JP3617605B2 - Bond flux for submerged arc welding - Google Patents

Bond flux for submerged arc welding Download PDF

Info

Publication number
JP3617605B2
JP3617605B2 JP27922798A JP27922798A JP3617605B2 JP 3617605 B2 JP3617605 B2 JP 3617605B2 JP 27922798 A JP27922798 A JP 27922798A JP 27922798 A JP27922798 A JP 27922798A JP 3617605 B2 JP3617605 B2 JP 3617605B2
Authority
JP
Japan
Prior art keywords
mass
flux
content
weld metal
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27922798A
Other languages
Japanese (ja)
Other versions
JP2000107885A (en
Inventor
清司 猿橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27922798A priority Critical patent/JP3617605B2/en
Publication of JP2000107885A publication Critical patent/JP2000107885A/en
Application granted granted Critical
Publication of JP3617605B2 publication Critical patent/JP3617605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サブマージアーク溶接用ボンドフラックスに係り、軟鋼又は高張力鋼の入熱量50kJ/cm以上の大入熱サブマージアーク溶接に関し、特に低温においても良好な靭性を得ることができるボンドフラックスに関する。
【0002】
【従来の技術】
近時、構造物の大型化又は複雑化により、板厚又は溶接工数が増加している。このため、継手を大入熱で1パス又は2パス施工する方法が採用されている。1パスの代表的な施工法としては、鉄骨ボックスの角継手一層溶接又は片面一層溶接が挙げられる。この片面一層溶接には、裏ビード形成用ガラステープ、裏ビードの余盛り調整用固形フラックス、耐火材、ダンボールパット、被包フィルム及び両面接着テープから構成されている裏当材を開先裏面に押し当て、表面側から裏ビードを形成しながら溶接を行なう方法(以下 FAB法という。)、また、銅板の上に裏当てフラックスを均一な厚さに敷き、それをエアホース等の簡単な押し上げ機構により開先裏面に押し当て、表面側から、裏ビードを形成しながら溶接を完了させる方法(FCB法)、更に、熱硬化性樹脂を含んだ粉末の裏当てフラックスをベルト式又は桶型の溶接裏当て冶具内フラックス袋の中の下敷フラックスの上層にまき、下方のエアホースを膨張させることにより、フラックスを開先裏面に押し当て、表面側から一度に裏ビードも形成しながら溶接を完成させる方法(RF法)等がある。
【0003】
また、2パスの代表的な施工法としては、両面一層溶接が挙げられる。
【0004】
これらの大入熱溶接においては、溶接金属部の冷却速度が遅くなることから、溶接金属のミクロ組織は粗大な初析フェライトが大部分を占めるようになるため、溶接金属の靭性が低下する問題点がある。また、片面溶接又は両面一層溶接では、−40℃乃至−60℃程度の低温領域でも使用されるため低温靭性が要求される場合がある。
【0005】
大入熱においても良好な靭性が得られる溶接方法として、特開平9−155588号公報に焼入れ性向上成分(Mn又はMo等)の含有量を増加させ、靭性を向上させる方法が提案されている。
【0006】
【発明が解決しようとする課題】
しかし、実際には、大入熱溶接において、Mnは、酸化されてスラグに移行しやすくなり、溶接金属中に安定して歩留まりにくいため、十分な焼入れ効果がないためにミクロ組織が微細になりにくく、−40℃乃至−60℃程度の低温において良好な靭性が得られない場合が認められるという問題点がある。
【0007】
一方、Moは、析出強化又は固溶強化による溶接金属の強度向上には有効な成分であり、強度向上面からは焼入れ性向上成分といえるが、溶接金属のミクロ組織を微細にする効果は少なく、−40℃乃至−60℃程度の低温において良好な靭性が得られない場合が認められるという問題点がある。
【0008】
本発明はかかる問題に鑑みてなされたものであって、50kJ/cm以上の大入熱溶接において、−40℃乃至−60℃程度の低温においても良好な靭性を有する溶接金属を得ることができるサブマージアーク溶接用ボンドフラックスを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係るサブマージアーク溶接用ボンドフラックスは、MgOを20乃至35質量%、Al23を5乃至15質量%、鉄粉を10乃至30質量%、SiO2を5乃至20質量%、CaF2を3乃至10質量%、TiO2を5乃至15質量%、CaOを3乃至10質量%、CO2を2乃至8質量%、Alを0.5乃至3質量%、Mnを0.5乃至3質量%、Si及びTiの双方を総量で0.2乃至3質量%、B23を0.1乃至2質量%、Na O、K O、BaO、FeO、ZrO 及びMnOを総量で5重量%以下含有し、残部が不可避的不純物からなり、前記CaOとTiO2との重量比CaO/TiO2が0.4乃至0.9であることを特徴とする。
【0010】
【発明の実施の形態】
本願発明者等は、大入熱で良好な溶接金属靭性が得られないのは、溶接金属中に粗大初析フェライトが析出するためであり、更に、高い焼入れ性を確保し粗大初析フェライトの析出を抑えることが必要である。しかし、その場合に上部ベイナイトが生成すると強度が上昇し、0℃程度の靭性改善は認められるが、低温での靭性改善は認められない。上述のMo添加の場合がこの代表例である。そこで、Mn又はMoに代わる焼入れ性向上成分について種々検討を重ねた。その結果本願発明者等は、溶接金属に含まれる微量のAl添加により溶接金属の靭性に大きく影響を及ぼすことを新たに見出した。即ち、微量のAl添加により溶接金属の組織が下部ベイナイト主体の微細組織になるため、靭性が向上する。
【0011】
また、大入熱において良好な溶接作業性を確保するためにCaOとTiOとの重量比を規制する必要がある。この知見に基づき、溶接金属中の酸素量又は全体の溶接作業性を考慮して各成分を適正範囲内に決定したのが本発明のサブマージアーク溶接用ボンドフラックスである。
【0012】
以下、本発明に係るサブマージアーク溶接用ボンドフラックスに含有される化学成分の成分限定理由について説明する。
【0013】
MgO:20乃至35質量%
MgOは、塩基成分であり、溶接金属中の酸素量を低減するのに有効な成分であり、粘性調整剤としての作用も有している。フラックス中のMgOの含有量が20質量%未満であると、溶接金属の酸素量が高くなり靭性が低下すると共に、ビードの蛇行又はアンダカットが発生しやすくなる。一方、フラックス中のMgOの含有量が35質量%を超えると、スラグは焼付き、剥離性が劣化すると共に、ポックマークが多発する。従って、MgO量は20乃至35質量%とする。
【0014】
Al 2 3 :5乃至15質量%
Al23は中性成分であり、スラグの塩基度を下げることなく、スラグの粘性及び凝固温度を調整するのに有効な成分である。フラックス中のAl23の含有量が5質量%未満であるとアンダカットが発生しやすくなる。一方、フラックス中のAl23の含有量が15質量%を超えると粘性が高くなりすぎてスラグ巻き込みが発生しやすくなると共に、ビードが凸になりやすい。従って、Al23量は、5乃至15質量%とする。
【0015】
鉄粉:10乃至30質量%
鉄粉は、一度に多量の溶着金属を必要とする片面サブマージアーク溶接の場合、溶着金属量を補うのに必要な成分である。フラックス中の鉄粉の含有量が10質量%未満であると溶耀着金属を補う効果が得られない。一方、フラックス中の鉄粉の含有量が30質量%を超えると溶融スラグの流動性が阻害されビード幅が不安定になり、アンダカットも発生しやすくなる。従って、鉄粉量は10乃至30質量%とする。
【0016】
SiO 2 :5乃至20質量%
SiO2は、酸性成分であり、スラグの粘性及び凝固温度を調整するのに有効な成分である。フラックス中のSiO2の含有量が5質量%未満であるとスラグの粘性が低くなりすぎるためビードが蛇行する。一方、フラックス中のSiO2の含有量が20質量%を超えるとフラックスの塩基度が低下し溶接金属の酸素量が高くなり、靭性が低下する。従って、SiO2量は、5乃至20質量%とする。
【0017】
CaF 2 :3乃至10質量%
CaF2は、塩基性成分であり、溶接金属中の酸素量を低下させる効果があると共に、スラグの流動性を調整し、溶接中のスラグ−メタル間の反応を促進させるために有効な成分である。フラックス中のCaF2の含有量が3質量%未満であると溶接スラグを形成するスラグ量が不足するためにビードが蛇行すると共に、溶接金属の酸素量が高くなり、靭性が低下する。一方、フラックス中のCaF2の含有量が10質量%を超えるとアークが不安定になりアーク切れを発生しやすくなる。従って、CaF2量は、3乃至10質量%とする。好ましくは、CaF2量は、4乃至9質量%である。
【0018】
TiO 2 :5乃至15質量%
TiO2は、酸性成分であり、スラグの流動性を調整し、更に溶融時に還元されて溶接金属中にTiとして歩留まるため溶接金属の靭性向上に有効な成分である。フラックス中のTiO2の含有量が5質量%未満であると溶接金属中に供給されるTi量が不足し、靭性が低下する。一方、フラックス中のTiO2の含有量が15質量%を超えるとスラグが焼付き、剥離が劣化する。従って、TiO2量は、5乃至15質量%とする。
【0019】
CaO:3乃至10質量%
CaOは、塩基性成分であり、フラックスの塩基度を高め溶接金属の酸素量低減に極めて効果のある成分である。フラックス中のCaOの含有量が3質量%未満であると溶接金属の酸素量が高くなり靭性が低下する。一方、フラックス中のCaOの含有量が10質量%を超えるとスラグが焼付き、剥離性が悪くなる。従って、CaO量は、3乃至10質量%とする。
【0020】
金属炭酸塩(CO 2 換算):2乃至8質量%
CO2は、溶接金属中の窒素量と拡散性酸水素量の低減に有効な成分である。フラックス中のCO2の含有量が2質量%未満であると溶接金属中の拡散性水素量が高くなり、低温割れを発生しやすくする。一方、フラックス中のCO2の含有量が8質量%を超えるとガス発生量が増えすぎてポックマークが発生しやすくなる。従って、CO2量は、2乃至8質量%とする。なお、フラックス中のCO2成分は、金属炭酸塩として添加される。
【0021】
Al:0.5乃至3質量%
Alは、溶接金属のミクロ組織を微細にして、靭性を高めるのに有効な成分である。特に、大入熱溶接時に溶接金属に着実に歩留まり効果を発揮する。フラックス中のAlの含有量が0.5質量%未満であると大入熱溶接時の焼入れ性が不足し、靭性が低下する。一方、フラックス中のAlの含有量が3質量%を超えると焼入れが過度になり強度が上昇し、低温割れが発生しやすくなる。従って、Al量は、0.5乃至3質量%とする。好ましくは、0.5乃至2質量%である。なお、Alは、Al単体の他、Fe−Al又はAl−Mg等で添加することができる。
【0022】
Mn:0.5乃至3質量%
Mnは、焼入れ性を向上させて、強度及び靭性を高めるのに有効な成分である。フラックス中のMnの含有量が0.5質量%未満であると大入熱溶接時の焼入れ性が不足し、靭性が低下する。一方、フラックス中のMnの含有量が3質量%を超えるとスラグが焼付き、剥離が劣化する。従って、Mn量は、0.5乃至3質量%とする。好ましくは、0.5乃至2質量%である。なお、Mnは、Mn単体の他、Fe−Mn等で添加することができる。
【0023】
Si及びTiからなる群から選択された少なくとも1種又は2種の総量:0.2乃至3質量%
Si又はTiは共に、溶接金属中の酸素量を抑えるのに有効な成分である。フラックス中のSi及びTiからなる群から選択された少なくとも1種又は2種の含有量が0.2質量%未満であると溶接金属の酸素量が高くなり、靭性が低下する。一方、フラックス中のSi及びTiからなる群から選択された少なくとも1種又は2種の含有量が3質量%を超えるとスラグが焼付き、剥離が劣化する。従って、Si及びTiからなる群から選択された少なくとも1種又は2種の総量は、0.2乃至3質量%とする。なお、Si、Tiは単体の他、Fe−Si又はFe−Ti等で添加することができる。
【0024】
2 3 :0.1乃至2質量%
23は、溶接熱で還元され、B(ホウ素)として溶接金属中に歩留まって、溶接金属の靭性を向上させるのに有効な成分である。フラックス中のB23の含有量が0.1質量%未満であると溶接金属に歩留まるBが不足し、靭性が低下する。一方、フラックス中のB23の含有量が2質量%を超えると溶接金属中のBが過度に存在することにより高温割れが発生しやすくなる。従って、B23量は、0.1乃至2質量%とする。
【0025】
CaO/TiO :0.4乃至0.9
CaO/TiOは、大入熱において良好な溶接作業性を確保するために制限する必要がある。フラックス中のCaO及びTiOの含有量比CaO/TiOが0.4未満であるとアークが不安定となりビードに凹凸が生じやすくなる。一方、フラックス中のCaO/TiOが0.9を超えるとビードが蛇行する。従って、CaO/TiOは、0.4乃至0.9とする。
【0026】
上記成分の他にフラックス中には、Na2O、K2O、BaO、FeO、ZrO2及びMnO等の成分を含有することができ、その含有量は全ての総量が5質量%以下とする。
【0027】
【実施例】
以下、本発明に係るサブマージアーク溶接用ボンドフラックスの実施例についてその比較例と比較して具体的に説明する。図1は、本発明の実施例に係る開先形状を示す断面図である。図2は、本発明の実施例に係るサブマージアーク溶接方法を示す模式図である。
【0028】
表1に示す化学組成の鋼板1に斜面を形成し、夫々、鋼板1の斜面を対向させて突き合わせ、開先を得る。この場合、開先角αは50°である。表2に示す化学組成のワイヤ及び表3乃至9に示すフラックスを使用し、表9に示す溶接条件で図2に示すように裏当材2を両面粘着テープにより開先裏面に取付ける。その後、裏当材2に裏当て補助材3を、開先が開口されていない鋼板1の裏面1a側に、マグネット4を取付け,クランプ5のねじ部6を操作して鋼板1に裏当材2を固定する。このように裏当材2を固定した後にFAB法で溶接を行なった。なお、裏当補助材3は、例えば、厚さが3乃至4mmのアルミニウム板を使用することができる。溶接終了後に、溶接金属の酸素量としてデポ酸素量を測定し、溶接金属の−60℃における吸収エネルギ値及びビード外観を調べた。その結果を表10乃至12に示す。
【0029】
【表1】

Figure 0003617605
【0030】
【表2】
Figure 0003617605
【0031】
【表3】
Figure 0003617605
【0032】
【表4】
Figure 0003617605
【0033】
【表5】
Figure 0003617605
【0034】
【表6】
Figure 0003617605
【0035】
【表7】
Figure 0003617605
【0036】
【表8】
Figure 0003617605
【0037】
【表9】
Figure 0003617605
【0038】
【表10】
Figure 0003617605
【0039】
【表11】
Figure 0003617605
【0040】
【表12】
Figure 0003617605
【0041】
上記表10乃至12に示すように、フラックス中のフラックスの成分及び含有量比が本実施例の範囲にある実施例No.1乃至14は、溶接作業性について良好なものとなった。また、その他についても問題はなかった。
【0042】
一方、比較例No.15は、フラックス中のMgOの含有量が本発明の範囲の下限未満であるので、アンダカットが発生すると共に、溶接金属中の酸素量が増加して、靭性が低下した。比較例No.16は、フラックス中のMgOの含有量が本発明の範囲の上限を超えているので、スラグ剥離が劣化すると共に、ポックマークが発生した。
【0043】
比較例No.17は、フラックス中のAlの含有量が本発明の範囲の下限未満であるので、アンダカットが発生した。比較例No.18は、フラックス中のAlの含有量が本発明の範囲の上限を超えているので、スラグの巻込みが発生すると共に、ビードが凸になった。
【0044】
比較例No.19は、フラックス中の鉄粉の含有量が本発明の範囲の下限未満であるので、溶着金属が不足したために余盛り不足が発生した。比較例No.20は、フラックス中の鉄粉の含有量が本発明の範囲の上限を超えているので、アンダカットが発生した。
【0045】
比較例No.21は、フラックス中のSiOの含有量が本発明の範囲の下限未満であるので、ビードが蛇行した。比較例No.22は、フラックス中のSiOの含有量が本発明の範囲の上限を超えているので、溶接金属中の酸素量が増加し、靭性が低下した。
【0046】
比較例No.23は、フラックス中のCaFの含有量が本発明の範囲の下限未満であるので、ビードが蛇行すると共に、溶接金属中の酸素量が増加し、靭性が低下した。比較例No.24は、フラックス中のCaFの含有量が本発明の範囲の上限を超えているので、アーク切れが発生した。
【0047】
比較例No.25は、フラックス中のTiOの含有量が本発明の範囲の下限未満であるので、溶接金属中のTiが不足し、靭性が低下した。比較例No.26は、フラックス中のTiOの含有量が本発明の範囲の上限を超えているので、スラグが焼付き剥離が劣化した。
【0048】
比較例No.27は、フラックス中のCaOの含有量が本発明の範囲の下限未満であるので、溶接金属中の酸素量が増加し、靭性が低下した。比較例No.28は、フラックス中のCaOの含有量が本発明の範囲の上限を超えているので、スラグが焼付き剥離が劣化した。
【0049】
比較例No.29は、フラックス中のCOの含有量が本発明の範囲の下限未満であるので、溶接金属中の拡散性水素量が増加し、低温割れが発生した。比較例No.30は、フラックス中のCOの含有量が本発明の範囲の上限を超えているので、ポックマークが発生した。
【0050】
比較例No.31は、フラックス中のAlの含有量が本発明の範囲の下限未満であるので、溶接金属の焼入れ性が不足し、靭性が低下した。比較例No.32は、フラックス中のAlの含有量が本発明の範囲の上限を超えているので、溶接金属の強度が上昇し、靭性が低下した。
【0051】
比較例No.33は、フラックス中のMnの含有量が本発明の範囲の下限未満であるので、溶接金属の焼入れ性が不足し、靭性が低下した。比較例No.34は、フラックス中のMnの含有量が本発明の範囲の上限を超えているので、スラグが焼付き、剥離が劣化した。
【0052】
比較例No.35は、フラックス中のSi及び又はTiの総量が本発明の範囲の下限未満であるので、溶接金属中の酸素量が増加し、靭性が低下した。比較例No.36は、フラックス中のSi及び又はTiの総量が本発明の範囲の上限を超えているので、スラグが焼付き、剥離が劣化した。
【0053】
比較例No.37は、フラックス中のBの含有量が本発明の範囲の下限未満であるので、溶接金属中のホウ素が不足し、靭性が低下した。比較例No.38は、フラックス中のBの含有量が本発明の範囲の上限を超えているので、溶接金属中のホウ素に起因する高温割れが発生した。
【0054】
比較例No.39は、フラックス中のCaO/TiOが本発明の範囲の下限未満であるので、ビードが凹凸になった。比較例No.40は、フラックス中のCaO/TiOが本発明の範囲の上限を超えているので、ビードが蛇行した。
【0055】
【発明の効果】
以上詳述したように本発明によれば、サブマージアーク溶接用ボンドフラックスにおけるフラックス中の酸化物の含有量及び含有量の比率を適切に規制しているので、大入熱溶接においても、−40℃乃至−60℃程度の低温においても良好な靭性を有する溶接金属を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例に係るサブマージアーク溶接の開先形状を示す断面図である。
【図2】本発明の実施例に係るサブマージアーク溶接方法を示す模式図である。
【符号の説明】
1;鋼板
2;裏当材
3;裏当補助材
4;マグネット
5;クランプ
6;ねじ部
t;板厚
α;開先角[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bond flux for submerged arc welding, and more particularly to a high heat input submerged arc welding with a heat input of 50 kJ / cm or more of mild steel or high-tensile steel, and more particularly to a bond flux that can obtain good toughness even at low temperatures.
[0002]
[Prior art]
In recent years, the plate thickness or the number of welding processes has increased due to the increase in size and complexity of structures. For this reason, the method of constructing the joint with one pass or two passes with large heat input is adopted. As a typical construction method for one pass, a single-sided single-sided welding or a corner joint single-sided welding of a steel box can be mentioned. For this single-sided single-layer welding, a backing material composed of a glass tape for forming a back bead, a solid flux for adjusting the overfill of the back bead, a refractory material, a corrugated cardboard pad, an enveloping film and a double-sided adhesive tape is used on the back of the groove. Pressing and welding while forming a back bead from the front side (hereinafter referred to as the FAB method). Also, a backing flux is laid on a copper plate with a uniform thickness, and this is a simple push-up mechanism such as an air hose. By pressing to the back of the groove and forming welding from the front side while forming a back bead (FCB method), and further, belt type or saddle type welding of powder backing flux containing thermosetting resin Put it on the upper layer of the underlay flux in the flux bag in the backing jig, and inflate the lower air hose to press the flux against the back of the groove at once from the front side. There is a method of completing welding (RF method) while forming a back bead.
[0003]
Moreover, double-sided single layer welding is mentioned as a typical construction method of 2 passes.
[0004]
In these high heat input weldings, the cooling rate of the weld metal is slowed down, so the coarse microstructure of the weld metal is dominated by coarse pro-eutectoid ferrite, which reduces the toughness of the weld metal. There is a point. In single-sided welding or double-sided single-layer welding, low temperature toughness may be required because it is used even in a low temperature region of about -40 ° C to -60 ° C.
[0005]
As a welding method capable of obtaining good toughness even with large heat input, JP-A-9-155588 proposes a method for increasing the content of a hardenability improving component (Mn, Mo or the like) to improve toughness. .
[0006]
[Problems to be solved by the invention]
However, in actuality, in high heat input welding, Mn is easily oxidized and transferred to slag, and since it is difficult to stably yield in the weld metal, the microstructure becomes fine because there is no sufficient quenching effect. There is a problem that it is difficult to obtain good toughness at a low temperature of about -40 ° C to -60 ° C.
[0007]
On the other hand, Mo is an effective component for improving the strength of weld metal by precipitation strengthening or solid solution strengthening, and it can be said that it is a hardenability improving component in terms of strength improvement, but has little effect on making the microstructure of the weld metal fine. There is a problem that good toughness cannot be obtained at a low temperature of about -40 ° C to -60 ° C.
[0008]
This invention is made | formed in view of this problem, Comprising: In the high heat input welding of 50 kJ / cm or more, the weld metal which has favorable toughness can be obtained even in the low temperature of about -40 degreeC thru | or -60 degreeC. It aims at providing the bond flux for submerged arc welding.
[0009]
[Means for Solving the Problems]
Submerged arc welding bonded flux according to the present invention, MgO and 20 to 35 wt%, the Al 2 O 3 5 to 15 wt%, the iron powder 10 to 30 wt%, a SiO 2 5 to 20 wt%, CaF 2 to 3 to 10 % by mass , TiO 2 to 5 to 15 % by mass , CaO to 3 to 10 % by mass , CO 2 to 2 to 8 % by mass , Al to 0.5 to 3 % by mass , Mn to 0.5 to 3 % by mass , both Si and Ti in a total amount of 0.2 to 3 % by mass , B 2 O 3 0.1 to 2 % by mass, Na 2 O, K 2 O, BaO, FeO, ZrO 2 and MnO contained in a total amount 5 wt% or less, the balance being unavoidable impurities, the weight ratio CaO / TiO 2 of the CaO and TiO 2 is characterized in that it is a 0.4 to 0.9.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present application cannot obtain good weld metal toughness with high heat input because coarse pro-eutectoid ferrite precipitates in the weld metal, and further ensure high hardenability and prevent coarse pro-eutectoid ferrite. It is necessary to suppress precipitation. However, when upper bainite is formed in this case, the strength is increased, and an improvement in toughness of about 0 ° C. is observed, but an improvement in toughness at a low temperature is not recognized. The above-mentioned case of adding Mo is a typical example. Then, various examination was repeated about the hardenability improvement component replaced with Mn or Mo. As a result, the present inventors have newly found that the addition of a small amount of Al contained in the weld metal greatly affects the toughness of the weld metal. That is, since a microstructure of the weld metal becomes a microstructure mainly composed of lower bainite by adding a small amount of Al, toughness is improved.
[0011]
Further, it is necessary to regulate the weight ratio of CaO and TiO 2 in order to ensure good welding workability at high heat input. Based on this knowledge, it was the bond flux for submerged arc welding according to the present invention that determined each component within an appropriate range in consideration of the amount of oxygen in the weld metal or the entire welding workability.
[0012]
Hereinafter, the reason for limiting the components of the chemical components contained in the bond flux for submerged arc welding according to the present invention will be described.
[0013]
MgO: 20 to 35% by mass
MgO is a base component, an effective component for reducing the amount of oxygen in the weld metal, and also has an action as a viscosity modifier. When the content of MgO in the flux is less than 20 % by mass , the oxygen content of the weld metal is increased and the toughness is lowered, and bead meandering or undercut is likely to occur. On the other hand, when the content of MgO in the flux exceeds 35 % by mass , the slag is seized and the peelability is deteriorated, and pock marks are frequently generated. Therefore, the MgO amount is 20 to 35 % by mass .
[0014]
Al 2 O 3 : 5 to 15% by mass
Al 2 O 3 is a neutral component and is an effective component for adjusting the viscosity and solidification temperature of slag without lowering the basicity of slag. If the content of Al 2 O 3 in the flux is less than 5 % by mass, undercut is likely to occur. On the other hand, when the content of Al 2 O 3 in the flux exceeds 15 % by mass , the viscosity becomes too high and slag entrainment tends to occur, and the bead tends to be convex. Therefore, the Al 2 O 3 content is 5 to 15 % by mass .
[0015]
Iron powder: 10 to 30% by mass
In the case of single-sided submerged arc welding that requires a large amount of deposited metal at a time, iron powder is a component necessary to supplement the amount of deposited metal. If the content of the iron powder in the flux is less than 10 % by mass, the effect of supplementing the molten metal cannot be obtained. On the other hand, when the content of the iron powder in the flux exceeds 30 % by mass , the fluidity of the molten slag is inhibited, the bead width becomes unstable, and undercut is likely to occur. Therefore, the amount of iron powder is 10 to 30 % by mass .
[0016]
SiO 2 : 5 to 20% by mass
SiO 2 is an acidic component, and is an effective component for adjusting the viscosity and solidification temperature of slag. If the content of SiO 2 in the flux is less than 5 % by mass, the bead meanders because the viscosity of the slag becomes too low. On the other hand, when the content of SiO 2 in the flux exceeds 20 % by mass , the basicity of the flux decreases, the oxygen content of the weld metal increases, and the toughness decreases. Therefore, the amount of SiO 2 is 5 to 20 % by mass .
[0017]
CaF 2 : 3 to 10% by mass
CaF 2 is a basic component, and has an effect of reducing the amount of oxygen in the weld metal, and is an effective component for adjusting the fluidity of slag and promoting the reaction between slag and metal during welding. is there. When the content of CaF 2 in the flux is less than 3 % by mass, the amount of slag forming the weld slag is insufficient, so that the beads meander, the oxygen content of the weld metal increases, and the toughness decreases. On the other hand, when the content of CaF 2 in the flux exceeds 10 % by mass , the arc becomes unstable and arc breakage is likely to occur. Therefore, the CaF 2 amount is 3 to 10 % by mass . Preferably, the amount of CaF 2 is 4 to 9 % by mass .
[0018]
TiO 2 : 5 to 15% by mass
TiO 2 is an acidic component, and is an effective component for improving the toughness of the weld metal because it adjusts the fluidity of the slag and is reduced during melting to yield Ti in the weld metal. When the content of TiO 2 in the flux is less than 5 % by mass, the amount of Ti supplied into the weld metal is insufficient, and the toughness is lowered. On the other hand, when the content of TiO 2 in the flux exceeds 15 % by mass , the slag is seized and peeling is deteriorated. Therefore, the amount of TiO 2 is 5 to 15 % by mass .
[0019]
CaO: 3 to 10% by mass
CaO is a basic component, and is a component that is extremely effective in increasing the basicity of the flux and reducing the oxygen content of the weld metal. When the content of CaO in the flux is less than 3 % by mass , the oxygen content of the weld metal increases and the toughness decreases. On the other hand, when the content of CaO in the flux exceeds 10 % by mass , the slag is seized and the peelability is deteriorated. Therefore, the CaO amount is 3 to 10 % by mass .
[0020]
Metal carbonate (CO 2 equivalent): 2 to 8% by mass
CO 2 is an effective component for reducing the amount of nitrogen and the amount of diffusible oxyhydrogen in the weld metal. When the content of CO 2 in the flux is less than 2 % by mass, the amount of diffusible hydrogen in the weld metal increases, and low temperature cracking is likely to occur. On the other hand, if the content of CO 2 in the flux exceeds 8 % by mass, the amount of gas generated increases so that a pock mark is likely to be generated. Therefore, the amount of CO 2 is 2 to 8 % by mass . Note that the CO 2 component in the flux is added as a metal carbonate.
[0021]
Al: 0.5 to 3% by mass
Al is an effective component for increasing the toughness by making the microstructure of the weld metal fine. In particular, the yield effect is steadily exerted on the weld metal during high heat input welding. If the Al content in the flux is less than 0.5 % by mass , the hardenability at the time of high heat input welding is insufficient, and the toughness decreases. On the other hand, when the content of Al in the flux exceeds 3 % by mass , quenching becomes excessive, the strength is increased, and low temperature cracking is likely to occur. Therefore, the Al amount is 0.5 to 3 % by mass . Preferably, it is 0.5 to 2 % by mass . In addition to Al alone, Al can be added as Fe—Al or Al—Mg.
[0022]
Mn: 0.5 to 3% by mass
Mn is an effective component for improving hardenability and enhancing strength and toughness. When the content of Mn in the flux is less than 0.5 % by mass , the hardenability at the time of high heat input welding is insufficient, and the toughness is lowered. On the other hand, when the content of Mn in the flux exceeds 3 % by mass , the slag is seized and peeling is deteriorated. Therefore, the amount of Mn is 0.5 to 3 % by mass . Preferably, it is 0.5 to 2 % by mass . In addition, Mn can be added by Fe-Mn etc. other than Mn simple substance.
[0023]
Total amount of at least one or two selected from the group consisting of Si and Ti: 0.2 to 3% by mass
Both Si and Ti are effective components for suppressing the amount of oxygen in the weld metal. If the content of at least one or two selected from the group consisting of Si and Ti in the flux is less than 0.2 % by mass , the oxygen content of the weld metal increases and the toughness decreases. On the other hand, when the content of at least one or two selected from the group consisting of Si and Ti in the flux exceeds 3 % by mass , the slag is seized and peeling is deteriorated. Therefore, the total amount of at least one or two selected from the group consisting of Si and Ti is 0.2 to 3 % by mass . In addition, Si and Ti can be added with Fe-Si or Fe-Ti in addition to simple substance.
[0024]
B 2 O 3 : 0.1 to 2% by mass
B 2 O 3 is a component effective for improving the toughness of the weld metal by being reduced by welding heat and yielding in the weld metal as B (boron). If the content of B 2 O 3 in the flux is less than 0.1 % by mass, the yield of B in the weld metal is insufficient, and the toughness decreases. On the other hand, if the content of B 2 O 3 in the flux exceeds 2 % by mass, hot cracking is likely to occur due to the excessive presence of B in the weld metal. Therefore, the amount of B 2 O 3 is 0.1 to 2 % by mass .
[0025]
CaO / TiO 2 : 0.4 to 0.9
CaO / TiO 2 needs to be limited in order to ensure good welding workability at high heat input. When the content ratio CaO / TiO 2 of CaO and TiO 2 in the flux is less than 0.4, the arc becomes unstable and irregularities are likely to occur in the beads. On the other hand, if CaO / TiO 2 in the flux exceeds 0.9, the beads meander. Therefore, CaO / TiO 2 is set to 0.4 to 0.9.
[0026]
In addition to the above components, the flux may contain components such as Na 2 O, K 2 O, BaO, FeO, ZrO 2 and MnO, and the total content thereof is 5 % by mass or less. .
[0027]
【Example】
Hereinafter, examples of the bond flux for submerged arc welding according to the present invention will be specifically described in comparison with the comparative examples. FIG. 1 is a cross-sectional view showing a groove shape according to an embodiment of the present invention. FIG. 2 is a schematic diagram illustrating a submerged arc welding method according to an embodiment of the present invention.
[0028]
A slope is formed on the steel plate 1 having the chemical composition shown in Table 1, and the slopes of the steel plate 1 are faced to face each other to obtain a groove. In this case, the groove angle α is 50 °. Using the wire having the chemical composition shown in Table 2 and the flux shown in Tables 3 to 9, the backing material 2 is attached to the groove back surface with double-sided adhesive tape as shown in FIG. 2 under the welding conditions shown in Table 9. After that, the backing material 3 is attached to the backing material 2, the magnet 4 is attached to the back surface 1 a side of the steel plate 1 where the groove is not opened, and the screw portion 6 of the clamp 5 is operated to support the backing material to the steel plate 1. 2 is fixed. After the backing material 2 was fixed in this manner, welding was performed by the FAB method. The backing auxiliary material 3 may be an aluminum plate having a thickness of 3 to 4 mm, for example. After the end of welding, the amount of deposited oxygen was measured as the amount of oxygen in the weld metal, and the absorbed energy value and bead appearance of the weld metal at −60 ° C. were examined. The results are shown in Tables 10 to 12.
[0029]
[Table 1]
Figure 0003617605
[0030]
[Table 2]
Figure 0003617605
[0031]
[Table 3]
Figure 0003617605
[0032]
[Table 4]
Figure 0003617605
[0033]
[Table 5]
Figure 0003617605
[0034]
[Table 6]
Figure 0003617605
[0035]
[Table 7]
Figure 0003617605
[0036]
[Table 8]
Figure 0003617605
[0037]
[Table 9]
Figure 0003617605
[0038]
[Table 10]
Figure 0003617605
[0039]
[Table 11]
Figure 0003617605
[0040]
[Table 12]
Figure 0003617605
[0041]
As shown in Tables 10 to 12 above, Example Nos. In which the components and the content ratio of the flux in the flux are within the range of this example. 1 thru | or 14 became favorable about welding workability | operativity. There were no other problems.
[0042]
On the other hand, Comparative Example No. In No. 15, since the content of MgO in the flux was less than the lower limit of the range of the present invention, undercut occurred, the oxygen content in the weld metal increased, and the toughness decreased. Comparative Example No. In No. 16, since the content of MgO in the flux exceeded the upper limit of the range of the present invention, slag peeling deteriorated and a pock mark was generated.
[0043]
Comparative Example No. No. 17 was undercut because the content of Al 2 O 3 in the flux was less than the lower limit of the range of the present invention. Comparative Example No. In No. 18, since the content of Al 2 O 3 in the flux exceeded the upper limit of the range of the present invention, slag entrainment occurred and the bead became convex.
[0044]
Comparative Example No. In No. 19, since the content of the iron powder in the flux was less than the lower limit of the range of the present invention, the weld metal was insufficient, resulting in insufficient surplus. Comparative Example No. In No. 20, since the content of iron powder in the flux exceeded the upper limit of the range of the present invention, undercut occurred.
[0045]
Comparative Example No. In No. 21, the bead meandered because the content of SiO 2 in the flux was less than the lower limit of the range of the present invention. Comparative Example No. In No. 22, since the content of SiO 2 in the flux exceeded the upper limit of the range of the present invention, the amount of oxygen in the weld metal increased and the toughness decreased.
[0046]
Comparative Example No. In No. 23, the content of CaF 2 in the flux was less than the lower limit of the range of the present invention, so that the bead meandered, the amount of oxygen in the weld metal increased, and the toughness decreased. Comparative Example No. In No. 24, since the content of CaF 2 in the flux exceeded the upper limit of the range of the present invention, arc breakage occurred.
[0047]
Comparative Example No. No. 25, since the content of TiO 2 in the flux was less than the lower limit of the range of the present invention, Ti in the weld metal was insufficient and toughness was lowered. Comparative Example No. In No. 26, since the content of TiO 2 in the flux exceeds the upper limit of the range of the present invention, the slag was seized and deteriorated.
[0048]
Comparative Example No. In No. 27, since the content of CaO in the flux is less than the lower limit of the range of the present invention, the amount of oxygen in the weld metal increased and the toughness decreased. Comparative Example No. In No. 28, the content of CaO in the flux exceeds the upper limit of the range of the present invention, so that the slag was burned and peeled off.
[0049]
Comparative Example No. For No. 29, the content of CO 2 in the flux was less than the lower limit of the range of the present invention, so that the amount of diffusible hydrogen in the weld metal increased and cold cracking occurred. Comparative Example No. No. 30, a pock mark was generated because the content of CO 2 in the flux exceeded the upper limit of the range of the present invention.
[0050]
Comparative Example No. In No. 31, since the content of Al in the flux is less than the lower limit of the range of the present invention, the hardenability of the weld metal is insufficient and the toughness is lowered. Comparative Example No. In No. 32, since the content of Al in the flux exceeds the upper limit of the range of the present invention, the strength of the weld metal increased and the toughness decreased.
[0051]
Comparative Example No. In No. 33, the content of Mn in the flux was less than the lower limit of the range of the present invention, so that the hardenability of the weld metal was insufficient and the toughness was lowered. Comparative Example No. In No. 34, since the Mn content in the flux exceeded the upper limit of the range of the present invention, the slag was seized and the peeling deteriorated.
[0052]
Comparative Example No. In No. 35, since the total amount of Si and / or Ti in the flux is less than the lower limit of the range of the present invention, the amount of oxygen in the weld metal increased and the toughness decreased. Comparative Example No. In No. 36, since the total amount of Si and / or Ti in the flux exceeded the upper limit of the range of the present invention, the slag was seized and the peeling deteriorated.
[0053]
Comparative Example No. In No. 37, since the content of B 2 O 3 in the flux was less than the lower limit of the range of the present invention, boron in the weld metal was insufficient and toughness was lowered. Comparative Example No. In No. 38, since the content of B 2 O 3 in the flux exceeds the upper limit of the range of the present invention, hot cracking due to boron in the weld metal occurred.
[0054]
Comparative Example No. In No. 39, since the CaO / TiO 2 in the flux was less than the lower limit of the range of the present invention, the beads became uneven. Comparative Example No. No. 40 was meandered because the CaO / TiO 2 in the flux exceeded the upper limit of the range of the present invention.
[0055]
【The invention's effect】
As described above in detail, according to the present invention, the oxide content and the content ratio in the flux in the bond flux for submerged arc welding are appropriately regulated. A weld metal having good toughness can be obtained even at a low temperature of about -60 ° C to -60 ° C.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a groove shape of submerged arc welding according to an embodiment of the present invention.
FIG. 2 is a schematic view showing a submerged arc welding method according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1; Steel plate 2; Backing material 3; Backing auxiliary material 4; Magnet 5; Clamp 6; Screw part t;

Claims (1)

MgOを20乃至35質量%、Al23を5乃至15質量%、鉄粉を10乃至30質量%、SiO2を5乃至20質量%、CaF2を3乃至10質量%、TiO2を5乃至15質量%、CaOを3乃至10質量%、CO2を2乃至8質量%、Alを0.5乃至3質量%、Mnを0.5乃至3質量%、Si及びTiの双方を総量で0.2乃至3質量%、B23を0.1乃至2質量%、Na O、K O、BaO、FeO、ZrO 及びMnOを総量で5重量%以下含有し、残部が不可避的不純物からなり、前記CaOとTiO2との重量比CaO/TiO2が0.4乃至0.9であることを特徴とするサブマージアーク溶接用ボンドフラックス。MgO 20 to 35 wt%, the Al 2 O 3 5 to 15 wt%, the iron powder 10 to 30 wt%, a SiO 2 5 to 20 wt%, the CaF 2 3 to 10 wt%, the TiO 2 5 To 15 mass% , CaO 3 to 10 mass% , CO 2 2 to 8 mass% , Al 0.5 to 3 mass% , Mn 0.5 to 3 mass% , and both Si and Ti in total amount 0.2 to 3 % by mass , 0.1 to 2 % by mass of B 2 O 3 , Na 2 O, K 2 O, BaO, FeO, ZrO 2 and MnO are contained in a total amount of 5% by weight or less, and the remainder is inevitable. manner consists impurities, the CaO and submerged arc welding bonded flux weight ratio CaO / TiO 2 with TiO 2 is characterized in that it is a 0.4 to 0.9.
JP27922798A 1998-10-01 1998-10-01 Bond flux for submerged arc welding Expired - Lifetime JP3617605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27922798A JP3617605B2 (en) 1998-10-01 1998-10-01 Bond flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27922798A JP3617605B2 (en) 1998-10-01 1998-10-01 Bond flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JP2000107885A JP2000107885A (en) 2000-04-18
JP3617605B2 true JP3617605B2 (en) 2005-02-09

Family

ID=17608213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27922798A Expired - Lifetime JP3617605B2 (en) 1998-10-01 1998-10-01 Bond flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JP3617605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101623802B (en) * 2008-07-08 2012-11-07 株式会社神户制钢所 Flux-cored wire
KR101568538B1 (en) * 2013-12-24 2015-11-11 주식회사 포스코 Material for submerged arc welding

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462037B1 (en) * 2000-07-10 2004-12-16 현대종합금속 주식회사 Flux for using butt submerged arc welding
KR100505920B1 (en) * 2000-12-15 2005-08-04 현대종합금속 주식회사 Submerged arc welding Flux for Zinc primer plate
JP3765761B2 (en) * 2002-02-08 2006-04-12 株式会社神戸製鋼所 Bond flux for submerged arc welding
KR100466204B1 (en) * 2002-11-26 2005-01-13 고려용접봉 주식회사 A flux composition for submerged arc welding
KR100466205B1 (en) * 2002-11-26 2005-01-13 고려용접봉 주식회사 A flux composition for submerged arc welding
KR100671068B1 (en) 2005-09-29 2007-01-19 고려용접봉 주식회사 570mpa grade agglomerated flux with high impact-value for submerged arc welding
JP4993933B2 (en) * 2006-03-30 2012-08-08 株式会社神戸製鋼所 Backing flux for single-sided submerged arc welding
US8153934B2 (en) 2006-09-15 2012-04-10 Lincoln Global, Inc. Saw flux system for improved as-cast weld metal toughness
JP5792050B2 (en) * 2011-01-31 2015-10-07 株式会社神戸製鋼所 Submerged arc welding method for low temperature steel
JP5766500B2 (en) * 2011-05-06 2015-08-19 株式会社神戸製鋼所 Submerged arc welding material and submerged arc welding method
JP5874068B2 (en) * 2012-01-27 2016-03-01 株式会社神戸製鋼所 Flux for single-sided submerged arc welding
JP2013154363A (en) * 2012-01-27 2013-08-15 Kobe Steel Ltd Flux for one side submerged arc welding
JP6071798B2 (en) * 2013-08-07 2017-02-01 株式会社神戸製鋼所 Flux for single-sided submerged arc welding
JP6152316B2 (en) * 2013-08-07 2017-06-21 株式会社神戸製鋼所 Flux for single-sided submerged arc welding
JP6071797B2 (en) * 2013-08-07 2017-02-01 株式会社神戸製鋼所 Flux for single-sided submerged arc welding
JP6104146B2 (en) * 2013-12-13 2017-03-29 株式会社神戸製鋼所 Submerged arc welding flux and manufacturing method thereof
CN114850724B (en) * 2022-06-17 2023-06-23 中国船舶重工集团公司第七二五研究所 High-alkalinity sintered flux for submerged arc welding of austenitic low-temperature steel and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101623802B (en) * 2008-07-08 2012-11-07 株式会社神户制钢所 Flux-cored wire
KR101568538B1 (en) * 2013-12-24 2015-11-11 주식회사 포스코 Material for submerged arc welding

Also Published As

Publication number Publication date
JP2000107885A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP3617605B2 (en) Bond flux for submerged arc welding
JP5766500B2 (en) Submerged arc welding material and submerged arc welding method
US3745294A (en) Method of submerged arc welding high tensile strength steel having trace elements of vanadium or niobium
US4017339A (en) Flux for use in submerged arc welding of steel
CN108480875B (en) Welding wire powder, flux-cored wire, preparation and application
CN103008923A (en) Low-hydrogen basic welding rod for welding 1Ni9 steel and preparation method thereof
JPS6313694A (en) Baked flux for submerged arc welding
KR100706026B1 (en) High speed submerged arc welding flux
JP3787104B2 (en) Flux-cored wire for gas shielded arc welding
CN103302416B (en) Flux-cored wire for gas-shielded arc welding
JP3686545B2 (en) A groove filler for simple single-sided submerged arc welding and a welding method using the same.
JP2020131221A (en) Baked flux for submerged arc welding for high-strength steel
JPH11170085A (en) Bond flux for submerged arc welding and submerged arc welding method using the same
CN107127478A (en) A kind of flux-cored wire
JP3552375B2 (en) Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
GB2084501A (en) Method for submerged-arc welding a very low carbon steel
CN103433649B (en) Welding rod for welding 1Ni9 steel and preparation method thereof
JP3620383B2 (en) Firing-type flux for submerged arc welding, manufacturing method thereof, and submerged arc fillet welding method
WO2006126519A1 (en) Fused flux for submerged arc welding
JPS6171196A (en) Submerged arc welding method of low cr-mo alloy steel
CN105127610B (en) A kind of alkaline welding backing material
JP3458452B2 (en) High heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
JP4522042B2 (en) Steel with excellent high-pass temperature weldability and its welded joint
JP3550770B2 (en) Flux for sub-mark welding
KR101340448B1 (en) Agglomerated flux for submerged arc welding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

EXPY Cancellation because of completion of term