JP3615895B2 - Liquid cap for lead acid battery - Google Patents

Liquid cap for lead acid battery Download PDF

Info

Publication number
JP3615895B2
JP3615895B2 JP02917497A JP2917497A JP3615895B2 JP 3615895 B2 JP3615895 B2 JP 3615895B2 JP 02917497 A JP02917497 A JP 02917497A JP 2917497 A JP2917497 A JP 2917497A JP 3615895 B2 JP3615895 B2 JP 3615895B2
Authority
JP
Japan
Prior art keywords
splash
exhaust
lead
proof plate
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02917497A
Other languages
Japanese (ja)
Other versions
JPH10228892A (en
Inventor
誠二 安齋
圭 石牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP02917497A priority Critical patent/JP3615895B2/en
Publication of JPH10228892A publication Critical patent/JPH10228892A/en
Application granted granted Critical
Publication of JP3615895B2 publication Critical patent/JP3615895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉛蓄電池の液口栓からの溢液防止性能を向上させた鉛蓄電池用液口栓に関するものである。
【0002】
【従来の技術】
自動車構造の複雑化やエレクトロニクス化はエンジンルーム内の過密度を上昇させ、四輪駆動車に代表されるレジャービークルの増加は、悪路走行に伴う過激な振動や衝撃を受ける機会を増加させ、エンジンルーム内に搭載される蓄電池により高度な性能を要求している。特に、悪路走行の機会の多い自動車に搭載される鉛蓄電池には、振動による液口栓からの電解液の溢液防止に対する性能向上が望まれており、過密度の増したエンジンルームに搭載するためにも重要な要素となっている。
【0003】
鉛蓄電池における溢液防止の構造を備えた従来技術になる液口栓として、図4に示す特開昭62−193058号公報に開示された構造、図5に示す特開昭62−232853号公報に開示された構造が知られている。
【0004】
図4に示す従来構成では、液口栓の筒部30内を水平方向に対して20°以上の傾斜を有する防沫板31により、少なくとも3室以上に分割すると共に、筒部30の最下部に設けられた排気スリット32から液口栓頭部の排気孔33にいたる排気通路が180度ずつずれた構造に形成されている。この構成により、筒部30内に入り込んだ電解液が排気孔33にまで上昇して溢れる以前に底部方向に還流させるため溢液が防止される。
【0005】
また、図5に示す従来構成では、液口栓の筒部37内に上部から通気用の微孔を有する防爆フィルタ34、その下部を4室に分割する4枚の防沫板35が配置され、排気孔38及び排気スリット39の上部は前記防沫板35で塞がれている。この構成により、排気孔38または排気スリット39から筒部37内に入り込んだ電解液は防爆フィルタ34まで上昇することが抑えられ、防沫板35の傾斜により底部方向に還流させるため、防爆フィルタ34の通気性を損なうことなく溢液を防止することができる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来構成になる鉛蓄電池の液口栓は、JIS等の鉛蓄電池関連規格に規定された耐振動性能が垂直方向のみの評価であるため、これに対応させて垂直方向の振動に対する溢液防止を重視した構造となっている。そのため、悪路走行等により生じる水平方向の振動に対する溢液防止性能に関しては満足できる性能が得られていない。
【0007】
四輪駆動車による悪路走行の実車測定に基づく振動成分をランダム振動解析により求めたところ、主な振動成分は垂直方向に加え、前後左右の水平方向の振動が比較的高いレベルで存在することが判明した。この水平方向の振動に対する溢液防止性能について試験を行った結果でも、上記従来構成になる鉛蓄電池の液口栓の構造では、要求を満たせないことが判明した。
【0008】
特に、電解液の液面高さが、過補水された場合や温度上昇等により規定高さより高くなっている場合に、水平方向振動による溢液防止性能の低下が著しく、水平方向振動による有効な溢液防止構造の液口栓が求められている。
【0009】
本発明は、悪路走行時の振動条件で得られた結果に基づき、水平方向の振動成分を含めた厳しい振動に対しての溢液防止の信頼性を高めた鉛蓄電池用液口栓を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明は、電槽蓋に螺着されたとき電槽外に位置する頭部に排気孔を設け、電槽内に位置する筒状体内を通気用間隙を設けた複数の防沫板によって上下方向に複数の空間に仕切ることにより電解液の溢液を防止すると共に、前記通気用間隙を通じて筒状体内から頭部の排気孔に向けて連通する排気ルートにより電槽内ガスを排気する鉛蓄電池用液口栓において、前記筒状体の下端開放部を閉じて下部側面に排気スリットを形成すると共に、前記防沫板が、筒状体の中心線から両側に対称的に上向き傾斜の防沫板と、筒状体の中心線から両側に対称的に下向き傾斜の防沫板とを、前記中心線を同一鉛直線上に配置して鉛直方向に交互に配置することより筒状体内を複数の空間に仕切り、各防沫板の傾斜最下部に隣接空間との間を接続する通気用間隙が形成されてなることを特徴とする。
【0011】
上記構成によれば、筒状体内に筒状体の中心線から対称的に上向き傾斜した防沫板と下向き傾斜した防沫板とを、中心線が同一鉛直線上になるように交互に配置し、傾斜の最下部に通気用間隙を形成すると、その通気用間隙は90度づつずれた位置に配置されることになる。従って、通気用間隙から上昇しようとする電解液は通気用間隙の直上を覆う防沫板で阻止される。この状態が複数層で繰り返されるので、激しい振動により上昇しようとする電解液の上昇エネルギーは減衰し、溢液を抑えることができる。また、電解液が上昇しても傾斜により通気用間隙から流下するので、最上部にまで上昇することが抑えられる。この通気用間隙により、排気スリットから頭部の排気孔へ通じる電槽内ガスの排気ルートが形成される。
【0012】
上記構成における排気スリットは、相対向する両側面に形成することにより、一方から筒部内に流入した電解液が他方に抜けやすいので、筒状体内を上昇することが抑えられる。
【0013】
また、排気スリットの直上に配設された防沫板に形成された間隙の方向が、排気スリットから流入する流体の流入方向と直交する方向に配設することにより、排気スリットから流入した電解液が上昇できる間隙は90度ずれた位置にあり、対向位置に形成された排気スリットの構造と相まって上昇する以前に反対方向の排気スリットから抜け出ることになり、筒状体内を上昇することが抑えられ溢液が防止される。
【0014】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施形態について説明する。図1は本発明の実施形態に係る鉛蓄電池用液口栓(以下、液口栓と略記する)の構成を示す平面図(a)と側面図(b)である。
【0015】
図1において、液口栓1は、頭部1aと筒部1bとが一体的に形成された本体部(筒状体)2内に、防沫板構造体3を収容して構成される。この液口栓1は、本体部2に設けられたネジ部9により鉛蓄電池の電槽蓋に螺着され、電槽の外部に頭部1a、電槽の内部に筒部1bが位置するように取り付けられる。前記ネジ部9の上部には鍔部8が形成され、この鍔部8とネジ部9との間にパッキン11がはめ込まれており、螺着時の密閉封止を確保する。
【0016】
この液口栓1の内部構造について、図2、図3を参照して説明する。図2は図1(a)に示すY−Y線での断面図、図3(a)は防沫板構造体のY軸方向側面図、同(b)(c)は各防沫板の平面図である。
【0017】
図2において、本体部2は、下端開放の円筒状に形成されており、円筒内に防沫板構造体3を収容することにより、下端開放部は防沫板構造体3の蓋体13により封止される。本体部2の下部には、Y軸線上の対向位置に排気スリット4、4が形成され、円筒内と電槽内とが通じている。この排気スリット4、4から後述する各防沫板に形成された間隙(通気用間隙)を通じて、頭部1aに設けられた排気孔5、5にガス排気ルートが形成されており、電槽内に発生したガスを排気することができる。
【0018】
防沫板構成体3は、その下方から、本体部2の下部開放を閉じる円形の蓋体13と、X軸方向の中心線から両側に上向きの傾斜角度を有する第1防沫板15と、X軸方向の中心線から両側に下向きの傾斜角度を有する第2防沫板16と、X軸方向の中心線から両側に上向きの傾斜角度を有し、支柱12側に垂直部14、14を設けた第3防沫板17と、最上部に水平面を有する第4防沫板18とが、本体部2の中心位置に配置された支柱12に支持されて構成されている。
【0019】
前記第1防沫板15及び第3防沫板17は、X軸方向の中心線から両側に対称的に上向き傾斜した面の最下部を切り欠いて間隙が形成されるので、図3(c)に示すように、この間隙により、それぞれ第1防沫板15は半円形の15a、15bとに、第2防沫板17は半円形の17a、17bとに分割されて形成され、半円形の周縁部は本体部2の内壁面2aに接している。
【0020】
また、第2防沫板16及び第4防沫板18は、X軸方向の中心線から両側に対称的に下向き傾斜した面の最下部に間隙を形成するため、図3(b)に示すように、X軸方向に平行な両側円周部がそれぞれ切り欠かれて、本体部2の内壁面2aとの間に間隙が形成されている。図3(c)に示す防沫板形状と図3(b)に示す防沫板形状とが、中心線を同一鉛直線上に一致させて鉛直方向に交互に配置されることにより、それぞれの間隙の上部は防沫板で覆われ、間隙の位置が90度づつずれた状態に配置されることになる。
【0021】
上記構成により、電槽内からの排気流路は、図2に破線矢印で示すように、排気スリット4、4から、第1防沫板15a、15b間の間隙、第2防沫板16の両側の間隙、第3防沫板17a、17b間の間隙、第4防沫板18の両側の間隙に、90度づつずれた方向で本体部2の上部に通じ、排気孔5、5から外部に通じるように形成される。尚、排気孔5、5下の空間10は、微孔を備えた防爆フィルタを嵌合させるスペースである。
【0022】
上記排気流路の形成構造は、電解液の溢液防止に効果的に作用する。この溢液防止の作用について以下に説明する。
【0023】
上記構成になる液口栓1は、電槽蓋に取り付けられたとき、その下端部が電解液の規定液面と同一か、やや上になるように設定されており、振動により液面が揺れたとき、波状電解液や電解液の飛沫が排気スリット4、4から本体部2内に侵入する。また、傾きや過補水による液面上昇によっても侵入は発生する。
【0024】
まず、排気スリット4、4は側面の対向位置に形成されているので、垂直方向振動による電解液の侵入は少ない。水平方向振動における方向性のある飛沫電解液や波状電解液は反対側に抜けやすく、電解液が上昇することが少なくなる。この排気スリット4、4の形成方向(Y軸方向)の支柱12の幅は狭く、通過する電解液に対する抵抗を少なくしている。また、排気スリット4、4の直上に位置する第1防沫板15a、15bは、排気スリット4、4に対して下向き傾斜で対しているので、排気スリット4、4間の流れに対する抵抗が少なく、流入方向を下向きに変えるので、電解液の上昇が抑えられる。更に、排気スリット4、4の方向に対して第1防沫板15a、15b間の間隙は、90度ずれた位置に形成されているので、排気スリット4、4の対向位置配置と相まって電解液が上昇するには90度回り込む必要があり、間隙から侵入することは少なくなる。
【0025】
激しい振動により第1防沫板15a、15b間の間隙を通じて上昇した電解液は、この間隙の上部で本体部2の内壁に当接する第2防沫板16で抑えられる。
【0026】
この第2防沫板16が本体部2の内壁2aとの間で形成する間隙に回り込んで更に上昇した電解液も、第3防沫板17a、17bにより間隙の上部が覆われ、更に垂直部14、14が第3防沫板17a、17b間の間隙への回り込みを阻止するので、最上部の第4防沫板18まで上昇するには、相当大きな上昇エネルギーが必要である。このように各層で段階的にエネルギーの分散、減衰が図られるので、エネルギーが減衰した時点で電解液は各防沫板の下向き傾斜面から間隙に落ちて還流することになる。
【0027】
また、排気スリット4、4から本体部2内に侵入した電解液が上昇するための通路は、第1の防沫板15a、15b間の間隙となるが、その上は下向き傾斜の第2の防沫板16で覆われており、ここから更に上昇するためには、上昇エネルギーは下向き傾斜による減衰、左右に振り分けられる分散による減衰、次の間隙位置が90度ずれた方向にあることによる減衰を受け、液体として上昇することはでき難い。飛沫として気体状になった飛沫電解液は電槽内の気体の動きに同調して上昇しても、気体が速い流速で上昇できるだけの流路はなく、上昇エネルギーの低い状態では比重の大きい電解液成分は下向き傾斜面から間隙を通じて還流する。更に、上昇エネルギーを減衰させる同様の構造が複数段に形成されているので、最上部の第4の防沫板18にまで達する上昇は、よほど過酷な条件でない限り抑えられる。
【0028】
上記溢液防止構造の効果を確認すべく、図5に示した従来構成になる液口栓との比較対象試験を行った結果を、図6、図7に示す。本試験は、JIS−55B24で規定された鉛蓄電池の液面高さと振動周波数毎の正弦波形による単振動評価法振動試験で実施したものである。尚、加振条件は車両搭載時を想定し、14.5Vの定電圧充電をしながら最も振動の大きい領域を代表して5〜50Hzの範囲で正弦波振動により溢液の有無を調査し溢液限界を測定した。尚、各図は各周波数測定点で加速度Gを上昇させたとき、溢液が発生した加速度値をプロットしてグラフ化したもので、加速度Gは該当周波数による振幅に相当する。
【0029】
図6は本実施形態になる液口栓1を用いた試験結果を示すグラフ、図7は従来構成になる液口栓を用いた試験結果を示すグラフで、実線表示は電解液の液面を規定液面高さにした状態、破線表示は液面が規定液面高さより+10mm高い過補水状態である。尚、本実施形態になる液口栓1には、従来構成のものと同様の防爆構造を有する防爆フィルタを図2(a)に示すスペース10に装着して同一条件とした。
【0030】
図6(a)及び図7(a)に示すように、上下方向の振動による溢液限界は、加振機の限界である加速度10Gまで実施したが、本実施形態の構成と従来構成とに大きな差はなく、極めて高い溢液防止の効果が示されている。
【0031】
しかし、前後方向の振動による溢液限界では、図7(b)に示すように、従来構成では振動周波数25Hzで加速度6G以上のとき溢液が発生し、液面が10mm高い状態では、振動周波数15Hzで加速度2Gのとき溢液が発生した。これに対して、本実施形態の構成では、図6(b)に示すように、振動周波数35Hzで加速度10G以上が溢液限界であり、液面が10mm高い状態では、振動周波数25Hzで加速度7Gが溢液限界となり、大幅に溢液防止性能が向上している結果が得られた。
【0032】
更に、左右方向の振動に対する溢液限界では、図7(c)に示すように、従来構成では振動周波数25Hzで加速度5G以上のとき溢液が発生し、液面が10mm高い状態では、振動周波数15Hzで加速度2Gのとき溢液が発生した。これに対して、本実施形態の構成では、図6(c)に示すように、振動周波数35Hzで加速度9Gが溢液限界であり、液面が10mm高い状態では、振動周波数30Hzで加速度7Gが溢液限界となり、大幅に溢液防止性能が向上している結果が得られた。
【0033】
上記試験結果からもわかるように、本実施形態になる液口栓1の構成は、水平方向の振動に対しての溢液防止性能が従来構成に比して大幅に向上している。この溢液防止性能は、四輪駆動車のように悪路走行の機会の多い自動車に搭載しても、溢液を発生させない性能を備えたものといえる。
【0034】
【発明の効果】
以上の説明の通り本発明によれば、筒状体内に筒状体の中心線から両側に対称的に上向き傾斜した防沫板と下向き傾斜した防沫板とを鉛直線上の同一線上に交互に配置し、傾斜の最下部に通気用間隙を形成すると、その通気用間隙は各段毎に90度づつずれた位置に配置されることになる。従って、通気用間隙から上昇しようとする電解液は通気用間隙の直上を覆う防沫板で阻止される。この状態が複数層で繰り返されるので、激しい振動により上昇しようとする電解液が最上部にまで達することは難しく溢液を抑えることができる。また、電解液が上昇しても傾斜により通気用間隙から流下還流されるので、最上部にまで上昇して溢液することが抑えられる。前記通気用間隙が形成されることにより、排気スリットから頭部の排気孔へ通じる排気ルートが形成され、電解液の溢液を防止しつつ電槽内ガスを排気させることができる。この構成により、垂直方向の振動だけでなく、水平方向の振動に対しても効果的に溢液を防止する鉛蓄電池の液口栓が提供される。
【0035】
上記排気スリットは、相対向する両側面に形成することにより、一方から筒部内に流入した電解液が他方に抜けやすいので、筒状体内を上昇することが抑えられ、また、排気スリットの直上に配設された防沫板に形成された間隙の方向が、排気スリットから流入する流体の流入方向と直交する方向に配設することにより、排気スリットから流入した電解液が上昇できる間隙は90度ずれた位置にあり、対向位置に形成された排気スリットの構造と相まって上昇する以前に反対方向の排気スリットから抜け出ることになり、筒状体内を上昇することが抑えられ溢液が防止される。
【図面の簡単な説明】
【図1】本発明の実施形態に係る鉛蓄電池用液口栓の構成を示す平面図(a)とY軸方向側面図(b)である。
【図2】同上鉛蓄電池用液口栓のY−Y線断面図である。
【図3】同上鉛蓄電池用液口栓を構成する防沫板構造体のY軸方向側面図(a)と各防沫板の平面図(b)(c)である。
【図4】第1の従来構成に係る鉛蓄電池の液口栓の構成を示す断面図である。
【図5】第2の従来構成に係る鉛蓄電池の液口栓の構成を示す断面図である。
【図6】本発明の実施形態に係る鉛蓄電池用液口栓の上下方向(a)、前後方向(b)、左右方向(c)の振動による溢液防止性能の試験結果を示すグラフである。
【図7】従来構成に係る鉛蓄電池用液口栓の上下方向(a)、前後方向(b)、左右方向(c)の振動による溢液防止性能の試験結果を示すグラフである。
【符号の説明】
1 鉛蓄電池用液口栓
2 本体部(筒状体)
3 防沫板構造体
4 排気スリット
5 排気孔
12 支柱
13 蓋体
14 垂直部
15、15a、15b 第1防沫板
16 第2防沫板
17、17a、17b 第3防沫板
18 第4防沫板
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a lead-acid battery liquid spout with improved performance for preventing overflow from the liquid spout of a lead-acid battery.
[0002]
[Prior art]
Increasing vehicle structure complexity and electronics increase the over-density in the engine room, and the increase in leisure vehicles represented by four-wheel drive vehicles increases the chances of receiving extreme vibrations and shocks associated with driving on bad roads. High performance is required by the storage battery installed in the engine room. In particular, lead-acid batteries installed in automobiles with many opportunities for driving on rough roads are required to improve performance to prevent electrolyte overflow from the liquid spout due to vibration, and are installed in engine rooms with increased density. It is also an important element to do.
[0003]
As a conventional liquid spout having a structure for preventing overflow in a lead-acid battery, the structure disclosed in Japanese Patent Application Laid-Open No. 62-193058 shown in FIG. 4 and Japanese Patent Application Laid-Open No. 62-232853 shown in FIG. The structure disclosed in is known.
[0004]
In the conventional configuration shown in FIG. 4, the inside of the cylindrical portion 30 of the liquid spigot is divided into at least three chambers by a splash-proof plate 31 having an inclination of 20 ° or more with respect to the horizontal direction, and the lowermost portion of the cylindrical portion 30 The exhaust passage from the exhaust slit 32 provided to the exhaust port 33 to the exhaust port 33 of the head of the liquid spout is formed so as to be shifted by 180 degrees. With this configuration, the electrolyte that has entered the cylinder 30 is recirculated in the bottom direction before it rises to the exhaust hole 33 and overflows, thereby preventing overflow.
[0005]
Further, in the conventional configuration shown in FIG. 5, an explosion-proof filter 34 having a microscopic hole for ventilation from the top and four splash-proof plates 35 that divide the bottom into four chambers are disposed in the tube portion 37 of the liquid spigot. The upper portions of the exhaust hole 38 and the exhaust slit 39 are closed by the splash-proof plate 35. With this configuration, the electrolyte solution that has entered the cylinder portion 37 from the exhaust hole 38 or the exhaust slit 39 is prevented from rising up to the explosion-proof filter 34, and is returned to the bottom portion due to the inclination of the splash-proof plate 35. It is possible to prevent overflow without impairing the air permeability.
[0006]
[Problems to be solved by the invention]
However, in the lead plug of the lead storage battery having the above conventional configuration, the vibration resistance performance defined in the lead storage battery related standards such as JIS is evaluated only in the vertical direction. It has a structure that emphasizes liquid prevention. For this reason, satisfactory performance has not been obtained with respect to the overflow prevention performance against horizontal vibration caused by running on rough roads and the like.
[0007]
When the vibration component based on the actual vehicle measurement of rough road driving with a four-wheel drive vehicle was obtained by random vibration analysis, the main vibration component is in the vertical direction and the horizontal vibration in the front, rear, left and right is relatively high. There was found. Even as a result of testing the overflow prevention performance against the vibration in the horizontal direction, it has been found that the structure of the liquid mouth plug of the lead storage battery having the above-described conventional configuration cannot satisfy the requirement.
[0008]
In particular, when the electrolyte level is excessively refilled or higher than the specified height due to temperature rise, etc., the deterioration of overflow prevention performance due to horizontal vibration is significant and effective due to horizontal vibration. There is a need for a liquid stopper with an overflow prevention structure.
[0009]
The present invention provides a lead plug for a lead-acid battery that has improved reliability in preventing overflow from severe vibration including horizontal vibration components based on the results obtained under vibration conditions when traveling on rough roads. It is intended to do.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an exhaust hole in the head located outside the battery case when screwed into the battery case lid, and provides a ventilation gap in the cylindrical body located in the battery case. In addition to preventing the electrolyte from overflowing by partitioning it into a plurality of spaces in the vertical direction by a plurality of splash-proof plates, and by means of an exhaust route communicating from the cylindrical body to the exhaust hole of the head through the ventilation gap. In a liquid lead plug for a lead-acid battery that exhausts the gas in the tank, the lower end open portion of the cylindrical body is closed to form an exhaust slit on the lower side surface, and the splash-proof plate is disposed on both sides from the center line of the cylindrical body. Symmetrically upward-sloped splash-proof plates and symmetrically-sloped splash-proof plates on both sides from the center line of the cylindrical body are alternately arranged in the vertical direction with the center lines on the same vertical line. Therefore, the cylindrical body is divided into multiple spaces and adjacent to the lowermost slope of each splash-proof plate Wherein the ventilation gap to be connected is formed between between.
[0011]
According to the above configuration, the splash-proof plate that is symmetrically inclined upward and the splash-proof plate that is inclined downward from the center line of the cylindrical body are alternately arranged in the cylindrical body so that the center lines are on the same vertical line. When the ventilation gap is formed at the lowermost part of the slope, the ventilation gap is arranged at a position shifted by 90 degrees. Therefore, the electrolytic solution that is going to rise from the ventilation gap is blocked by the splash-proof plate that covers the ventilation gap. Since this state is repeated in a plurality of layers, the rising energy of the electrolytic solution that is going to rise by vigorous vibration is attenuated, and overflow can be suppressed. Further, even if the electrolyte rises, it flows down from the ventilation gap due to the inclination, so that it is possible to suppress the rise to the top. This ventilation gap forms an exhaust route for the gas in the battery case that leads from the exhaust slit to the exhaust hole in the head.
[0012]
By forming the exhaust slits in the above configuration on opposite side surfaces, the electrolyte that has flowed into the cylinder part from one side can easily escape to the other side, so that the cylinder can be prevented from rising.
[0013]
In addition, the direction of the gap formed in the splash-proof plate disposed immediately above the exhaust slit is arranged in a direction perpendicular to the inflow direction of the fluid flowing in from the exhaust slit, so that the electrolyte flowing in from the exhaust slit The gap that can be lifted is at a position shifted by 90 degrees, and it escapes from the exhaust slit in the opposite direction before it rises in combination with the structure of the exhaust slit formed at the opposite position, so that the rise in the cylindrical body is suppressed. Overflow is prevented.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a plan view (a) and a side view (b) showing the structure of a lead-acid battery liquid port plug (hereinafter abbreviated as a liquid port plug) according to an embodiment of the present invention.
[0015]
In FIG. 1, a liquid spigot 1 is configured by housing a splash-proof plate structure 3 in a main body (cylindrical body) 2 in which a head 1a and a cylinder 1b are integrally formed. This liquid spigot 1 is screwed to the battery case lid of the lead storage battery by a screw part 9 provided in the main body part 2 so that the head part 1a is located outside the battery case and the cylinder part 1b is located inside the battery case. Attached to. A flange portion 8 is formed on the upper portion of the screw portion 9, and a packing 11 is fitted between the flange portion 8 and the screw portion 9 to ensure a hermetic seal when screwed.
[0016]
The internal structure of the liquid spigot 1 will be described with reference to FIGS. 2 is a cross-sectional view taken along line YY shown in FIG. 1A, FIG. 3A is a side view in the Y-axis direction of the splash-proof plate structure, and FIGS. It is a top view.
[0017]
In FIG. 2, the main body 2 is formed in a cylindrical shape with an open lower end, and the lower end open portion is formed by a lid 13 of the splash-proof plate structure 3 by accommodating the splash-proof plate structure 3 in the cylinder. Sealed. Exhaust slits 4, 4 are formed in the lower part of the main body 2 at opposite positions on the Y axis, and the inside of the cylinder and the inside of the battery case are communicated. Gas exhaust routes are formed in the exhaust holes 5 and 5 provided in the head 1a through gaps (ventilation gaps) formed in the respective splash-proof plates described later from the exhaust slits 4 and 4. The generated gas can be exhausted.
[0018]
The splash-proof plate constituting body 3 includes, from below, a circular lid 13 that closes the lower opening of the main body 2, a first splash-proof plate 15 having an upward inclination angle on both sides from the center line in the X-axis direction, A second splash-proof plate 16 having a downward inclination angle on both sides from the center line in the X-axis direction, an upward inclination angle on both sides from the center line in the X-axis direction, and vertical portions 14 and 14 on the column 12 side. The provided third splash-proof plate 17 and the fourth splash-proof plate 18 having a horizontal surface at the top are supported by the support column 12 disposed at the center position of the main body 2.
[0019]
Since the first splash-proof plate 15 and the third splash-proof plate 17 have a gap formed by cutting out the lowermost part of the plane inclined symmetrically upward on both sides from the center line in the X-axis direction, FIG. ), The first splash-proof plate 15 is divided into semicircles 15a and 15b, and the second splash-proof plate 17 is divided into semicircles 17a and 17b. Is in contact with the inner wall surface 2 a of the main body 2.
[0020]
In addition, the second and fourth splash-proof plates 16 and 18 form a gap at the lowermost part of the surface that is symmetrically inclined downward on both sides from the center line in the X-axis direction. As described above, the circumferential portions on both sides parallel to the X-axis direction are notched, and a gap is formed between the inner wall surface 2 a of the main body 2. The shape of the splash-proof plate shown in FIG. 3 (c) and the shape of the splash-proof plate shown in FIG. 3 (b) are alternately arranged in the vertical direction with the center line aligned on the same vertical line, so that each gap The upper part of is covered with a splash-proof plate, and the position of the gap is arranged in a state shifted by 90 degrees.
[0021]
With the above configuration, the exhaust flow path from the inside of the battery case has a gap between the first splash-proof plates 15a and 15b, the second splash-proof plate 16 as shown in FIG. The gaps on both sides, the gaps between the third splash-proof plates 17a and 17b, and the gaps on both sides of the fourth splash-proof plate 18 lead to the upper part of the main body 2 in a direction shifted by 90 degrees, and from the exhaust holes 5 and 5 to the outside It is formed so that it may lead to. In addition, the space 10 under the exhaust holes 5 and 5 is a space into which an explosion-proof filter having a microhole is fitted.
[0022]
The structure for forming the exhaust passage effectively acts to prevent the electrolyte from overflowing. The action of preventing overflow will be described below.
[0023]
The liquid spigot 1 configured as described above is set so that its lower end is the same as or slightly above the specified liquid level of the electrolyte when attached to the battery case lid, and the liquid level is shaken by vibration. When this occurs, the corrugated electrolyte and the splash of the electrolyte enter the main body 2 from the exhaust slits 4 and 4. Intrusion also occurs due to an increase in liquid level due to inclination or excessive water supplementation.
[0024]
First, since the exhaust slits 4 and 4 are formed at opposite positions on the side surfaces, there is little penetration of the electrolytic solution due to vertical vibration. The directional droplet electrolyte or wave electrolyte in the horizontal vibration is easy to escape to the opposite side, and the electrolyte does not increase. The width of the support column 12 in the formation direction (Y-axis direction) of the exhaust slits 4 and 4 is narrow, and the resistance to the electrolyte passing therethrough is reduced. Further, since the first splash-proof plates 15a and 15b located immediately above the exhaust slits 4 and 4 are opposed to the exhaust slits 4 and 4 with a downward inclination, the resistance to the flow between the exhaust slits 4 and 4 is small. Since the inflow direction is changed downward, the rise of the electrolyte can be suppressed. Furthermore, since the gap between the first splash-proof plates 15a and 15b is formed at a position shifted by 90 degrees with respect to the direction of the exhaust slits 4 and 4, the electrolyte solution combined with the opposing position arrangement of the exhaust slits 4 and 4 In order to rise, it is necessary to go around 90 degrees, and it is less likely to enter through the gap.
[0025]
The electrolyte that has risen through the gap between the first splash-proof plates 15a and 15b by vigorous vibration is suppressed by the second splash-proof plate 16 that contacts the inner wall of the main body 2 at the upper part of the gap.
[0026]
The electrolyte that has further risen around the gap formed between the second splash-proof plate 16 and the inner wall 2a of the main body 2 is also covered by the third splash-proof plates 17a and 17b, and the upper part of the gap is further covered. Since the portions 14 and 14 prevent the third splash-proof plates 17a and 17b from entering the gap, a considerable amount of rising energy is required to ascend to the uppermost fourth splash-proof plate 18. Since energy is dispersed and attenuated step by step in each layer in this way, when the energy is attenuated, the electrolyte falls from the downward inclined surface of each splash-proof plate into the gap and circulates.
[0027]
The passage for the electrolyte that has entered the main body 2 from the exhaust slits 4 and 4 to rise is a gap between the first splash-proof plates 15a and 15b. In order to further increase from here, the rising energy is attenuated by downward inclination, attenuated by dispersion distributed to the left and right, and attenuated by the next gap position being shifted by 90 degrees. It is difficult to rise as a liquid. Even if the droplet electrolyte that has become gaseous as a droplet rises in synchronization with the movement of the gas in the battery case, there is no flow path that allows the gas to rise at a high flow rate, and electrolysis with a large specific gravity is possible in a state where the rising energy is low. The liquid component returns from the downward inclined surface through the gap. Further, since the same structure for attenuating the rising energy is formed in a plurality of stages, the rising up to the uppermost fourth splash-proof plate 18 can be suppressed unless the conditions are very severe.
[0028]
In order to confirm the effect of the overflow prevention structure, the results of a comparison test with the liquid stopper having the conventional configuration shown in FIG. 5 are shown in FIGS. This test was conducted by a vibration test using a single vibration evaluation method based on a sine waveform for each liquid level height and vibration frequency of a lead storage battery defined in JIS-55B24. Assuming that the vibration condition is when mounted on a vehicle, the presence of overflow is investigated by sinusoidal vibration in the range of 5 to 50 Hz on behalf of the region with the largest vibration while charging at a constant voltage of 14.5V. The liquid limit was measured. Each figure is a graph obtained by plotting the acceleration value at which overflow occurs when the acceleration G is increased at each frequency measurement point. The acceleration G corresponds to the amplitude of the corresponding frequency.
[0029]
FIG. 6 is a graph showing the test results using the liquid spigot 1 according to the present embodiment, FIG. 7 is a graph showing the test results using the liquid spigot according to the conventional configuration, and the solid line indicates the electrolyte level. The state where the specified liquid level is set, and the broken line display is an overfilled state where the liquid level is higher by +10 mm than the specified liquid level. Note that the liquid spigot 1 according to the present embodiment was provided with an explosion-proof filter having the same explosion-proof structure as that of the conventional structure in the space 10 shown in FIG.
[0030]
As shown in FIGS. 6 (a) and 7 (a), the overflow limit due to the vibration in the vertical direction has been implemented up to the acceleration of 10G, which is the limit of the shaker. There is no big difference, and an extremely high effect of preventing overflow is shown.
[0031]
However, at the overflow limit due to vibration in the front-rear direction, as shown in FIG. 7B, in the conventional configuration, overflow occurs when the vibration frequency is 25 Hz and the acceleration is 6 G or more, and in the state where the liquid level is 10 mm higher, the vibration frequency Overflow occurred when the acceleration was 2 G at 15 Hz. On the other hand, in the configuration of the present embodiment, as shown in FIG. 6B, when the vibration frequency is 35 Hz, the acceleration of 10 G or more is the overflow limit, and when the liquid level is 10 mm higher, the acceleration is 7 G at the vibration frequency of 25 Hz. As a result, the overflow limit was reached, and the overflow prevention performance was greatly improved.
[0032]
Furthermore, at the overflow limit for the vibration in the left-right direction, as shown in FIG. 7C, in the conventional configuration, overflow occurs when the vibration frequency is 25 Hz and the acceleration is 5 G or more. Overflow occurred when the acceleration was 2 G at 15 Hz. On the other hand, in the configuration of the present embodiment, as shown in FIG. 6C, the acceleration 9G is the overflow limit at the vibration frequency of 35 Hz, and the acceleration 7G is at the vibration frequency of 30 Hz when the liquid level is 10 mm higher. As a result, the overflow limit was reached, and the overflow prevention performance was greatly improved.
[0033]
As can be seen from the test results, the configuration of the liquid spigot 1 according to the present embodiment has significantly improved overflow prevention performance against horizontal vibration compared to the conventional configuration. This overflow prevention performance can be said to have performance that does not cause overflow even if it is installed in an automobile with many opportunities for driving on rough roads such as a four-wheel drive vehicle.
[0034]
【The invention's effect】
As described above, according to the present invention, the splash-proof plate and the splash-proof plate inclined downward and symmetrically on both sides from the center line of the cylindrical body are alternately arranged on the same line on the vertical line. When the ventilation gap is formed at the lowermost part of the slope, the ventilation gap is arranged at a position shifted by 90 degrees for each stage. Therefore, the electrolytic solution that is going to rise from the ventilation gap is blocked by the splash-proof plate that covers the ventilation gap. Since this state is repeated in a plurality of layers, it is difficult for the electrolyte to be raised by vigorous vibration to reach the uppermost portion, and the overflow can be suppressed. In addition, even if the electrolytic solution rises, it flows down and recirculates through the air gap due to the inclination, so that it can be prevented that the electrolytic solution rises to the top and overflows. By forming the ventilation gap, an exhaust route leading from the exhaust slit to the exhaust hole of the head is formed, and the gas in the battery case can be exhausted while preventing the electrolyte from overflowing. This configuration provides a lead-acid battery liquid plug that effectively prevents overflow not only in vertical vibration but also in horizontal vibration.
[0035]
By forming the exhaust slits on opposite side surfaces, the electrolyte that has flowed into the cylinder part from one side can easily escape to the other side, so it is possible to prevent the cylindrical body from rising, and directly above the exhaust slit. By arranging the direction of the gap formed in the installed splash-proof plate in a direction perpendicular to the inflow direction of the fluid flowing in from the exhaust slit, the gap in which the electrolyte flowing in from the exhaust slit can rise is 90 degrees. Before being lifted in combination with the structure of the exhaust slit formed at the opposite position, it is escaped from the exhaust slit in the opposite direction, and the rise in the cylindrical body is suppressed and overflow is prevented.
[Brief description of the drawings]
FIG. 1 is a plan view (a) and a Y-axis direction side view (b) showing a configuration of a lead-acid battery liquid spigot according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line YY of the liquid lead plug for the lead storage battery.
FIG. 3A is a side view in the Y-axis direction of the splash-proof plate structure constituting the liquid stopper for the lead storage battery, and FIG. 3B is a plan view of each splash-proof plate.
FIG. 4 is a cross-sectional view showing a configuration of a liquid spout of a lead storage battery according to a first conventional configuration.
FIG. 5 is a cross-sectional view showing a configuration of a liquid spout of a lead storage battery according to a second conventional configuration.
FIG. 6 is a graph showing the test results of the overflow prevention performance due to vibration in the vertical direction (a), the front-rear direction (b), and the left-right direction (c) of the lead-acid battery liquid plug according to the embodiment of the present invention. .
FIG. 7 is a graph showing the test results of the overflow prevention performance due to vibrations in the vertical direction (a), the front-rear direction (b), and the left-right direction (c) of the liquid lead plug for a lead storage battery according to the conventional configuration.
[Explanation of symbols]
1 Liquid storage plug for lead-acid battery 2 Body (tubular body)
DESCRIPTION OF SYMBOLS 3 Splash-proof board structure 4 Exhaust slit 5 Exhaust hole 12 Support | pillar 13 Cover body 14 Vertical part 15, 15a, 15b 1st splash board 16 2nd splash board 17, 17a, 17b 3rd splash board 18 4th prevention Spray plate

Claims (3)

電槽蓋に螺着されたとき電槽外に位置する頭部に排気孔を設け、電槽内に位置する筒状体内を通気用間隙を設けた複数の防沫板によって上下方向に複数の空間に仕切ることにより電解液の溢液を防止すると共に、前記通気用間隙を通じて筒状体内から頭部の排気孔に向けて連通する排気ルートにより電槽内ガスを排気する鉛蓄電池用液口栓において、
前記筒状体の下端開放部を閉じて下部側面に排気スリットを形成すると共に、前記防沫板が、筒状体の中心線から両側に対称的に上向き傾斜の防沫板と、筒状体の中心線から両側に対称的に下向き傾斜の防沫板とを、前記中心線が同一鉛直線上に位置するように鉛直方向に交互に配置することにより筒状体内を複数の空間に仕切り、各防沫板の傾斜最下部に隣接空間との間を接続する通気用間隙が形成されてなることを特徴とする鉛蓄電池用液口栓。
When screwed into the battery case lid, an exhaust hole is provided in the head located outside the battery case, and the cylindrical body located in the battery case is provided with a plurality of splash-proof plates provided with ventilation gaps in the vertical direction. A lead-acid battery liquid port plug that prevents the electrolyte from overflowing by partitioning into a space and exhausts the gas in the battery case through an exhaust route communicating from the tubular body toward the exhaust hole of the head through the ventilation gap. In
The lower end opening of the cylindrical body is closed to form an exhaust slit on the lower side surface, and the splash-proof plate is symmetrically upwardly inclined on both sides from the center line of the cylindrical body, and the cylindrical body By dividing the cylindrical body into a plurality of spaces by alternately arranging the anti-splash plates symmetrically downward on both sides from the center line in the vertical direction so that the center line is located on the same vertical line, A lead hole for a lead-acid battery, characterized in that a ventilation gap connecting between adjacent spaces is formed at the lowermost slope of the splash-proof plate.
排気スリットが、相対向する両側面に形成されてなることを特徴とする請求項1記載の鉛蓄電池用液口栓。The lead plug for a lead-acid battery according to claim 1, wherein exhaust slits are formed on opposite side surfaces. 排気スリットの直上に配設された防沫板に形成された間隙の方向が、排気スリットから流入する流体の流入方向と直交する方向に配設されてなることを特徴とする請求項1または2記載の鉛蓄電池用液口栓。The direction of the gap formed in the splash-proof plate disposed immediately above the exhaust slit is disposed in a direction perpendicular to the inflow direction of the fluid flowing in from the exhaust slit. Liquid lead plug for lead storage battery as described.
JP02917497A 1997-02-13 1997-02-13 Liquid cap for lead acid battery Expired - Lifetime JP3615895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02917497A JP3615895B2 (en) 1997-02-13 1997-02-13 Liquid cap for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02917497A JP3615895B2 (en) 1997-02-13 1997-02-13 Liquid cap for lead acid battery

Publications (2)

Publication Number Publication Date
JPH10228892A JPH10228892A (en) 1998-08-25
JP3615895B2 true JP3615895B2 (en) 2005-02-02

Family

ID=12268880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02917497A Expired - Lifetime JP3615895B2 (en) 1997-02-13 1997-02-13 Liquid cap for lead acid battery

Country Status (1)

Country Link
JP (1) JP3615895B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410493B (en) * 2001-07-19 2003-05-26 Banner Gmbh Locking device
JP4174432B2 (en) * 2004-02-13 2008-10-29 古河電池株式会社 Battery plug for storage battery
JP4706201B2 (en) * 2004-07-27 2011-06-22 株式会社Gsユアサ Storage battery
JP5168975B2 (en) * 2007-03-28 2013-03-27 株式会社Gsユアサ Storage battery
CA2715265C (en) 2008-09-26 2013-05-28 Panasonic Corporation Lead acid battery manufacturing method and lead acid battery
US8944420B2 (en) 2009-03-19 2015-02-03 Air Products And Chemicals, Inc. Splashguard for high flow vacuum bubbler vessel
KR101220484B1 (en) * 2010-07-14 2013-01-10 세방전지(주) Vent Plug for Electronic Condenser
TWI480418B (en) * 2012-01-16 2015-04-11 Air Prod & Chem Splashguard for high flow vacuum bubbler vessel
KR101685026B1 (en) * 2015-02-06 2016-12-12 세방전지(주) Battery bent cap having baffle of labrynth structure
KR200486546Y1 (en) 2016-11-01 2018-06-04 세방전지(주) The bentcap for battery with a penetration passage of electrolyte
JP7155500B2 (en) * 2017-05-19 2022-10-19 株式会社Gsユアサ lead acid battery
JP7110773B2 (en) * 2017-07-21 2022-08-02 株式会社Gsユアサ Liquid spout plug for lead-acid battery and lead-acid battery
CN108428853B (en) * 2018-04-17 2023-10-27 深圳市龙供供电服务有限公司 Lithium battery electrolyte configuration feeding device
JPWO2021054163A1 (en) * 2019-09-20 2021-03-25

Also Published As

Publication number Publication date
JPH10228892A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
JP3615895B2 (en) Liquid cap for lead acid battery
JP7470490B2 (en) Lead-acid battery
JPH07245089A (en) Gas discharge device for battery for motor vehicle
US10056650B2 (en) Lead-acid battery
JP2017033900A (en) Lead-acid battery
JP5844661B2 (en) Gas-liquid separator
JP6427707B1 (en) Lead storage battery
JP2000186524A (en) Oil pan structure for engine
JP7238288B2 (en) lead acid battery
JP4258701B2 (en) Lead acid battery
EP0107469B1 (en) Low silhouette venting system for electric storage battery
JP4706201B2 (en) Storage battery
JP3257223B2 (en) Automotive lead-acid battery
JPH0430711B2 (en)
JP7210925B2 (en) lead acid battery
JPH054782B2 (en)
JP2006040706A5 (en)
JP7210924B2 (en) lead acid battery
WO2020021910A1 (en) Lead storage battery
CN217917868U (en) Airbag mounting bracket and vehicle
EP4242436A1 (en) A tank
JP2020074334A (en) Lead storage battery
JPH0447903Y2 (en)
JPS6010212Y2 (en) fuel tank
JP4708375B2 (en) Oil sensor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371