JP3615453B2 - Crystal growth apparatus and method - Google Patents

Crystal growth apparatus and method Download PDF

Info

Publication number
JP3615453B2
JP3615453B2 JP2000081666A JP2000081666A JP3615453B2 JP 3615453 B2 JP3615453 B2 JP 3615453B2 JP 2000081666 A JP2000081666 A JP 2000081666A JP 2000081666 A JP2000081666 A JP 2000081666A JP 3615453 B2 JP3615453 B2 JP 3615453B2
Authority
JP
Japan
Prior art keywords
crystal growth
opening
shielding plate
film thickness
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000081666A
Other languages
Japanese (ja)
Other versions
JP2001261488A (en
Inventor
功太 舘野
俊明 香川
主税 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000081666A priority Critical patent/JP3615453B2/en
Publication of JP2001261488A publication Critical patent/JP2001261488A/en
Application granted granted Critical
Publication of JP3615453B2 publication Critical patent/JP3615453B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は結晶成長装置及び方法に係り、例えば、多波長面発光レーザアレイ用の結晶成長に好適な結晶成長装置及び方法に関するものである。
【0002】
【従来の技術】
結晶として多波長面発光レーザアレイ用結晶を例にとり従来の技術を説明する。
【0003】
面発光レーザ基板表面から光を放射する構造であるため2次元アレイ化が容易であり、また低放射角であるためファイバとの結合性が良いなどの特徴がある。
【0004】
今日、光通信の大容量化により複数の波長で伝送する波長多重のシステムが求められている。面発光レーザは高密度なアレイ化が容易なため、発振波長の異なる素子を複数局所的に集積したアレイ素子が実現されれば波長多重システム用の光源として有望となると考えられる。
【0005】
従来の多波長面発光レーザアレイとしては、▲1▼結晶成長装置の特徴であるウエハ面内の成長速度の違いを用いて作製されるもの、▲2▼ウエハに予めパターンを作製し、その大きさの違いで成長速度に差をつけて作製されるもの、▲3▼基板に温度差をつけて成長速度や成長膜の脱離速度に差をつけるもの、等が報告されている。
【0006】
▲1▼のウエハの面内分布を用いたものでは局所的に作製することは不可能であり、▲2▼、▲3▼は成長前にウエハへの加工プロセスを必要とするため歩留まりや信頼性で問題がある。
【0007】
通常の分子線エピタキシャル成長法(MBE)では成長速度の制御に遮蔽板を用いている。しかし、この技術は、微小領域の膜厚分布を目的とした構成では無く、また、遮蔽板をウエハ近傍に設置しても分子の表面での拡散が小さいため微小領域で膜厚分布を制御するためには遮蔽板を細かく動かす必要があり技術的に難しく、また分子線の量は原料の蒸発量を変えることにより行うため時間がかかるという問題があった。
【0008】
【発明が解決しようとする課題】
本発明は加工プロセスを必要とせずに成長の途中で短時間でウエハ面内に局所的に膜厚の分布をつけることが可能であり、位置と膜厚の制御性良く例えば多波長面発光レーザアレイを作製することができる結晶成長装置及び方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、有機金属気相成長法もしくは有機金属を用いたガスソースMBE法に係る化合物半導体結晶成長装置において、スリット状の開口部を有し、該開口部を結晶成長時に結晶を成長させる基の結晶成長面内で移動可能とした遮蔽板を、結晶成長用原料供給部と該基との間に配置したことを特徴とする化合物半導体結晶成長装置である。
【0010】
ここで、前記遮蔽板は2枚配置され、該2枚の遮蔽板の開口部は同一の方向に開口されており、該2枚の遮蔽板は該基の結晶成長面内で逆方向に移動可能とすることが好ましい。
【0011】
また、該開口部は一方向に複数設けられていることが好ましい。
本発明は、有機金属気相成長法もしくは有機金属を用いたガスソースMBE法に係る化合物半導体結晶成長装置において、
開口部のある遮蔽板を基板の結晶成長面内で動かすことにより成長させる結晶の膜厚を前記結晶成長面内で局所的に変えることを特徴とする結晶成長方法である。
【0012】
ここで、開口部のある遮蔽板2枚を互いに逆方向に動かすことにより開口幅を連続的に変化させることが好ましい。
【0013】
また、遮蔽板を動かす速さを変えることにより膜厚を調整することが好ましい。
【0014】
さらに、開口部のある遮蔽板を動かす際に原料の供給量を開口部の場所により変化させて膜厚を調整するが好ましい。
【0015】
なお、遮蔽板と成長面との距離は1cm以下が好ましい。
【0016】
【発明の実施の形態】
(実施形態例1)
本発明の第1実施形態例を説明する。図1は面発光レーザの構成である。n型のInP(100)基板1上に、中間に傾斜組成のAlGaInAs中間層10nmを挟んだ低屈折率の光学長λ/4(λ=1550nm)のn−AlGaInAsと高屈折率の光学長λ/4のn−AlGaInAsの50.5ぺアのn型DBR2を成長後、光学長λの活性層を含むAlGaInAsのスペーサ層3を成長させ、その後膜厚1nmの変調層をウエハ内で膜厚を変化させて成長させた。
【0017】
図2に変調層4を成長させるときの過程を示す。ウエハ21はサセプタ22に下向きに装着されており、変調層4の成長時に、開口部23のある遮蔽板24をウエハ21から50μm離して結晶原料供給部25とウエハ21(結晶を成長させる基体)との間に配置した。10μmの幅の開口部23が20秒間に2mm動く間にGa、Al、Inを含む原料の全流量を10sccmから100sccmに、引き続き2mm動く間に100sccmから10sccmに繰り返し線形的に変化させた。
【0018】
ウエハ21全体に開口部23を移動させて成長した後、ウエハ21を90°回転し、今度は1mmを20秒で動かしながら原料20sccmを流す操作と止める操作とを繰り返した。ウエハ21全体に開口部23を移動させて成長した後、遮蔽板24をウエハ21の表面付近から離し、通常の成長状態に戻した。
【0019】
引き続きウエハ21全体に、中間に傾斜組成のAlGaInAs中間層10nmを挟んだ低屈折率の光学長λ/4のp−AlGaInAsと高屈折率の光学長λ/4のp−AlGaInAsの40ペアのp型DBR4を成長させた。
【0020】
図3に面発光レーザの反射スぺクトルを示す。ここで示す様に変調層の膜厚1を変えることで発振波長に対応した反射率の低下の部分つまり共振波長が変化することがわかる。
【0021】
図4は、変調層4の厚さ1と発振波長を示す。膜厚1をアレイ内で変化させることで等間隔の発振波長を有した多波長面発光レーザアレイの作製が可能である。
【0022】
次に、ウエハ21表面にAuZnNiからなるリング電極を作製し、10μmφの径でメサを作製した後SiNxで表面を保護し、上側にCr/Auよりなる配線電極、下側にAuGeNiからなる電極を形成した。
【0023】
図5は作製した250μm間隔の2×5素子の多波長面発光レーザアレイ模式図と作製した素子の発振波長を示す。1542nmから1560nmまで2nm間隔で制御良く配置されていることがわかる。
【0024】
図6は作製したアレイ素子の注入電流に対する光出力を示す。10素子とも同じ良好な閾値電流及び光出力であることがわかった。
【0025】
(実施形態例2)
本発明の第2実施形態例を説明する。図1と同様な面発光レーザの構成である。
【0026】
p型のInP(311)B基板1上に、中間に傾斜組成のAlGaInAs中間層10nmを挟んだ低屈折率の光学長λ/4(λ=1550nm)のp−AlGaInAsと高屈折率の光学長λ/4のp−AlGaInAsの50.5ペアのp型DBR2を成長後、光学長λの活性層を含むAlGaInAsのスペーサ層3を成長させ、その後膜厚1nmの変調層4をウエハ内で膜厚を変化させて成長させた。
【0027】
図7に変調層4を成長するときの過程を示す。ウエハ21はサセプタ22に下向きに装着されており、変調層4の成長時に2mm間隔で幅2mmの繰り返し開口部のある遮蔽板24a,24bが2枚重なった遮蔽装置をウエハ21から50μm離して配置した。
【0028】
遮蔽板24a,24bの2枚を互いに反対方向に移動させることで変化する実際の開口部の幅を、原料を100sccm流しながら0mmから2mmに20秒で変化させた。
【0029】
その後、ウエハ21を90°回転し、今度も2枚の遮蔽板24a,24bで形成される開口部を、原料を10sccm流しながら0mmから2mmに20秒で変化させた。
【0030】
遮蔽板24a,24bをウエハ表面付近から離して通常の成長状態に戻した後、引き続きウエハ全体に、中間に傾斜組成のAlGaInAs中間層10nmを挟んだ低屈折率の光学長λ/4のn−AlGaInAsと高屈折率の光学長λ/4のn−AlGaInAsの40ぺアのn型DBR4を成長させた。
【0031】
次に、ウエハ表面にAuGeNiからなるリング電極を作製し、10μmφの径でメサを作製した後SiNxで表面を保護し、上側にCr/Auよりなる配線電極、下側にAuZuNiからなる電極を形成した。
【0032】
図8は作製した250μm間隔の5×5素子の多波長面発光レーザアレイを上から見た図であり、作製した素子の発振波長を同時に示す。1535nmから1559nmまで1nm間隔で制御良く配置されていることがわかる。25素子とも実施態様例1と同じく良好な閾値電流及び光出力であることがわかった。
【0033】
(実施態様例3)
上記実施態様例では有機金属気相成長法で行ったが、同じ方法を、表面での拡散の大きい有機金属を用いたガスソースMBEにおいても取り入れることができる。
【0034】
図9はガスソースMBEを示す正面図であり、(a)は通常の成長時の状態を示し、(b)は遮蔽板を導入した状態を示している。
【0035】
噴出セル81a,81bが結晶原料供給部であり、噴出セル81a,81bの噴出口とウエハ21との間に、移動可能な遮蔽板24a,24bが配置されている。
【0036】
本装置においても実施態様例2と同様、成長の途中で短時間でウエハ面内に局所的に膜厚の分布をつけることが可能である。
【0037】
本発明は以上述べた実施態様例の他に例えば次ぎのような各種の変形例も可能である。
【0038】
例えば、材料系もAlGaInAs限らずAlGaAs系、GaInAsP系、GaAlInAsSb系、AlGaInN系にも適用できる。さらに本方法による結晶成長時における膜厚変調技術は面発光レーザに限らず他の光、電子デバイスにも適用できる。また、遮蔽板を複数用いて移動する方向を変えることでウエハを回転して向きを変えなくても―度に2次元的な膜厚分布を形成できる。また、遮蔽板とウエハを同時回転させることで原料の流れる方向での膜厚分布の影響を低減できる。さらに、ウエハ遮蔽板の距離を離すことで遮蔽の影響をなくした成長が可能となる。
【0039】
【発明の効果】
本発明によれば、加工プロセスを必要とせずに成長の途中で短時間でウエハ面内に局所的に膜厚の分布をつけることが可能となる。
そのため、例えば、位置と膜厚の制御性良く多波長面発光レーザアレイを作製することが可能となる。また、例えば、アレイ内の素子と発振波長を制御良く対応させた、素子特性や素子寿命等の良好な特性の多波長面発光レーザアレイを実現することも可能となる。
【図面の簡単な説明】
【図1】面発光レーザの構成を示す概念的断面図である。
【図2】変調層の成長を説明するための図である。
【図3】面発光レーザ構造の反射スぺクトルを示すグラフである。
【図4】変調層の厚さと発振波長の関係を示すグラフである。
【図5】2×5多波長面発光レーザアレイの斜視図である。
【図6】注入電流対光出力を示すグラフである。
【図7】変調層の成長を説明するための図である。
【図8】5×5多波長面発光レーザアレイの平面図である。
【図9】MBE装置の概念的正面図である。
【符号の説明】
1 基
2 DBR層、
3 スペーサ層、
4 変調層、
5 DBR層、
21 ウエハ、
22 サセプタ、
23 開口部、
24 遮蔽板、
24a,24b 遮蔽板、
25 結晶原料供給部、
81a,81b 原料供給部。
[0001]
[Industrial application fields]
The present invention relates to a crystal growth apparatus and method, for example, a crystal growth apparatus and method suitable for crystal growth for a multiwavelength surface emitting laser array.
[0002]
[Prior art]
The prior art will be described by taking a crystal for a multi-wavelength surface emitting laser array as an example.
[0003]
Since it is a structure that emits light from the surface emitting laser substrate surface, it is easy to form a two-dimensional array, and since it has a low emission angle, it has good characteristics such as good connectivity with fibers.
[0004]
Today, there is a demand for wavelength multiplexing systems that transmit at a plurality of wavelengths due to an increase in capacity of optical communication. Since surface emitting lasers can be easily arrayed at high density, if an array element in which a plurality of elements having different oscillation wavelengths are locally integrated is realized, it is considered promising as a light source for a wavelength multiplexing system.
[0005]
Conventional multi-wavelength surface emitting laser arrays are: (1) manufactured by using the difference in growth rate within the wafer surface, which is a feature of the crystal growth apparatus, and (2) a pattern prepared in advance on the wafer. There are reports on the difference in the growth rate and the difference in the growth rate, and (3) the difference in the growth rate and growth film desorption rate due to the temperature difference of the substrate.
[0006]
It is impossible to fabricate locally using the wafer distribution in (1), and (2) and (3) require a processing process on the wafer before growth, so yield and reliability There is a problem with sex.
[0007]
In a normal molecular beam epitaxial growth method (MBE), a shielding plate is used to control the growth rate. However, this technology is not designed for the film thickness distribution in the micro area, and even if a shielding plate is placed near the wafer, the diffusion on the surface of the molecule is small, so the film thickness distribution is controlled in the micro area. For this purpose, it is necessary to move the shielding plate finely, which is technically difficult, and the amount of molecular beam is changed by changing the evaporation amount of the raw material, which takes time.
[0008]
[Problems to be solved by the invention]
The present invention can locally distribute the film thickness within the wafer surface in a short time during the growth without requiring a processing process. For example, a multi-wavelength surface emitting laser with good position and film thickness controllability. It is an object of the present invention to provide a crystal growth apparatus and method capable of manufacturing an array.
[0009]
[Means for Solving the Problems]
The present invention relates to a compound semiconductor crystal growth apparatus according to a metal organic vapor phase epitaxy method or a gas source MBE method using an organic metal, and has a slit-like opening, and the opening grows a crystal during crystal growth. The compound semiconductor crystal growth apparatus is characterized in that a shielding plate that is movable in the crystal growth plane of the plate is disposed between the crystal growth raw material supply unit and the substrate.
[0010]
Here, the shielding plate is arranged two openings of the two shielding plates are opened in the same direction, the two shielding plates in the opposite direction in the crystal growth surface of the substrate It is preferable to be movable.
[0011]
Further, it is preferable that a plurality of the openings are provided in one direction.
The present invention relates to a compound semiconductor crystal growth apparatus according to an organic metal vapor phase growth method or a gas source MBE method using an organic metal.
A crystal growth method characterized in that a film thickness of a crystal to be grown is locally changed in the crystal growth plane by moving a shielding plate having an opening in the crystal growth plane of the substrate.
[0012]
Here, it is preferable that the opening width is continuously changed by moving two shielding plates having openings in opposite directions.
[0013]
Further, it is preferable to adjust the film thickness by changing the speed of moving the shielding plate.
[0014]
Furthermore, it is preferable to adjust the film thickness by changing the supply amount of the raw material depending on the location of the opening when moving the shielding plate having the opening.
[0015]
The distance between the shielding plate and the growth surface is preferably 1 cm or less.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(Example 1)
A first embodiment of the present invention will be described. FIG. 1 shows the configuration of a surface emitting laser. An n- AlGaInAs having a low refractive index λ / 4 (λ = 1550 nm) and an optical length λ having a high refractive index, with an AlGaInAs intermediate layer 10 nm in the middle sandwiched on an n-type InP (100) substrate 1. / 4 n-AlGaInAs 50.5 pair n-type DBR2 is grown, and then an AlGaInAs spacer layer 3 including an active layer having an optical length λ is grown, and then a 1 nm-thick modulation layer is formed in the wafer. Changed and grew.
[0017]
FIG. 2 shows a process when the modulation layer 4 is grown. The wafer 21 is mounted downward on the susceptor 22, and when the modulation layer 4 is grown, the shielding plate 24 having the opening 23 is separated from the wafer 21 by 50 μm and the crystal material supply unit 25 and the wafer 21 (substrate on which crystals are grown). And placed between. While the opening 23 having a width of 10 μm moved 2 mm for 20 seconds, the total flow rate of the raw material containing Ga, Al, and In was repeatedly and linearly changed from 10 sccm to 100 sccm, and continuously from 100 sccm to 10 sccm while moving 2 mm.
[0018]
After growing by moving the opening 23 over the entire wafer 21, the wafer 21 was rotated by 90 °, and this time, the operation of flowing 20 sccm of raw material and the operation of stopping were repeated while moving 1 mm in 20 seconds. After growing by moving the opening 23 over the entire wafer 21, the shielding plate 24 was moved away from the vicinity of the surface of the wafer 21 to return to the normal growth state.
[0019]
Subsequently, 40 pairs of p-AlGaInAs having a low refractive index optical length λ / 4 and p-AlGaInAs having a high refractive index optical length λ / 4 are sandwiched on the entire wafer 21 by sandwiching an AlGaInAs intermediate layer 10 nm having a gradient composition in the middle. A type DBR4 was grown.
[0020]
FIG. 3 shows a reflection spectrum of the surface emitting laser. As shown here, it can be seen that by changing the thickness 1 of the modulation layer, the portion of the reflectivity drop corresponding to the oscillation wavelength, that is, the resonance wavelength changes.
[0021]
FIG. 4 shows the thickness 1 of the modulation layer 4 and the oscillation wavelength. By changing the film thickness 1 within the array, it is possible to produce a multi-wavelength surface emitting laser array having oscillation wavelengths at equal intervals.
[0022]
Next, a ring electrode made of AuZnNi is produced on the surface of the wafer 21, a mesa is produced with a diameter of 10 μmφ, the surface is protected with SiNx, a wiring electrode made of Cr / Au on the upper side, and an electrode made of AuGeNi on the lower side Formed.
[0023]
FIG. 5 shows a schematic diagram of a manufactured multi-wavelength surface emitting laser array of 2 × 5 elements with an interval of 250 μm and the oscillation wavelength of the manufactured element. It can be seen that 1542 nm to 1560 nm are arranged with good control at intervals of 2 nm.
[0024]
FIG. 6 shows the optical output with respect to the injection current of the fabricated array element. It was found that all 10 elements had the same good threshold current and light output.
[0025]
Embodiment 2
A second embodiment of the present invention will be described. It is the structure of the surface emitting laser similar to FIG.
[0026]
Low-refractive-index optical length λ / 4 (λ = 1550 nm) p-AlGaInAs and high-refractive-index optical length on a p-type InP (311) B substrate 1 with an AlGaInAs intermediate layer 10 nm having a gradient composition in between. After growing 50.5 pairs of p-type DBR 2 of λ / 4 p-AlGaInAs, an AlGaInAs spacer layer 3 including an active layer of optical length λ is grown, and then a modulation layer 4 having a thickness of 1 nm is formed in the wafer. Grow with varying thickness.
[0027]
FIG. 7 shows a process when the modulation layer 4 is grown. The wafer 21 is mounted downward on the susceptor 22, and a shielding device in which two shielding plates 24 a and 24 b having repeated opening portions with a width of 2 mm are overlapped at a spacing of 2 mm when the modulation layer 4 is grown is placed 50 μm away from the wafer 21. did.
[0028]
The actual width of the opening, which is changed by moving the two shielding plates 24a and 24b in opposite directions, was changed from 0 mm to 2 mm in 20 seconds while the raw material was supplied at 100 sccm.
[0029]
Thereafter, the wafer 21 was rotated by 90 °, and the opening formed by the two shielding plates 24a and 24b was changed from 0 mm to 2 mm in 20 seconds while flowing the raw material at 10 sccm.
[0030]
After the shielding plates 24a and 24b are separated from the vicinity of the wafer surface and returned to the normal growth state, the n− of the low refractive index optical length λ / 4 with the intermediate layer of the AlGaInAs intermediate layer 10 nm having the gradient composition sandwiched between the entire wafer. A 40-pair n-type DBR4 of AlGaInAs and n-AlGaInAs having a high refractive index and an optical length of λ / 4 was grown.
[0031]
Next, a ring electrode made of AuGeNi is produced on the wafer surface, a mesa is produced with a diameter of 10 μmφ, the surface is protected with SiNx, and a wiring electrode made of Cr / Au is formed on the upper side and an electrode made of AuZuNi is formed on the lower side did.
[0032]
FIG. 8 is a top view of the manufactured multi-wavelength surface emitting laser array of 5 × 5 elements with an interval of 250 μm, and shows the oscillation wavelength of the manufactured elements at the same time. It can be seen that 1535 nm to 1559 nm are arranged with good control at 1 nm intervals. It was found that all 25 elements had good threshold current and light output as in Example 1.
[0033]
Embodiment Example 3
In the above embodiment example, the metal organic vapor phase epitaxy is performed. However, the same method can be applied to a gas source MBE using an organic metal having a large diffusion on the surface.
[0034]
FIG. 9 is a front view showing the gas source MBE, where (a) shows a state during normal growth, and (b) shows a state where a shielding plate is introduced.
[0035]
The ejection cells 81 a and 81 b are crystal raw material supply units, and movable shielding plates 24 a and 24 b are arranged between the ejection ports of the ejection cells 81 a and 81 b and the wafer 21.
[0036]
Also in this apparatus, as in Embodiment 2, it is possible to locally distribute the film thickness within the wafer surface in a short time during the growth.
[0037]
In addition to the above-described embodiments, the present invention can be modified in various ways as follows.
[0038]
For example, the material system is not limited to AlGaInAs but can be applied to AlGaAs, GaInAsP, GaAlInAsSb, and AlGaInN systems. Furthermore, the film thickness modulation technique at the time of crystal growth by this method is not limited to the surface emitting laser, but can be applied to other optical and electronic devices. In addition, by changing the moving direction using a plurality of shielding plates, a two-dimensional film thickness distribution can be formed each time without rotating and changing the direction of the wafer. Further, by simultaneously rotating the shielding plate and the wafer, the influence of the film thickness distribution in the direction in which the raw material flows can be reduced. Furthermore, the growth without the influence of shielding becomes possible by increasing the distance between the wafer shielding plates.
[0039]
【The invention's effect】
According to the present invention, it is possible to locally distribute the film thickness within the wafer surface in a short time during the growth without requiring a processing process.
Therefore, for example, a multiwavelength surface emitting laser array can be fabricated with good controllability of position and film thickness. In addition, for example, it is possible to realize a multi-wavelength surface emitting laser array having good characteristics such as element characteristics and element lifetime, in which the elements in the array correspond to the oscillation wavelength with good control.
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view showing a configuration of a surface emitting laser.
FIG. 2 is a diagram for explaining the growth of a modulation layer.
FIG. 3 is a graph showing a reflection spectrum of a surface emitting laser structure.
FIG. 4 is a graph showing the relationship between the thickness of a modulation layer and the oscillation wavelength.
FIG. 5 is a perspective view of a 2 × 5 multiwavelength surface emitting laser array.
FIG. 6 is a graph showing injection current versus light output.
FIG. 7 is a diagram for explaining the growth of a modulation layer.
FIG. 8 is a plan view of a 5 × 5 multiwavelength surface emitting laser array.
FIG. 9 is a conceptual front view of an MBE device.
[Explanation of symbols]
1 group plate <br/> 2 DBR layer,
3 Spacer layer,
4 modulation layer,
5 DBR layer,
21 wafers,
22 Susceptor,
23 opening,
24 shielding plate,
24a, 24b shielding plate,
25 Crystal raw material supply section,
81a, 81b Raw material supply unit.

Claims (7)

有機金属気相成長法もしくは有機金属を用いたガスソースMBE法に係る化合物半導体結晶成長装置において、
スリット状の開口部を有し、該開口部を結晶成長時に結晶を成長させる基の結晶成長面内で移動可能とした遮蔽板を、結晶成長用原料供給部と該基との間に配置したことを特徴とする化合物半導体結晶成長装置。
In a compound semiconductor crystal growth apparatus according to an organic metal vapor phase growth method or a gas source MBE method using an organic metal,
It has a slit-shaped opening, a shield plate which is movable in a crystal growth surface of the board growing crystals the opening during the crystal growth, between the crystal-growing raw material supply unit and the substrate A compound semiconductor crystal growth apparatus characterized by being arranged.
前記遮蔽板は2枚配置され、該2枚の遮蔽板の開口部は同一の方向に開口されており、該2枚の遮蔽板は該基の結晶成長面内で逆方向に移動可能としたことを特徴とする請求項1記載の結晶成長装置。The shielding plate is arranged two openings of the two shielding plates are opened in the same direction, the two shielding plates are movable in opposite directions in the crystal growth surface of the substrate The crystal growth apparatus according to claim 1. 該開口部は一方向に複数設けられていることを特徴とする請求項1または2に記載の結晶成長装置。The crystal growth apparatus according to claim 1, wherein a plurality of the openings are provided in one direction. 有機金属気相成長法もしくは有機金属を用いたガスソースMBE法に係る化合物半導体結晶成長装置において、
開口部のある遮蔽板を基板の結晶成長面内で動かすことにより成長させる結晶の膜厚を前記結晶成長面内で局所的に変えることを特徴とする化合物半導体結晶成長方法。
In a compound semiconductor crystal growth apparatus according to an organic metal vapor phase growth method or a gas source MBE method using an organic metal,
A compound semiconductor crystal growth method characterized in that a film thickness of a crystal to be grown is locally changed in the crystal growth plane by moving a shielding plate having an opening in the crystal growth plane of the substrate.
開口部のある遮蔽板2枚を互いに逆方向に動かすことにより開口幅を連続的に変化させることを特徴とする請求項4記載の結晶成長方法。5. The crystal growth method according to claim 4, wherein the opening width is continuously changed by moving two shielding plates having openings in opposite directions. 遮蔽板を動かす速さを変えることにより膜厚を調整することを特徴とする請求項4または5記載の結晶成長方法。6. The crystal growth method according to claim 4, wherein the film thickness is adjusted by changing a moving speed of the shielding plate. 開口部のある遮蔽板を動かす際に原料の供給量を開口部の場所により変化させて膜厚を調整することを特徴とする請求項4乃至6のいずれか1項に記載の結晶成長方法。The crystal growth method according to any one of claims 4 to 6, wherein when the shielding plate having the opening is moved, the film thickness is adjusted by changing the supply amount of the raw material depending on the position of the opening.
JP2000081666A 2000-03-23 2000-03-23 Crystal growth apparatus and method Expired - Fee Related JP3615453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000081666A JP3615453B2 (en) 2000-03-23 2000-03-23 Crystal growth apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000081666A JP3615453B2 (en) 2000-03-23 2000-03-23 Crystal growth apparatus and method

Publications (2)

Publication Number Publication Date
JP2001261488A JP2001261488A (en) 2001-09-26
JP3615453B2 true JP3615453B2 (en) 2005-02-02

Family

ID=18598574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000081666A Expired - Fee Related JP3615453B2 (en) 2000-03-23 2000-03-23 Crystal growth apparatus and method

Country Status (1)

Country Link
JP (1) JP3615453B2 (en)

Also Published As

Publication number Publication date
JP2001261488A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
CA2491941A1 (en) Nanostructures and methods for manufacturing the same
JP3540042B2 (en) Manufacturing method of semiconductor device
US9685766B2 (en) Multiwavelength quantum cascade laser via growth of different active and passive cores
TW200828707A (en) Multiwavelength semiconductor laser array and method of manufacturing the same
EP1480304B1 (en) Quantum nano-composite semiconductor laser and quantum nano-composite array
Koyama et al. Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD
US7474683B2 (en) Distributed feedback semiconductor laser
JPH05251738A (en) Manufacture of semiconductor optical device array
Yuen et al. Multiple-wavelength vertical-cavity surface-emitting laser arrays with a record wavelength span
EP0602579B1 (en) Semiconductor laser and method of making the semiconductor laser
EP0529990B1 (en) Semiconductor laser device and method of manufacturing the same
US5029176A (en) Monolithic multiple-wavelength laser array
JP3615453B2 (en) Crystal growth apparatus and method
US6858519B2 (en) Atomic hydrogen as a surfactant in production of highly strained InGaAs, InGaAsN, InGaAsNSb, and/or GaAsNSb quantum wells
JP3414992B2 (en) Semiconductor optical device and method of manufacturing the same
Luong et al. Monolithic wavelength-graded VCSEL and resonance-enhanced photodetector arrays for parallel optical interconnects
EP0469085A1 (en) Cross-coupled quantum-well stripe laser array
JP2002289971A (en) Semiconductor optical element and its manufacturing method
JPH09283858A (en) Compd. semiconductor optical device manufacturing method and apparatus
JP7103552B1 (en) Optical semiconductor device
JPH1117269A (en) Semiconductor laser device and manufacture of the same
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
JP2004087564A (en) Semiconductor laser element and manufacturing method thereof
JPH01186693A (en) Semiconductor device and manufacture thereof
JP2002217485A (en) Optical semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees