the shape of the outer periphery of the plate cam W, but may be a substantially similar shape. The substantially similar shape may be provided with unevenness gently or with extreme unevenness with respect to the similar shape. If you want to dissipate more heat due to the difference in mass, etc., you can make it convex with respect to the similar shape, and vice versa. Note that when the shape of the heat release plate 210 is substantially similar, the shape of the outer periphery of the side surface of the plate cam W is not pressed to a reduced position, but is pressed to the vicinity of the position.
[0066]
(12) As a special example of the camshaft manufacturing apparatus according to the embodiment of the present invention, the temperature of the plate cam W rapidly cooled by the injection of the coolant L from the cooling jacket 150 is used as the supplied plate cam W. When it is desired to deliver the plate cam W to the work transport mechanism 400 in the outlet side preliminary atmosphere chamber 380, that is, a temperature suitable for shrink fitting to the shaft of the assembly type camshaft (for example, 150 ° C.). In some cases, it may be desired to take it out in a state of about ~ 180 ° C. In such a case, it is not good that the next plate cam W is supplied in a state where the temperature of the heat radiating plates 210 and 210 is also increased. Therefore, in this case, for example, a mechanism for cooling the heat-dissipating contact plates 210, 210 by injection of the atmospheric gas G is additionally provided in the chamber 300, and the heat-dissipating contact is supplied before the next plate cam W is supplied by this mechanism. The plates 210, 210 may be cooled.
[0067]
(13) Although the distorted workpiece is the plate cam W, it goes without saying that other than this may be used. For example, unlike the plate cam W, the side surface of the distorted workpiece does not need to be perpendicular to the outer periphery, and the both side surfaces may of course be inclined with respect to the outer periphery.
[0068]
(14) Although it has been described above that the heat treatment is quenching, it goes without saying that it may be a heat treatment that also performs a tempering treatment after quenching.
[0069]
【The invention's effect】
As described above, the strained workpiece heat treatment apparatus according to claim 1 of the present invention has a surface that requires heat treatment and a surface that does not require continuous heat treatment on the outer peripheral surface.It is a plate camA heat treatment apparatus for performing heat treatment on a strained workpiece, wherein a heating coil body that heats a surface that requires heat treatment of the strained workpiece, and heat treatment of the strained workpiece is not required when the strained workpiece is heated. With a heat dissipation plate pressed against the surfaceA rotating mechanism that rotates the strained workpiece or the heating conductor when the strained workpiece is heat treated, and the heating coil body is a surface on which heat treatment of the strained workpiece is required. Has a circular heating conductor to heat the outer peripheral surface asThe shape of the outer periphery of the heat radiating plate is similar or substantially similar to the shape of the outer periphery of the surface where the heat treatment of the strained workpiece is not required, and the heat radiating plate is made of the strained workpiece. The heat dissipation plate is pressed so that the outer periphery of the heat sink plate is positioned at or near the position where the shape of the outer periphery of the surface where heat treatment is not required is reduced.When the strained workpiece is viewed from the side, the distance between the outermost end portion farthest from the rotation center when the strained workpiece is used and the rotation center when used is r1, and a straight line connecting the two The distance between the opposite end of the position on the extension line and the rotation center in use is r2, the inner radius of the circular heating conductor is d1, and the circular heating conductor is heated when the strained workpiece is heated. D1> r≈ (r1 + r2) / 2 is set, where r is a distance between the rotation center of the rotation mechanism that is aligned with the center of the portion and the opposite end.
[0070]
Therefore, in the case of the strained workpiece heat treatment apparatus according to claim 1 of the present invention, since the heat dissipation plate is provided, the hardened layer of the strained workpiece can be formed more uniformly. Therefore, the occurrence of burning cracks and distortion is suppressed, and the cost of the strained workpiece can be reduced.In addition, since the difference between the maximum and minimum distances between the outer peripheral surface of the plate cam as a distorted workpiece and the heating conductor is smaller than before, the hardened layer of the plate cam can be formed more uniformly. is there. Therefore, the occurrence of burning cracks and distortion is further suppressed, and the cost of the plate cam can be further reduced.
[0071]
In the strained workpiece heat treatment apparatus according to claim 2 of the present invention, the heat dissipation plate has conductivity.
[0072]
Therefore, in the case of the heat treatment apparatus for strained workpieces according to claim 2 of the present invention, excessive induced currents on both sides of the strained workpiece can be bypassed by the conductive heat dissipation plate, The cured layer of the work can be formed more uniformly. Therefore, the occurrence of burning cracks and distortion is further suppressed, and the cost of the strained workpiece can be further reduced.
[0074]
Therefore, in the case of the strained workpiece heat treatment apparatus according to claim 3 of the present invention, the difference between the maximum value and the minimum value of the distance between the outer peripheral surface of the plate cam as the strained workpiece and the heating conductor portion is calculated. Since it becomes smaller than before, the hardened layer of the plate cam can be formed more uniformly. Therefore, the occurrence of burning cracks and distortion is further suppressed, and the cost of the plate cam can be further reduced.
[0075]
Claims of the invention3When the radius of curvature at the outermost end is smaller than the radius of curvature at the opposite end, the r is replaced with d1> r≈ (r1 + r2) / 2. d1> r> (r1 + r2) / 2.
[0076]
Accordingly, the claims of the present invention3In the case of the heat treatment apparatus for strained workpieces according to the above, considering the difference in mass due to the difference in curvature radius of the plate cam as the strained workpiece, the opposite end portion side of the plate cam having a large mass is used as the heating conductor. Since the heat treatment is performed close, the hardened layer of the plate cam can be formed more uniformly. Therefore, the occurrence of burning cracks and distortion is further suppressed, and the cost of the plate cam can be further reduced.
[0077]
Claims of the invention4The strained workpiece heat treatment apparatus according to the present invention includes a non-oxidation processing mechanism that fills the periphery of the strained workpiece with a non-oxidizing gas or a non-oxidizing coolant when the strain-shaped workpiece is heat-treated.
[0078]
Accordingly, the claims of the present invention4In the case of the heat treatment apparatus for strained workpieces according to the above, scale cannot be formed by non-oxidation treatment. Accordingly, since polishing for removing the scale is not necessary, the cost of the strained workpiece can be further reduced.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an induction hardening apparatus for a plate cam according to an embodiment of the present invention.
FIG. 2 is a schematic explanatory view showing a high-frequency heating coil body, a heat-dissipating contact plate, and a plate cam used in the induction hardening apparatus for a plate cam according to an embodiment of the present invention. Is a plan view, and FIG. 5B is a cross-sectional view taken along line AA.
[Explanation of symbols]
W Plate cam W
WG outer peripheral surface (surface requiring heat treatment)
WS side (surface that does not require heat treatment)
100 High-frequency heating coil body (heating coil body)
110 Heating conductor
210 Heat dissipation plate

Claims (4)

熱処理が要求される面とこの外周面に連続する熱処理が要求されない面とを有する板カムである歪形ワークに熱処理を施す熱処理装置であって、歪形ワークの熱処理が要求される面を加熱する加熱コイル体と、前記歪形ワークが加熱されるときに前記歪形ワークの熱処理が要求されない面に押し当てられる放熱用当板と、前記歪形ワークが熱処理されるときに前記歪形ワーク又は前記加熱導体部を回動させる回動機構とを具備しており、
前記加熱コイル体は前記歪形ワークの熱処理が要求される面としての外周面を加熱する円形の加熱導体部を有しており
前記放熱用当板の外周の形状は、前記歪形ワークの熱処理が要求されない面の外周の形状を縮小した相似形または略相似形とされ、前記放熱用当板は、前記歪形ワークの熱処理が要求されない面の外周の形状を縮小した位置またはその付近に前記放熱用当板の外周が位置するように押し当てられるようになっており、
前記歪形ワークを側面視して、歪形ワークの使用時回転中心から最も遠い位置の最外端部と前記使用時回転中心との間の距離をr1、両者を結ぶ直線の延長線上の位置の反対側端部と前記使用時回転中心との間の距離をr2、前記円形の加熱導体部の内側半径をd1、前記歪形ワークが加熱されるときに前記円形の加熱導体部の中心に合わせられる前記回動機構の回動中心と前記反対側端部との間の距離をrとしたとき、d1>r≒(r1+r2)/2に設定されたことを特徴とする歪形ワークの熱処理装置。
A heat treatment apparatus that heats a strained workpiece that is a plate cam having a surface that requires heat treatment and a surface that does not require continuous heat treatment on the outer peripheral surface, and heats the surface that requires heat treatment of the strained workpiece. A heating coil body, a heat-dissipating contact plate pressed against a surface where the heat treatment of the strained workpiece is not required when the strained workpiece is heated, and the strained workpiece when the strained workpiece is heat treated. Or a rotation mechanism for rotating the heating conductor,
The heating coil body has a circular heating conductor portion for heating an outer peripheral surface as a surface where heat treatment of the strained workpiece is required ,
The shape of the outer periphery of the heat dissipation plate is similar or substantially similar to the reduced shape of the outer periphery of the surface where the heat treatment of the strained workpiece is not required, and the heat release plate is a heat treatment of the strained workpiece. Is pressed so that the outer periphery of the heat-dissipating plate is positioned at or near the position where the outer peripheral shape of the surface that is not required is reduced ,
When the strained workpiece is viewed from the side, the distance between the outermost end at the position farthest from the rotation center when the strained workpiece is in use and the rotation center when used is r1, and the position on the extended line of the straight line connecting the two R2 is the distance between the opposite end and the rotation center in use, d1 is the inner radius of the circular heating conductor, and the center of the circular heating conductor is when the strained workpiece is heated. Heat treatment of strained workpiece , wherein d1> r≈ (r1 + r2) / 2 is set, where r is the distance between the rotation center of the rotation mechanism to be combined and the opposite end. apparatus.
前記放熱用当板は、導電性を有していることを特徴とする請求項1記載の歪形ワークの熱処理装置。The heat treatment apparatus for strained workpieces according to claim 1, wherein the heat dissipation plate has conductivity. 前記最外端部での曲率半径が、前記反対側端部での曲率半径よりも小さいときには、前記rはd1>r≒(r1+r2)/2の代わりにd1>r>(r1+r2)/2としたことを特徴とする請求項1記載の歪形ワークの熱処理装置。When the radius of curvature at the outermost end is smaller than the radius of curvature at the opposite end, r is d1> r> (r1 + r2) / 2 instead of d1> r≈ (r1 + r2) / 2. The heat treatment apparatus for strained workpieces according to claim 1, wherein 前記歪形ワークが熱処理されるときに前記歪形ワークの周囲を無酸化性ガスまたは無酸化性冷却液で充たす無酸化処理機構を備えていることを特徴とする請求項1、2又は3記載の歪形ワークの熱処理装置。4. A non-oxidation treatment mechanism that fills the periphery of the strain-shaped workpiece with a non-oxidizing gas or a non-oxidizing coolant when the strain-shaped workpiece is heat-treated. Heat treatment equipment for warped workpieces.
JP2000295400A 2000-09-28 2000-09-28 Heat treatment equipment for strained workpieces Expired - Lifetime JP3618658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295400A JP3618658B2 (en) 2000-09-28 2000-09-28 Heat treatment equipment for strained workpieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295400A JP3618658B2 (en) 2000-09-28 2000-09-28 Heat treatment equipment for strained workpieces

Publications (2)

Publication Number Publication Date
JP2002105532A JP2002105532A (en) 2002-04-10
JP3618658B2 true JP3618658B2 (en) 2005-02-09

Family

ID=18777830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295400A Expired - Lifetime JP3618658B2 (en) 2000-09-28 2000-09-28 Heat treatment equipment for strained workpieces

Country Status (1)

Country Link
JP (1) JP3618658B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100178A (en) * 2005-10-05 2007-04-19 Toyota Motor Corp Method for manufacturing cam shaft, and cam shaft
WO2007102533A1 (en) * 2006-03-07 2007-09-13 Ntn Corporation Machine element, constant velocity universal joint and process for manufacturing them
DE102011004530A1 (en) * 2010-12-15 2012-06-21 Mahle International Gmbh heater
JP6409804B2 (en) * 2016-03-18 2018-10-24 トヨタ自動車株式会社 Cam piece heat treatment method
JP2019112688A (en) 2017-12-25 2019-07-11 Ntn株式会社 Heat treatment method of work and heat treatment apparatus
JP2019157163A (en) 2018-03-08 2019-09-19 Ntn株式会社 Heat treatment method and heat treatment apparatus for workpiece
CN113981181B (en) * 2021-10-21 2023-09-12 安徽金骏感应加热设备有限公司 Ultrasonic frequency induction heating equipment

Also Published As

Publication number Publication date
JP2002105532A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
KR920701534A (en) Semiconductor Wafer Processing Apparatus and Method
JP3618658B2 (en) Heat treatment equipment for strained workpieces
CN1366786A (en) Induction heat treatment of complex-shaped workpieces
JPH07224327A (en) High-frequency hardening method and high-frequency hardening device of nearly cylindrical work
JP3524037B2 (en) Induction tempering method and apparatus for crankshaft
JP4178980B2 (en) Method for heat treatment of annular member
JP5973306B2 (en) Heat treatment equipment
JP2001234245A (en) High-frequency heating method for rack bar and high- frequency heating device
EP1305451B1 (en) Method and means for heat treating cutting tools
AU2001272673A1 (en) Method and means for heat treating cutting tools
JP3676215B2 (en) Low distortion induction hardening method and apparatus for camshaft
KR102529090B1 (en) Heat treatment system in revolver form
JP2008101235A (en) Heat treatment method
JP2023512702A (en) Split multi-coil electric induction heating system for heating multiple features of bearing components simultaneously
JPH0144770B2 (en)
JP3045815B2 (en) Method and apparatus for induction hardening of steel balls in the air
JP2004315851A (en) Method and apparatus for induction hardening of rack bar
JP3270394B2 (en) Apparatus and method for single-side quenching of flat ring-shaped workpiece
JP3300290B2 (en) Induction hardened coil body
JP2827089B2 (en) High frequency heating coil
JP2005330544A (en) High frequency induction hardening apparatus
JP2709556B2 (en) Induction quenching method for thin ring-shaped workpiece
JP2005330520A (en) High frequency induction hardening method and its apparatus
JP2004010928A (en) Device for quenching internal circumferential surface
US20210204370A1 (en) Heating coil, heating apparatus and manufacturing method of workpiece

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3618658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250