JP3617506B2 - Thermoelectric module and manufacturing method thereof - Google Patents

Thermoelectric module and manufacturing method thereof Download PDF

Info

Publication number
JP3617506B2
JP3617506B2 JP2002165497A JP2002165497A JP3617506B2 JP 3617506 B2 JP3617506 B2 JP 3617506B2 JP 2002165497 A JP2002165497 A JP 2002165497A JP 2002165497 A JP2002165497 A JP 2002165497A JP 3617506 B2 JP3617506 B2 JP 3617506B2
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric module
plating film
electroless plating
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002165497A
Other languages
Japanese (ja)
Other versions
JP2004014766A (en
Inventor
康敬 中村
秀寿 安竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2002165497A priority Critical patent/JP3617506B2/en
Publication of JP2004014766A publication Critical patent/JP2004014766A/en
Application granted granted Critical
Publication of JP3617506B2 publication Critical patent/JP3617506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の熱電素子を複数の上部電極及び複数の下部電極により、直列又は並列に接続した熱電モジュール及びその製造方法に関する。
【0002】
【従来の技術】
図4は、従来の熱電モジュール10を示す図である。上基板12と下基板13との間に、複数個のP型及びN型の熱電素子11が、一方向について交互に配置されている。上基板12の下面には複数個の上部電極14が形成されており、下基板13の上面には複数個の下部電極16が形成されている。そして、1個の下部電極16上にP型の熱電素子11とN型の熱電素子11とが配置され、一の下部電極16上のP型熱電素子11と、前記一の下部電極16に隣接する下部電極16上に配置された隣接するN型熱電素子11とを、その上部で、1個の上部電極14により接続するというような態様で、各熱電素子11と上部電極14及び下部電極16とを配置し、各熱電素子11と上部電極14及び下部電極16とを夫々はんだ15,17により接合して、熱電モジュール10が組み立てられている。これにより、P型及びN型の熱電素子が、上部電極14及び下部電極16により交互に直列に接続されている。
【0003】
このP型及びN型の熱電素子が交互に直列に接続された熱電モジュールに、電流を流すと、異種金属の接続部でペルチェ効果により発熱又は吸熱が生じ、例えば、上基板12が発熱側、下基板13吸熱側となる熱電モジュールが構成される。
【0004】
熱電素子11の電極との接合端面には、はんだ15,17が熱電素子11に拡散してしまうことを防止し、長時間の使用による熱電素子の劣化を防止すると共に、熱電素子のはんだ付け性を向上させるために、ニッケル合金メッキ膜が形成されている。このニッケル合金メッキ膜は、一般的に、Ni−P系合金又はNi−B系合金を無電解メッキすることにより、形成されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述の従来の熱電モジュールにおいては、はんだの拡散を防止するために、Ni−P系又はNi−B系合金の無電解メッキ膜が熱電素子と電極との間に形成されており、この無電解メッキ膜の抵抗率が高いために、各熱電素子に通電した場合に、このメッキ膜において、抵抗発熱が生じ、吸熱側でも発熱する結果、熱電モジュールとしての性能が熱電素子の材料の物性から決まる理論値よりも低下してしまうという問題点がある。また、無電解メッキ膜の抵抗率が高いために、熱電素子の直列接続体に通電した場合に、所定の電圧を直列接続体の端部の電極間に印加しても、無電解メッキ膜における電圧降下により、各熱電素子に印加する電位差が低くなり、その結果各熱電素子に通電する電流の効率が低下する。これらの要因により、従来の熱電モジュールは得られる熱電特性が低いという問題点がある。
【0006】
本発明はかかる問題点に鑑みてなされたものであって、熱電素子の電極接合端面の電気抵抗が低く、電流効率が高い熱電モジュール及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本願第1発明に係る熱電モジュールの製造方法は、複数の熱電素子を複数の上部電極及び複数の下部電極により、直列又は並列に接続した熱電モジュールの製造方法において、pHが5乃至6で温度が80乃至90℃である無電解メッキ液中に浸漬して、熱電素子の前記上部電極又は前記下部電極に接合される端面にリン又はボロンを含有するニッケル無電解メッキ膜を形成する工程と、前記ニッケル無電解メッキ膜と前記上部電極又は前記下部電極とをはんだにより接合する工程と、を有することを特徴とする。前記メッキ液の主成分は、例えば、次亜リン酸ナトリウム及び硫酸ニッケル、又は、ジメチルアミンボロン及び硫酸ニッケルである。本願第2発明に係る熱電モジュールは、複数の熱電素子を複数の上部電極及び複数の下部電極により、直列又は並列に接続した熱電モジュールにおいて、請求項1乃至3のいずれか1項に記載の熱電モジュールの製造方法により得られ、前記熱電素子の前記上部電極又は前記下部電極に接合される端面に形成されているニッケル無電解メッキ膜の抵抗率が10乃至60μΩ・cmであることを特徴とする。
【0008】
この熱電モジュールにおいて、前記ニッケル無電解メッキ膜は、例えば、リン含有ニッケル系合金又はボロン含有ニッケル系合金である。また、前記ニッケル無電解メッキ膜は、温度が80乃至90℃、塩基度pHが5乃至6のニッケル無電解メッキ溶液中で形成することが好ましい。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について添付の図面を参照して具体的に説明する。図1は本発明の実施の形態に係る熱電モジュール1の熱電素子の部分を拡大して示す。なお、熱電モジュールの構造自体は、図4等に示す従来の熱電モジュールと同様である。即ち、この熱電モジュール1は、上基板6aと下基板6bとの間に、熱電素子3を挟んで構成されている。上基板6aの下面には、上部電極2aが形成されており、下基板6bの上面には、下部電極2bが形成されている。そして、1個の上部電極2a及び1個の下部電極2bに対して夫々2個の熱電素子3(P型熱電素子とN型熱電素子)が配置される。この熱電素子3と上部電極2a及び下部電極2bとの配置態様は、例えば、図4と同様に、各熱電素子3がP型とN型とが交互に直列に接続されるように配置される。
【0010】
そして、各熱電素子3の電極接合端面には、夫々Niメッキ膜5a、5bが形成されており、このメッキ膜5a、5bと夫々上部電極2a及び下部電極2bとの間は、夫々はんだ4a、4bにより接合されている。このメッキ膜5a、5bは、熱電モジュールの組み立て時又は使用時に、はんだ4a、4bの成分が熱電素子3に拡散してしまうことを防止すると共に、熱電素子3のはんだ付け性を向上させるものである。
【0011】
熱電素子3の構成材料としては、例えば、Bi−Te系(ビスマス−テルル系)、Bi−Te−Sb(ビスマス−テルル−アンチモン系)等がある。また、上基板6a、下基板6bは、セラミックス基板等の絶縁性基板を使用することができる。このセラミックス基板としては、アルミナ(Al)又は窒化アルミニウム(AlN)等がある。更に、はんだ4a、4bとしては、SnSb又はSnPb等がある。
【0012】
而して、本実施形態においては、Niメッキ膜5a、5bは、Niの無電解メッキにより形成されたものである。そして、このメッキ膜5a、5bの抵抗率は10乃至60μΩ・cmである。従来のNiメッキ膜は抵抗率が70乃至100μΩ・cmであったために、このNiメッキ膜を含む接合部における抵抗発熱が大きく、熱電特性を劣化させていたが、本発明においては、このメッキ膜5a、5bにおける抵抗率が10乃至60μΩ・cmであるので、このメッキ膜5a、5bを含む接合部における抵抗発熱の影響を回避することができる。
【0013】
このような低抵抗率の無電解メッキ膜5a、5bは、Ni無電解メッキ液の温度及びpHを適切に設定することにより、形成することができる。この熱電素子3の接合端面にNi無電解メッキ膜5a、5bを形成する場合は、先ず、熱電素子3をアルカリ溶液により脱脂し、水洗した後、例えば、10%塩酸水溶液により酸洗する。その後、水洗し、熱電素子3の表面に、触媒として、塩化スズ又は塩化パラジウムの希塩酸溶液を交互に付着させる。その後、水洗し、ニッケル無電解メッキ液中に浸漬して、Niメッキ処理する。このNi無電解メッキ液は、例えば、リン含有ニッケル系合金の場合は、硫酸ニッケルと次亜リン酸ナトリウムを主成分とするものであり、ボロン含有ニッケル系合金の場合は、硫酸ニッケルと、ジメチルアミンボランを主成分とするものである。この場合に、従来は、メッキ液の温度が70〜80℃、塩基度pHが4〜5の条件であり、この条件でメッキ処理して得られたメッキ膜の抵抗率が70〜100μΩ・cmであったところ、本実施形態では、従来より高温度及び高pHの処理条件、即ち、温度が80〜90℃、塩基度pHが5〜6の条件で、Niを無電解メッキする。このように、メッキ液の温度及び塩基度pHを調節することにより、得られるメッキ膜の抵抗率を10〜60μΩ・cmにすることができる。
【0014】
次に、このNi無電解メッキ膜の抵抗率の測定方法について説明する。ガラス基板上に、メッキの核となるNi膜をスパッタリングにより厚さ0.1μm程度で成膜する。その後、Ni無電解メッキにより前記Ni膜上にNi無電解メッキ膜を形成する。このNi無電解メッキ膜の厚さは4μm程度である。そして、このNi無電解メッキ膜の抵抗率を4端子法により測定する。これにより、そのNi無電解メッキ処理条件(メッキ液の温度及び塩基度pH等)におけるメッキ膜の抵抗率が求まる。
【0015】
そこで、熱電素子のメッキに際しては、上述のようにして求めた抵抗率が10〜60μΩ・cmとなるメッキ条件で、Niを無電解メッキする。これにより、所望の抵抗率の無電解メッキ膜5a、5bを熱電素子3の接合端面に形成することができる。
【0016】
なお、純Niの場合は抵抗率が最も低いが、純Niを無電解メッキにより形成することができない。Ni膜を無電解メッキにより形成しようとすると、P及びB等の不純物又は成分が入ってきてしまう。この不純物として混入するP及びBが多いと、従来のように、抵抗率が70μΩ・cmを超えてしまう。しかし、本発明のような条件で無電解メッキすることにより、抵抗率が10〜60μΩ・cmのNi無電解メッキ膜を形成することができる。
【0017】
図2は、横軸に熱電素子の接合端面に形成されたNi無電解メッキ膜の抵抗率(μΩ・cm)をとり、縦軸にこの熱電素子を組み込んだ熱電モジュールのΔTmaxをとって、両者の関係を示すグラフ図である。○はリン含有ニッケル系(Ni−P系)のNiメッキ膜を形成した場合、■はボロン含有ニッケル系(Ni−B系)のNiメッキ膜を形成した場合のものである。メッキ膜の厚さは双方とも4μmである。なお、ΔTmaxの測定に際しては、熱電モジュールへの通電により発生した温度差が最大になるように電流を通電した。但し、熱電モジュールの低温側の端部は27±0.1℃に保持した。また、この熱電モジュールの大きさは、幅が6mm、長さが10.2mm、厚さが1.65mmであり、アルミナ基板上に29対の熱電素子を配置したものである。この熱電素子の大きさは、1辺長が0.64mmの断面正方形であり、厚さ(高さ)が0.8mmである。
【0018】
この図2に示すように、抵抗率が60μΩ・cm以下の場合に、ΔTmaxが70.0K以上となり、極めて優れた熱電特性を示している。これに対し、従来のように、抵抗率が70μΩ・cm以上では、70.0K以上のΔTmaxは得られない。
【0019】
なお、図3は横軸にNiメッキ膜の厚さをとり、縦軸にΔTmaxをとって、両者の関係を示すグラフ図である。メッキ膜はNi−P系メッキ膜であり、メッキ膜の抵抗率は、膜厚が4μmのときに30μΩ・cmであるものと、同様に膜厚が4μmのときに85μΩ・cmであるものと、2種類の熱電素子を用意した。メッキ処理条件は、抵抗率が30μΩ・cmの4個のデータについて同一であり、また抵抗率が85μΩ・cmの4kのデータについても同一である。そして、この熱電素子を組み込んだ熱電モジュールについて、ΔTmaxを測定した。なお、熱電モジュール及び熱電素子の大きさ等は図2の場合と同一である。
【0020】
この図3に示すように、抵抗率が30及び85μΩ・cmのいずれの場合も、Niメッキ膜の厚さによらず、ΔTmaxはほぼ一定であった。このように、ΔTmaxに対するNiメッキ膜の厚さによる依存性が認められない(メッキ膜厚が最も薄い場合に、ΔTmaxが若干高い)のは、熱電特性に対し、メッキ膜自体の抵抗よりも、熱電素子とメッキ膜との間の界面抵抗及びメッキ膜とはんだとの間の界面抵抗の方が影響が大きいためと考えられる。なお、四端子法により測定した抵抗率にも、結果として、界面抵抗の影響が含まれる。
【0021】
以上のように、Ni無電解メッキ膜と熱電素子及びはんだとの間の界面抵抗を低減した結果、本実施形態の熱電モジュールは、ΔTmaxを高めることができ、熱電特性を向上させることができる。
【0022】
【発明の効果】
以上詳述したように、本発明の熱電モジュールによれば、熱電素子の接合端面にはんだの拡散を防止すると共にはんだ付け性を向上させるために形成されるNi無電解メッキ膜の抵抗率に着目し、この抵抗率を低く抑制することにより、熱電特性を向上させることができたものであり、熱電特性、特に、ΔTmaxの向上に著しい効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施形態の熱電モジュールにおける熱電素子の部分を示す図である。
【図2】抵抗率とΔTmaxとの関係を示すグラフ図である。
【図3】Niメッキ膜の厚さと、ΔTmaxとの関係を示すグラフ図である。
【図4】従来の熱電モジュールの構造を示す図である。
【符号の説明】
1、10:熱電モジュール、2a、2b、14,16:電極、3、11:熱電素子、4a、4b、15,17:はんだ、5a、5b:Ni無電解メッキ膜、10:熱電モジュール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoelectric module in which a plurality of thermoelectric elements are connected in series or in parallel by a plurality of upper electrodes and a plurality of lower electrodes, and a method for manufacturing the same .
[0002]
[Prior art]
FIG. 4 is a diagram showing a conventional thermoelectric module 10. A plurality of P-type and N-type thermoelectric elements 11 are alternately arranged in one direction between the upper substrate 12 and the lower substrate 13. A plurality of upper electrodes 14 are formed on the lower surface of the upper substrate 12, and a plurality of lower electrodes 16 are formed on the upper surface of the lower substrate 13. A P-type thermoelectric element 11 and an N-type thermoelectric element 11 are arranged on one lower electrode 16, and are adjacent to the P-type thermoelectric element 11 on one lower electrode 16 and the one lower electrode 16. Each of the thermoelectric elements 11, the upper electrode 14, and the lower electrode 16 is connected to the adjacent N-type thermoelectric element 11 disposed on the lower electrode 16, by the upper electrode 14. The thermoelectric module 10 is assembled by joining the thermoelectric elements 11 to the upper electrode 14 and the lower electrode 16 with solders 15 and 17, respectively. Thus, P-type and N-type thermoelectric elements are alternately connected in series by the upper electrode 14 and the lower electrode 16.
[0003]
When a current is passed through the thermoelectric module in which the P-type and N-type thermoelectric elements are alternately connected in series, heat is generated or absorbed by the Peltier effect at the dissimilar metal connection portion. A thermoelectric module serving as the heat absorption side of the lower substrate 13 is configured.
[0004]
The solder 15 and 17 are prevented from diffusing into the thermoelectric element 11 on the joint end face with the electrode of the thermoelectric element 11, and the thermoelectric element is prevented from being deteriorated by long-time use. In order to improve the above, a nickel alloy plating film is formed. This nickel alloy plating film is generally formed by electroless plating a Ni-P alloy or a Ni-B alloy.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional thermoelectric module, in order to prevent the diffusion of solder, an electroless plating film of Ni-P or Ni-B alloy is formed between the thermoelectric element and the electrode. Because of the high resistivity of the electroless plating film, when each thermoelectric element is energized, resistance heat is generated in this plating film and the heat absorption side also generates heat. As a result, the performance as a thermoelectric module is the physical property of the thermoelectric element material. There is a problem that it falls below the theoretical value determined from Moreover, since the resistivity of the electroless plating film is high, even when a predetermined voltage is applied between the electrodes at the end of the series connection body when the series connection body of the thermoelectric element is energized, Due to the voltage drop, the potential difference applied to each thermoelectric element becomes low, and as a result, the efficiency of the current flowing through each thermoelectric element decreases. Due to these factors, the conventional thermoelectric module has a problem that the obtained thermoelectric characteristics are low.
[0006]
This invention is made | formed in view of this problem, Comprising: It aims at providing the thermoelectric module with low electrical resistance of the electrode junction end surface of a thermoelectric element, and high current efficiency, and its manufacturing method .
[0007]
[Means for Solving the Problems]
The method for manufacturing a thermoelectric module according to the first invention of the present application is a method for manufacturing a thermoelectric module in which a plurality of thermoelectric elements are connected in series or in parallel by a plurality of upper electrodes and a plurality of lower electrodes, and the temperature is 5 to 6 and the temperature is 5 to 6. Immersing in an electroless plating solution at 80 to 90 ° C. to form a nickel electroless plating film containing phosphorus or boron on the end face joined to the upper electrode or the lower electrode of the thermoelectric element; And a step of joining the nickel electroless plating film and the upper electrode or the lower electrode with solder. The main component of the plating solution is, for example, sodium hypophosphite and nickel sulfate, or a dimethylamine boron and nickel sulfate. The thermoelectric module according to the second invention of the present application is the thermoelectric module according to any one of claims 1 to 3, wherein a plurality of thermoelectric elements are connected in series or in parallel by a plurality of upper electrodes and a plurality of lower electrodes. The resistivity of the nickel electroless plating film obtained by the module manufacturing method and formed on the end face joined to the upper electrode or the lower electrode of the thermoelectric element is 10 to 60 μΩ · cm. .
[0008]
In this thermoelectric module, the nickel electroless plating film is, for example, a phosphorus-containing nickel-based alloy or a boron-containing nickel-based alloy. The nickel electroless plating film is preferably formed in a nickel electroless plating solution having a temperature of 80 to 90 ° C. and a basicity pH of 5 to 6.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 shows an enlarged portion of a thermoelectric element of a thermoelectric module 1 according to an embodiment of the present invention. The structure of the thermoelectric module itself is the same as that of the conventional thermoelectric module shown in FIG. That is, the thermoelectric module 1 is configured by sandwiching the thermoelectric element 3 between the upper substrate 6a and the lower substrate 6b. An upper electrode 2a is formed on the lower surface of the upper substrate 6a, and a lower electrode 2b is formed on the upper surface of the lower substrate 6b. Then, two thermoelectric elements 3 (P-type thermoelectric element and N-type thermoelectric element) are arranged for one upper electrode 2a and one lower electrode 2b, respectively. The arrangement of the thermoelectric element 3 and the upper electrode 2a and the lower electrode 2b is, for example, arranged so that the thermoelectric elements 3 are alternately connected in series with the P-type and the N-type, as in FIG. .
[0010]
Ni plating films 5a and 5b are formed on the electrode joint end faces of the thermoelectric elements 3, respectively. Between the plating films 5a and 5b and the upper electrode 2a and the lower electrode 2b, respectively, solder 4a, Joined by 4b. The plated films 5a and 5b prevent the components of the solder 4a and 4b from diffusing into the thermoelectric element 3 when the thermoelectric module is assembled or used, and improve the solderability of the thermoelectric element 3. is there.
[0011]
Examples of the constituent material of the thermoelectric element 3 include Bi-Te (bismuth-tellurium), Bi-Te-Sb (bismuth-tellurium-antimony). Further, an insulating substrate such as a ceramic substrate can be used as the upper substrate 6a and the lower substrate 6b. Examples of the ceramic substrate include alumina (Al 2 O 3 ) and aluminum nitride (AlN). Furthermore, examples of the solder 4a and 4b include SnSb and SnPb.
[0012]
Thus, in the present embodiment, the Ni plating films 5a and 5b are formed by electroless plating of Ni. The resistivity of the plating films 5a and 5b is 10 to 60 μΩ · cm. Since the conventional Ni plating film has a resistivity of 70 to 100 μΩ · cm , the resistance heat generation at the joint portion including the Ni plating film is large and the thermoelectric characteristics are deteriorated. Since the resistivity at 5a and 5b is 10 to 60 μΩ · cm, it is possible to avoid the influence of resistance heat generation at the joint including the plated films 5a and 5b.
[0013]
Such low resistivity electroless plating films 5a and 5b can be formed by appropriately setting the temperature and pH of the Ni electroless plating solution. When forming the Ni electroless plating films 5a and 5b on the joining end face of the thermoelectric element 3, first, the thermoelectric element 3 is degreased with an alkaline solution, washed with water, and then pickled with, for example, a 10% hydrochloric acid aqueous solution. Thereafter, it is washed with water, and a dilute hydrochloric acid solution of tin chloride or palladium chloride is alternately attached to the surface of the thermoelectric element 3 as a catalyst. Thereafter, the substrate is washed with water and immersed in a nickel electroless plating solution to perform Ni plating. For example, in the case of a phosphorus-containing nickel-based alloy, this Ni electroless plating solution is mainly composed of nickel sulfate and sodium hypophosphite. In the case of a boron-containing nickel-based alloy, nickel sulfate and dimethyl The main component is amine borane. In this case, conventionally, the temperature of the plating solution is 70 to 80 ° C. and the basicity pH is 4 to 5, and the resistivity of the plating film obtained by plating under these conditions is 70 to 100 μΩ · cm. However, in this embodiment, Ni is electrolessly plated under higher temperature and higher pH treatment conditions than before, that is, under conditions of a temperature of 80 to 90 ° C. and a basicity pH of 5 to 6. Thus, by adjusting the temperature and basicity pH of the plating solution, the resistivity of the obtained plating film can be made 10 to 60 μΩ · cm.
[0014]
Next, a method for measuring the resistivity of the Ni electroless plating film will be described. On the glass substrate, a Ni film serving as a plating nucleus is formed by sputtering to a thickness of about 0.1 μm. Thereafter, a Ni electroless plating film is formed on the Ni film by Ni electroless plating. The thickness of this Ni electroless plating film is about 4 μm. Then, the resistivity of the Ni electroless plating film is measured by a four-terminal method. Thereby, the resistivity of the plating film in the Ni electroless plating process conditions (the temperature of the plating solution, the basicity pH, etc.) is obtained.
[0015]
Therefore, in plating the thermoelectric element, Ni is electrolessly plated under a plating condition in which the resistivity obtained as described above is 10 to 60 μΩ · cm. Thereby, the electroless plating films 5 a and 5 b having a desired resistivity can be formed on the joining end face of the thermoelectric element 3.
[0016]
In the case of pure Ni, the resistivity is the lowest, but pure Ni cannot be formed by electroless plating. If an Ni film is formed by electroless plating, impurities or components such as P and B will enter. When a large amount of P and B are mixed as impurities, the resistivity exceeds 70 μΩ · cm as in the conventional case. However, by electroless plating under the conditions of the present invention, a Ni electroless plating film having a resistivity of 10 to 60 μΩ · cm can be formed.
[0017]
In FIG. 2, the horizontal axis represents the resistivity (μΩ · cm) of the Ni electroless plating film formed on the joining end face of the thermoelectric element, and the vertical axis represents ΔTmax of the thermoelectric module incorporating the thermoelectric element. It is a graph which shows the relationship. The symbol ○ indicates a case where a phosphorus-containing nickel-based (Ni-P-based) Ni plating film is formed, and the symbol ■ indicates a case where a boron-containing nickel-based (Ni-B-based) Ni plating film is formed. Both of the plating films have a thickness of 4 μm. In measuring ΔTmax, an electric current was applied so that the temperature difference generated by energizing the thermoelectric module was maximized. However, the end of the thermoelectric module on the low temperature side was kept at 27 ± 0.1 ° C. The thermoelectric module has a width of 6 mm, a length of 10.2 mm, and a thickness of 1.65 mm, and 29 pairs of thermoelectric elements are arranged on an alumina substrate. The thermoelectric element has a square shape with a side length of 0.64 mm and a thickness (height) of 0.8 mm.
[0018]
As shown in FIG. 2, when the resistivity is 60 μΩ · cm or less, ΔTmax is 70.0 K or more, indicating extremely excellent thermoelectric characteristics. On the other hand, when the resistivity is 70 μΩ · cm or more as in the prior art, ΔTmax of 70.0 K or more cannot be obtained.
[0019]
FIG. 3 is a graph showing the relationship between the thickness of the Ni plating film on the horizontal axis and ΔTmax on the vertical axis. The plating film is a Ni-P plating film, and the resistivity of the plating film is 30 μΩ · cm when the film thickness is 4 μm, and similarly, the resistivity is 85 μΩ · cm when the film thickness is 4 μm. Two types of thermoelectric elements were prepared. The plating process conditions are the same for the four data having a resistivity of 30 μΩ · cm, and the same for the 4 k data having a resistivity of 85 μΩ · cm. And (DELTA) Tmax was measured about the thermoelectric module incorporating this thermoelectric element. The sizes of the thermoelectric module and the thermoelectric element are the same as those in FIG.
[0020]
As shown in FIG. 3, ΔTmax was substantially constant regardless of the thickness of the Ni plating film, regardless of whether the resistivity was 30 or 85 μΩ · cm. As described above, the dependency of ΔTmax on the thickness of the Ni plating film is not recognized (when the plating film thickness is the smallest, ΔTmax is slightly higher) than the resistance of the plating film itself with respect to the thermoelectric characteristics. This is probably because the interface resistance between the thermoelectric element and the plating film and the interface resistance between the plating film and the solder are more influential. Note that the resistivity measured by the four probe method also includes the influence of the interface resistance as a result.
[0021]
As described above, as a result of reducing the interface resistance between the Ni electroless plating film, the thermoelectric element, and the solder, the thermoelectric module of the present embodiment can increase ΔTmax and improve the thermoelectric characteristics.
[0022]
【The invention's effect】
As described in detail above, according to the thermoelectric module of the present invention, attention is paid to the resistivity of the Ni electroless plating film formed in order to prevent solder diffusion and improve solderability on the joining end face of the thermoelectric element. However, by suppressing the resistivity low, the thermoelectric characteristics can be improved, and the thermoelectric characteristics, in particular, ΔTmax is significantly improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a portion of a thermoelectric element in a thermoelectric module according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between resistivity and ΔTmax.
FIG. 3 is a graph showing the relationship between the thickness of a Ni plating film and ΔTmax.
FIG. 4 is a diagram showing a structure of a conventional thermoelectric module.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 10: Thermoelectric module, 2a, 2b, 14, 16: Electrode, 3, 11: Thermoelectric element, 4a, 4b, 15, 17: Solder, 5a, 5b: Ni electroless plating film, 10: Thermoelectric module

Claims (4)

複数の熱電素子を複数の上部電極及び複数の下部電極により、直列又は並列に接続した熱電モジュールの製造方法において、pHが5乃至6で温度が80乃至90℃である無電解メッキ液中に浸漬して、熱電素子の前記上部電極又は前記下部電極に接合される端面にリン又はボロンを含有するニッケル無電解メッキ膜を形成する工程と、前記ニッケル無電解メッキ膜と前記上部電極又は前記下部電極を夫々はんだにより接合する工程と、を有することを特徴とする熱電モジュールの製造方法。In a method for manufacturing a thermoelectric module in which a plurality of thermoelectric elements are connected in series or in parallel by a plurality of upper electrodes and a plurality of lower electrodes, the thermoelectric module is immersed in an electroless plating solution having a pH of 5 to 6 and a temperature of 80 to 90 ° C. Forming a nickel electroless plating film containing phosphorus or boron on an end face joined to the upper electrode or the lower electrode of the thermoelectric element; and the nickel electroless plating film and the upper electrode or the lower electrode. A method of manufacturing a thermoelectric module, comprising: joining each of them with solder. 前記メッキ液の主成分が次亜リン酸ナトリウム及び硫酸ニッケルであることを特徴とする請求項1に記載の熱電モジュールの製造方法。Method for manufacturing a thermoelectric module according to claim 1, the main component of the plating solution is characterized in that it is a sodium hypophosphite and nickel sulfate. 前記メッキ液の主成分がジメチルアミンボロン及び硫酸ニッケルであることを特徴とする請求項1に記載の熱電モジュールの製造方法。The method for manufacturing a thermoelectric module according to claim 1, wherein the main components of the plating solution are dimethylamine boron and nickel sulfate. 複数の熱電素子を複数の上部電極及び複数の下部電極により、直列又は並列に接続した熱電モジュールにおいて、請求項1乃至3のいずれか1項に記載の熱電モジュールの製造方法により得られ、前記熱電素子の前記上部電極又は前記下部電極に接合される端面に形成されているニッケル無電解メッキ膜の抵抗率が10乃至60μΩ・cmであることを特徴とする熱電モジュール。A thermoelectric module in which a plurality of thermoelectric elements are connected in series or in parallel by a plurality of upper electrodes and a plurality of lower electrodes, obtained by the method for manufacturing a thermoelectric module according to any one of claims 1 to 3, wherein A thermoelectric module characterized in that a resistivity of a nickel electroless plating film formed on an end face joined to the upper electrode or the lower electrode of an element is 10 to 60 μΩ · cm.
JP2002165497A 2002-06-06 2002-06-06 Thermoelectric module and manufacturing method thereof Expired - Lifetime JP3617506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165497A JP3617506B2 (en) 2002-06-06 2002-06-06 Thermoelectric module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165497A JP3617506B2 (en) 2002-06-06 2002-06-06 Thermoelectric module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004014766A JP2004014766A (en) 2004-01-15
JP3617506B2 true JP3617506B2 (en) 2005-02-09

Family

ID=30433321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165497A Expired - Lifetime JP3617506B2 (en) 2002-06-06 2002-06-06 Thermoelectric module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3617506B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721925B1 (en) * 2005-12-21 2007-05-28 주식회사 포스코 Fabrication method of thermoelectric module
KR101266449B1 (en) 2006-12-21 2013-05-23 재단법인 포항산업과학연구원 Fabrication method of thermoelectric module
JP6122736B2 (en) 2013-08-30 2017-04-26 株式会社Kelk Thermoelectric generator module

Also Published As

Publication number Publication date
JP2004014766A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US5429680A (en) Thermoelectric heat pump
JP5377753B2 (en) Thermoelectric element and thermoelectric module
JP4003110B2 (en) Thermoelectric device
JP5545964B2 (en) Thermoelectric module
JP4728745B2 (en) Thermoelectric device and thermoelectric module
TW200809881A (en) Method for manufacturing rectangular plate type chip resistor and rectangular plate type chip resistor
KR19990066931A (en) Fabrication of thermoelectric modules and solder used in them
JP5671569B2 (en) Thermoelectric conversion module
JP2009218560A (en) Lead wire for solar cell, manufacturing method thereof, and solar cell
JP3617506B2 (en) Thermoelectric module and manufacturing method thereof
JPH09293906A (en) Thermoelectric converter
JP2003338641A (en) Thermoelectric element
JP2881332B2 (en) Thermoelectric device manufacturing method
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
JP4498652B2 (en) Electroless plating method
JP4199513B2 (en) Method for manufacturing thermoelectric element
US10833237B2 (en) Thermoelectric module
JP2008085309A (en) Thermoelectric conversion module, its manufacturing method, and thermoelectric conversion material used for thermoelectric conversion module
WO2021019891A1 (en) Thermoelectric module, and method for manufacturing thermoelectric module
JP3469812B2 (en) Thermoelectric conversion module and thermoelectric conversion module block
JP2005136075A (en) Thermoelectric conversion module and its manufacturing method
KR20180012585A (en) Method for forming plating layers on thermoelectric material layer and thermoelectric material comprising the plating layers manufactured by the same
JP4136453B2 (en) Thermoelectric element and manufacturing method thereof
JP2002043637A (en) Thermoelectric device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Ref document number: 3617506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

EXPY Cancellation because of completion of term