JP3613387B2 - Ferritic stainless steel hot rolled steel sheet with excellent skin resistance and high temperature fatigue properties after forming - Google Patents
Ferritic stainless steel hot rolled steel sheet with excellent skin resistance and high temperature fatigue properties after forming Download PDFInfo
- Publication number
- JP3613387B2 JP3613387B2 JP36137499A JP36137499A JP3613387B2 JP 3613387 B2 JP3613387 B2 JP 3613387B2 JP 36137499 A JP36137499 A JP 36137499A JP 36137499 A JP36137499 A JP 36137499A JP 3613387 B2 JP3613387 B2 JP 3613387B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- high temperature
- rolled steel
- ferritic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、成形加工用に用いて好適であり、とくに深絞り性 ( r値 ) 、成形加工後の耐肌荒れ性および疲労特性に優れるフェライト系ステンレス熱延鋼板に関するものである。
【0002】
【従来の技術】
フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べると加工性や耐食性の点ではやや劣っているものの、耐応力腐食割れ性に優れるとともに安価であることから各種厨房器具、自動車排気系部品(エキゾーストマニホールド、エキゾーストパイプ、コンバーターシェル、マフラー等)などの分野で幅広く使用されている。
このような加工用途に用いられる場合において、フェライト系ステンレス鋼の加工性を改善するために、例えば特開昭51−14811号公報、特開昭51−14812号公報、特開昭52−31919号公報などに開示されているように、Ti,Nb といった元素を添加して鋼中に固溶するCやNなどの不純物元素を固定する技術が広く行われている。
【0003】
さて、このフェライト系ステンレス鋼板は、通常、連続鋳造鋳片を加熱した後、熱間圧延−熱延板焼鈍・酸洗−冷間圧延−仕上げ焼鈍・酸洗の各工程を経て製造される。そこで、これらのうちの一部の工程、とくに冷間圧延以降の工程を省略して製造されるステンレス熱延鋼板は、冷間圧延以降の設備費や運転費を大幅に軽減できるため、オーステナイト系に比較して安価であるフェライト系ステンレス鋼板を一層安価にかつ短期間に製造することができ、工業上のメリットは極めて大きい。
【0004】
【発明が解決しようとする課題】
しかしながら、一般に熱延鋼板は冷延鋼板と比較して焼鈍後の結晶粒が大きく、成形加工後の表面の肌荒れが大きいという問題があった。この粗大結晶粒および成形加工後の肌荒れは、表面の美観を損なうばかりでなく、自動車排気系部品(エキゾーストパイプなど)のように、高温下でエンジンなどの振動を受ける部材においては高温疲労特性を低下させるという問題もあった。
この現象は、高温疲労環境下において、粗大結晶粒を有する組織では、母材より強度が低い粒界で容易に疲労破壊が発生すること、あるいは表面肌荒れ部に応力集中し破壊の起点となることにより説明される。
ところで、このように加工後の肌荒れや疲労破壊特性に大きな影響を及ぼす鋼板の結晶粒径は、焼鈍の温度・時間などの条件によりある程度調整可能であるが、結晶粒径を微細にするために低温・短時間の焼鈍を施した場合には、完全な再結晶組織は得られなくなり、鋼板の板厚方向中央部付近は熱延時の展伸組織を残したままのものとなる。その結果、伸び(El.)や深絞り性の指標となるランクフォード値(r値)が小さくなり、十分な成形加工性を得ることが出来ない。これらのことが、フェライト系ステンレス熱延鋼板における良好な成形加工性と優れた耐肌あれ性や高温疲労特性を両立させることを困難にし、前記特性が要求される自動車排気系部材へのフェライト系ステンレス熱延鋼板の適用を妨げている大きな原因であった。
【0005】
そこで、本発明の目的は、深絞り性 ( r値 ) 、成形加工後の耐肌荒れ性および高温疲労特性が良好な、しかも成形加工性を損なうことのない、フェライト系ステンレス熱延鋼板を提供することにある。
【0006】
【課題を解決するための手段】
さて、上掲の目的の実現に向けて鋭意研究した結果、発明者らは、フェライト系ステンレス鋼において、TiによるC,Nの固定、VとBの複合添加などの化学組成を適正範囲に調整することにより、深絞り性 ( r値 ) 、成形加工後の耐肌荒れ性、高温疲労特性および成形加工性のいずれもに優れるステンレス熱延鋼板を製造可能であることを見いだし、本発明を完成するに至った。
【0007】
本発明は、上記の考え方を具体化した下記の構成を要旨とするものである。
(1) C:0.03wt%以下、Si:2.0wt%以下、Mn:0.8wt%以下、S:0.03wt%以下、Cr:6〜25wt%、N:0.03wt%以下、Al:0.3wt%以下、Ti:0.4wt%以下、V:0.02〜0.4wt%、B:0.0002〜0.0050wt%、Nb:0.5wt%以下を含み、かつ下記式:
Ti/48>N/14
Ti/48+Nb/92>N/14+C/12
V/B>10
を満たして含有し、残部がFeおよび不可避的不純物からなり、r値が 1.05 以上であることを特徴とする深絞り性、成形加工後の耐肌あれ性および高温疲労特性に優れるフェライト系ステンレス熱延鋼板。
【0008】
(2) C:0.03wt%以下、Si:2.0wt%以下、Mn:0.8wt%以下、S:0.03wt%以下、Cr:6〜25wt%、N:0.03wt%以下、Al:0.3wt%以下、Ti:0.4wt%以下、V:0.02〜0.4wt%、B:0.0002〜0.0050wt%、Nb:0.5wt%以下を含み、かつ下記式:
Ti/48>N/14
Ti/48+Nb/92>N/14+C/12
V/B>10
を満たして含有し、さらにCa:0.01wt%以下、Mo:2.0wt%以下、Cu:2.0wt%以下から選ばれるいずれか1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、r値が 1.05 以上であることを特徴とする深絞り性、成形加工後の耐肌あれ性および高温疲労特性に優れるフェライト系ステンレス熱延鋼板。
【0009】
【作用】
以下、本発明における鋼の各化学成分値を上記要旨構成のように限定した理由について説明する。
C:0.03wt%以下
Cは、成形加工性(r値)、耐食性を低下させる元素であるので、可能な限り低減させることが望ましい。また、後述するようなVの効果を発揮させるためにも、固溶する量を可能な限り低減することが望ましい。そのために本発明においては、CをTiあるいはさらにNbの添加により固定し、成形加工性およびフェライト安定性への悪影響を軽減し、Vの効果を充分に発揮させる。しかしながら、C含有量が0.03wt%を超えると、鋼板中の析出物量が増加し加工性の低下および表面性状の悪化を招くので、その含有範囲を0.03wt%以下、好ましくは0.015wt%以下とする。
【0010】
Si:2.0 wt%以下
Siは、鋼の脱酸のために有効なほか、高温での耐酸化性や高温塩害特性を向上させる元素である。しかし、2.0 wt%を超えて含有すると伸び特性を劣化させるので、2.0 wt%以下に限定する。なお、自動車排気系部材などの用途で使用する場合には、0.6 wt%以上含有することが望ましい。
【0011】
Mn:0.8 wt%以下
Mnは、鋼中のSを析出固定し、熱間圧延性を改善するのに有効な元素であるが、成形加工性に有害な元素である。従って、その添加範囲は0.8 wt%以下、好ましくは0.5 wt%以下とする。
【0012】
S:0.03wt%以下
Sは、熱間加工性を劣化させる有害元素であるが、通常Mnと結合してMnSを形成するため0.03wt%以下の含有では影響は小さい。しかしながら、0.03wt%を超えて含有すると析出したMnSが初錆の起点となり耐食性が劣化するとともに、結晶粒界に偏析し粒界脆化を促進する。したがって含有量は、0.03wt%以下、好ましくは0.005 wt%以下に制限する。
【0013】
Cr:6〜25wt%
Crは、耐食性および高温下での耐酸化性を向上させるために不可欠な元素である。Crの添加量が6wt%未満では十分な効果が得られず、一方25wt%を超えて添加すると加工性が劣化し、素材コストの上昇をも招くため、添加量は6wt%〜25wt%とする。
なお、成形加工性を優先する用途への使用を目的とする場合には15wt%以下とすることが、また常温での耐食性が求められる用途に使用する場合には10wt%以上とすることが望ましい。
【0014】
N:0.03wt%以下
Nは、Cと同様に、鋼板の成形加工性(r値)を低下させる元素であるので、可能な限り低減させることが望ましい。また、後述するようなBの効果を発揮させるためにも、固溶する量を可能な限り低減することが望ましい。そのために本発明においては、NをTiあるいはさらにNbの添加により固定し、無害化する。しかしながら、その含有量が0.03wt%を超えると鋼板中の析出物量が増加し、成形加工性の低下および表面性状の悪化を招く。従って、Nの含有量は0.03wt%以下、好ましくは0.01wt%以下に制限する。
【0015】
Al:0.3 wt%以下
Alは、脱酸に有効な元素であるが、過剰に添加すると熱延焼鈍板の加工性を劣化させるため、0.3 wt%以下、好ましくは0.1 wt%以下とする。
【0016】
Ti:0.4 wt%以下
Tiは、強力なC,N安定化元素であり、成形加工性を改善する効果を有する。また、Cr炭窒化物の粒界析出を抑制して耐食性を改善する効果も有する。これらの効果を発揮させるためには、Tiの添加量は後述するようなC,Nとの関係を満たす必要がある。一方、Ti添加量が0.4 wt%を超えると、成形加工性がかえって低下するとともに、溶接部の加工性が大きく低下する。また、靭性の劣化を引き起こし製造性を低下させる。従って、Ti添加量は0.4 wt%以下とする。
【0017】
V:0.02〜0.4 wt%、
B:0.0002〜0.0050wt%、かつ V/ B>10
VおよびBは、本発明において極めて重要な元素である。VとBとを、それぞれ0.02〜0.4 wt%、0.0002〜0.0050wt%、かつV/ B>10を満たして複合添加することにより、熱延焼鈍板の結晶粒を微細化し、かつ再結晶後の粒成長を抑制する効果を有する。
このような効果が得られる理由については必ずしも明確ではないが、Vはフェライト粒内に固溶することにより焼鈍時の再結晶粒の微細化および粒成長抑制し、Bは焼鈍再結晶後のフェライト粒界に濃縮し粒界移動を遅らせることにより粒成長抑制を補助するものと考えられる。また、VとBの含有比により効果が異なるのは、フェライト結晶粒の体積とフェライト粒界面積のバランスが関係するものと思われる。このように結晶粒の細粒化が達成されることにより、成形加工後の表面の肌荒れが著しく改善され、さらに、自動車排気系部材(エキゾーストパイプなど)のように高温下で高サイクルの機械振動を受ける材料の疲労特性も向上する。
結晶粒の細粒化により、疲労特性が向上する理由は、おおよそ次のような理由によるものと思われる。
1)応力集中により破壊の起点となりやすい、成形加工後の肌荒れが軽減できる。
2)粒界は応力集中が大きく亀裂の伝播経路になるが、細粒化すれば、粒界面積の増加により単位粒界当たりの応力集中が緩和される。
3)Bの粒界濃縮により、粒界強度が強化される。
ここで、Vは、Ti, NbによるCの析出固定が十分でない場合には、Cと反応してV2 CあるいはVCとして析出し粒成長抑制効果が低下する。一方、Bは、TiによるNの析出固定が十分でない場合には、Nと反応してBNとして析出し、逆に粒成長を促進させる。
したがって、Cは、Vより強力な炭化物形成元素であるTi, Nbの十分な添加により、Nは、VおよびBより強力な窒化物形成元素であるTiの十分な添加により析出固定されなければならない。
なお、Bの添加効果は、上記のほかに、熱延中の加工歪みの蓄積を促進し、焼鈍後の再結晶集合組織に関して{111}面の集積を高め、成形性を改善する効果も有するので、冷延鋼板と比較して成形性の劣る熱延鋼板にとって添加の意義は大きい。
上述したV,Bの添加効果は、V量が0.02wt%以上、B量が0.0002wt%以上、かつ各添加量の比V/ B>10を満たした場合に始めて発揮される。
一方、VおよびBをそれぞれ0.4 wt%、0.0050wt%を超えて過剰に添加すると、焼鈍中の結晶粒微細化および成長抑制、成形性改善の効果が飽和するだけでなく、逆に材質が硬化し伸び特性が劣化して成形加工性が低下する。したがって、V量は0.02〜0.4 wt%、B量は0.0002〜0.0050wt%、かつV/ B>10とする。
【0018】
Nb:0.5 wt%以下
Nbは、C,N安定化元素であり、Tiを補完して、成形加工性を改善するとともに、Cr炭窒化物の粒界析出を抑制して耐食性を改善する効果を有する。これらの効果を発揮させるためには、Nbの添加量は後述するようなC,Nとの関係を満たす必要がある。一方、Nb添加量が0.5 wt%を超えると、成形加工性がかえって低下するとともに、溶接部の加工性が大きく低下する。また、靭性の劣化を引き起こし製造工程において支障をきたす。従って、Nb添加量は0.4 wt%以下とする。なお、Tiと複合添加する場合、Ti+Nbで0.6 wt%以下に制限するのが好ましい。
【0019】
Ti/48 >N/14 かつ
Ti/48 +Nb/92 >N/14 +C/12
TiおよびNbは、前述したVおよびBの効果を有効に作用させるため、すなわち、NをTiNとして、CをTiCまたはNbCとして析出固定するために添加する。そこで、化学量論比から、TiおよびNbの複合添加の場合にはTi/48 >N/14 かつTi/48 +Nb/92 >N/14 +C/12 を満足する量を添加することが必要である。
【0020】
本発明では、さらに、必要に応じて以下の元素を含有することができる。
Ca:0.01wt%以下
Caは、溶鋼中でCaSを生成して、Tiを含有する溶鋼を鋳造する際に発生するTiS系介在物によるノズル詰まりを抑制するのに有用な元素である。しかし、過剰に添加すると耐食性の劣化をもたらすので、その添加量を0.01wt%以下、好ましくはS含有量との関係においてS≦(32/40)Ca≦1.5 Sの範囲とする。
【0021】
Mo:2.0 wt%以下
Moは、耐食性を一層向上させる効果があり、必要に応じて添加することができる。しかしながら、添加量が2.0 wt%を超えると熱間圧延中の加工性が低下するので、2.0 wt%以下とする。なお、Cuと複合添加する場合には、両者の合計含有量で2.0 wt%以下とするのが望ましい。
【0022】
Cu:2.0 wt%以下
Cuは、耐食性を一層向上させる効果があり、必要に応じて添加することができる。しかしながら、添加量が2.0 wt%を超えると熱間圧延中の加工性が低下するので、2.0 wt%以下とする。なお、Moと複合添加する場合には、両者の合計含有量で2.0 wt%以下とするのが望ましい。
【0023】
なお、Pについては言及しなかったが、Pは、一般にPb、Snと同様に熱間割れ性を高め、熱間圧延性および熱延板靭性を低下させるので0.03wt%以下とすることが望ましい。
また、本発明鋼板の製造にあたっては、加熱温度:1250〜1050℃、仕上げ温度:900 〜600 ℃、巻取温度:700 ℃以下の熱間圧延ののち、800 〜1100℃で焼鈍するのが望ましい。
【0024】
【実施例】
以下、実施例により本発明を具体的に説明する。
表1に示す化学組成の鋼1〜22を、容量30kgの真空溶解炉にて溶製した。得られた小型鋼塊を1250℃に加熱したのち、仕上げ温度:700 ℃、圧延パス数:8パスからなる熱間圧延により、板厚2mmの熱延板を製造した。この熱延板を表2に示す温度にて60sec 保持の焼鈍を施し、酸洗した。
【0025】
【表1】
【0026】
【表2】
【0027】
得られた熱延焼鈍板について、表面を#1000のエメリー紙により研磨して熱延ロール面などの影響を除去した。
この供試材から、圧延方向にJIS13号B引張試験片を採取し、r値(15%の引張歪みを与えた後、3点法により測定)を測定した。さらに肌荒れ性の指標としてこの15%の引張後の試験片について引張方向の表面粗さ(Ra)を調査した。最後にこの試験片を破断まで引っ張り、破断伸び(El.)を測定した。
また、高温疲労特性は図1に示す板状試験片を用いて、試験温度700 ℃、試験速度1700回/ 分の曲げモーメントとするシェンク式高温平面曲げ疲労試験機により評価した。試験方法の概要は、図2に示すように、試験片の一端を固定し逆側に繰り返し曲げモーメントを加えることにより疲労試験が行うものである。
図3は、試験結果の一例として、No. 8(発明例)とNo. 6b(比較例)の結果を示したものである。このような試験結果より破損寿命が107サイクルとなる応力(107疲労限応力、以下単に「疲労限応力」と略記する。)を求めた。上記の方法により、成形加工性(r値、破断伸び)、耐肌荒れ性(Ra)、高温疲労特性(疲労限応力)を評価しこれらの試験結果を表2に示す。
【0028】
鋼1〜3は11wt%Crベースのものである。VとBの添加量が不足する鋼1を850℃で焼鈍したNo. 1aは、焼鈍温度が低く再結晶不足であり、伸び、r値が低かった。焼鈍温度を900℃に高めたNo. 1bは、伸び、r値は向上し加工性は満足するものの、表面粗度がRa=7,3と高く、目視によっても激しい肌荒れが確認された。さらに焼鈍温度を950℃に高めたNo. 1cは、耐肌荒れ性が一層劣化するだけでなく、疲労限応力も成形加工性を満足する焼鈍温度で製造したNo. 1bに対して7.7%低下してしまい高温疲労特性も劣化することがわかる。また、B添加量が不足する鋼を900℃で焼鈍したNo. 2は、No. 1bに対して耐肌荒れ性および高温疲労特性は若干向上するもののその効果は十分ではない。V添加量が不足するNo. 3も同様である。
【0029】
鋼6〜12は、15Cr系でTi−Nb複合添加したものである。V,Bの添加量が不足する鋼6は、950℃の焼鈍(No. 6a)では再結晶が十分ではなく、伸び,r値が低く、また焼鈍温度を1000℃(No. 6b)に高めると加工性は向上するものの再結晶粒が粗大化し、耐肌荒れ性および高温疲労特性が劣化する。また、VとBを含有してもV/Bが低すぎるNo. 7は、耐肌荒れ性、疲労特性ともNo. 6bに比して若干の向上は見られるもののその効果は僅かである。
それに対して、鋼6をベースにV,Bを複合添加した発明例No. 8〜10はいずれも良い成形加工性を有しつつ、良好な耐肌荒れ性(Ra:3.0 以下)を示し、さらに良好な高温疲労特性(疲労限応力:90MPa以上で、No. 6bに対して11%以上向上)を有していることが分かる。
なお、Bを過剰に含む比較例No. 11、Vを過剰に含む比較例No. 12はいずれも加工性(伸び、r値)が劣っている。
【0030】
鋼13〜22は、18Cr系のものである。V,Bの量が不足するNo. 13は、再結晶粒が粗大化し、耐肌荒れ性および高温疲労特性に劣る。C量が過剰なNo. 14は常温での成形加工性が劣るばかりでなく、耐肌荒れ性および高温疲労強度も低い。N量に対してTiが不足するNo. 15は耐肌荒れ性に劣る。
それに対し発明例No. 16、17、18a、19はいずれも優れた耐肌荒れ性および高温疲労特性を有している。また、より高温の1100℃で焼鈍した18bも粒成長は抑制されており、1050℃で焼鈍した比較例No. 13よりも良好な成形性、耐肌荒れ性、高温疲労特性を示す。この傾向は、さらにMoを添加したNo. 20やCuを添加したNo. 21、MoとCuを添加したNo. 22においても同様である。
【0031】
【発明の効果】
上述したように、本発明によれば、成形加工性を劣化させることなく、深絞り性 ( r値 ) 、成形加工後の表面の肌荒れや高温振動環境下での高温疲労特性を向上させることが可能となるので、従来高価な冷延鋼板を用いざるを得なかった自動車排気系部材等の用途にも適用可能なフェライト系ステンレス熱延鋼板が提供できる。さらに、本発明によれば、熱延鋼板の焼鈍時における焼鈍温度域が広範囲に許容できるので工業的に容易に製造可能になる。
【図面の簡単な説明】
【図1】シェンク式高温平面曲げ疲労試験用板状試験片を示した図である。
【図2】シェンク式高温平面曲げ疲労試験方法の概略を示した図である。
【図3】高温疲労試験による破損寿命と疲労限応力の関係を示したグラフである。[0001]
[Industrial application fields]
The present invention relates to a ferritic stainless hot-rolled steel sheet that is suitable for use in forming processing, and is particularly excellent in deep drawability ( r value ) , skin roughness resistance after forming processing , and fatigue properties.
[0002]
[Prior art]
Although ferritic stainless steel is slightly inferior in workability and corrosion resistance compared to austenitic stainless steel, it has excellent stress corrosion cracking resistance and is inexpensive, so various kitchen appliances, automotive exhaust system parts (exhaust manifold) , Exhaust pipes, converter shells, mufflers, etc.).
In order to improve the workability of ferritic stainless steel when used for such processing applications, for example, JP-A-51-14811, JP-A-51-14812, JP-A-52-31919. As disclosed in publications and the like, techniques for adding impurity elements such as Ti and Nb to fix impurity elements such as C and N that are dissolved in steel are widely used.
[0003]
Now, this ferritic stainless steel sheet is normally manufactured through each process of hot rolling - hot rolled sheet annealing / pickling - cold rolling - finish annealing / pickling after heating a continuous cast slab. Therefore, the stainless hot-rolled steel sheet manufactured by omitting some of these processes, especially the processes after cold rolling, can greatly reduce the equipment costs and operating costs after cold rolling. The ferritic stainless steel sheet, which is cheaper than the above, can be manufactured at a lower cost and in a shorter time, and the industrial merit is extremely large.
[0004]
[Problems to be solved by the invention]
However, in general, a hot-rolled steel sheet has a problem that the crystal grain after annealing is larger than that of a cold-rolled steel sheet, and the surface roughness after forming is large. This coarse crystal grain and rough skin after molding process not only impair the appearance of the surface, but also have high temperature fatigue characteristics in parts that are subject to vibrations such as engines at high temperatures, such as automobile exhaust system parts (exhaust pipes, etc.). There was also a problem of lowering.
This phenomenon is that in a high temperature fatigue environment, in a structure with coarse crystal grains, fatigue failure can easily occur at grain boundaries where the strength is lower than that of the base material, or stress can concentrate on the rough surface and become the starting point of failure. Explained by
By the way, the crystal grain size of the steel sheet, which greatly affects the roughness and fatigue fracture characteristics after processing, can be adjusted to some extent by conditions such as annealing temperature and time, but in order to make the crystal grain size finer. When annealing is performed at a low temperature for a short time, a complete recrystallized structure cannot be obtained, and the vicinity of the central part in the thickness direction of the steel sheet remains the stretched structure during hot rolling. As a result, the Rankford value (r value), which is an index of elongation (El.) And deep drawability, becomes small, and sufficient moldability cannot be obtained. These make it difficult to achieve both good formability in ferritic stainless hot-rolled steel sheets and excellent skin resistance and high-temperature fatigue properties. This was a major cause that hindered the application of stainless steel hot-rolled steel sheets.
[0005]
Accordingly, an object of the present invention is to provide a ferritic stainless hot-rolled steel sheet that has good deep drawability ( r value ) , excellent surface roughness after forming and high-temperature fatigue characteristics, and does not impair the formability. There is.
[0006]
[Means for Solving the Problems]
As a result of diligent research aimed at realizing the above-mentioned purpose, the inventors adjusted the chemical composition of ferritic stainless steel such as C and N fixation by Ti and the combined addition of V and B to an appropriate range. Thus, it has been found that a stainless hot-rolled steel sheet excellent in all of deep drawability ( r value ) , rough skin resistance after forming, high temperature fatigue characteristics and formability can be produced, and the present invention is completed. It came to.
[0007]
The gist of the present invention is the following configuration that embodies the above concept.
(1) C: 0.03 wt% or less, Si: 2.0 wt% or less, Mn: 0.8 wt% or less, S: 0.03 wt% or less, Cr: 6-25 wt%, N: 0.03 wt% or less, Al: 0.3 wt% Hereinafter, Ti: 0.4 wt% or less, V: 0.02 to 0.4 wt%, B: 0.0002 to 0.0050 wt%, Nb: 0.5 wt% or less, and the following formula:
Ti / 48> N / 14
Ti / 48 + Nb / 92> N / 14 + C / 12
V / B> 10
Containing meets the balance Ri Do of Fe and unavoidable impurities, deep drawability r value is characterized der Rukoto 1.05 or more, ferrite excellent in耐肌any resistance and high temperature fatigue characteristics after shaping Stainless hot rolled steel sheet.
[0008]
(2) C: 0.03 wt% or less, Si: 2.0 wt% or less, Mn: 0.8 wt% or less, S: 0.03 wt% or less, Cr: 6-25 wt%, N: 0.03 wt% or less, Al: 0.3 wt% Hereinafter, Ti: 0.4 wt% or less, V: 0.02 to 0.4 wt%, B: 0.0002 to 0.0050 wt%, Nb: 0.5 wt% or less, and the following formula:
Ti / 48> N / 14
Ti / 48 + Nb / 92> N / 14 + C / 12
V / B> 10
In addition, it contains any one or more selected from Ca: 0.01 wt% or less, Mo: 2.0 wt% or less , Cu: 2.0 wt% or less, and the balance from Fe and inevitable impurities Do Ri, deep drawability r value is characterized der Rukoto 1.05 or more, 耐肌any resistance and ferritic stainless hot-rolled steel sheet having excellent high-temperature fatigue characteristics after molding.
[0009]
[Action]
Hereinafter, the reason why each chemical component value of the steel in the present invention is limited as in the above gist configuration will be described.
C: 0.03 wt% or less C is an element that lowers moldability (r value) and corrosion resistance, so it is desirable to reduce it as much as possible. In order to exhibit the effect of V as described later, it is desirable to reduce the amount of solid solution as much as possible. Therefore, in the present invention, C is fixed by the addition of Ti or further Nb, the adverse effects on molding processability and ferrite stability are reduced, and the effect of V is fully exhibited. However, if the C content exceeds 0.03 wt%, the amount of precipitates in the steel sheet increases, leading to a decrease in workability and deterioration of surface properties, so the content range is 0.03 wt% or less, preferably 0.015 wt%. % Or less.
[0010]
Si: 2.0 wt% or less Si is an element that is effective for deoxidation of steel and improves oxidation resistance at high temperatures and salt damage characteristics at high temperatures. However, if the content exceeds 2.0 wt%, the elongation characteristics deteriorate, so the content is limited to 2.0 wt% or less. In addition, when using it for uses, such as a motor vehicle exhaust system member, it is desirable to contain 0.6 wt% or more.
[0011]
Mn: 0.8 wt% or less Mn is an element that is effective for precipitating and fixing S in steel and improving hot rollability, but is an element harmful to forming processability. Therefore, the addition range is 0.8 wt% or less, preferably 0.5 wt% or less.
[0012]
S: 0.03 wt% or less S is a harmful element that deteriorates hot workability, but usually forms MnS by combining with Mn, so the effect is small with a content of 0.03 wt% or less. However, if the content exceeds 0.03 wt%, the precipitated MnS becomes the starting point of initial rust and the corrosion resistance deteriorates, and segregates at the grain boundaries to promote grain boundary embrittlement. Therefore, the content is limited to 0.03 wt% or less, preferably 0.005 wt% or less.
[0013]
Cr: 6-25 wt%
Cr is an essential element for improving corrosion resistance and oxidation resistance at high temperatures. If the addition amount of Cr is less than 6 wt%, a sufficient effect cannot be obtained. On the other hand, if the addition amount exceeds 25 wt%, the workability deteriorates and the material cost increases, so the addition amount is 6 wt% to 25 wt%. .
In addition, it is desirable to set it as 15 wt% or less when it is intended for use in applications where molding processability is prioritized, and 10 wt% or more when used in applications where corrosion resistance at room temperature is required. .
[0014]
N: 0.03 wt% or less N, like C, is an element that lowers the formability (r value) of the steel sheet, so it is desirable to reduce it as much as possible. In order to exhibit the effect of B as described later, it is desirable to reduce the amount of solid solution as much as possible. Therefore, in the present invention, N is fixed by adding Ti or further Nb to render it harmless . However, if the content exceeds 0.03 wt%, the amount of precipitates in the steel sheet increases, leading to a decrease in forming processability and a deterioration in surface properties. Therefore, the N content is limited to 0.03 wt% or less, preferably 0.01 wt% or less.
[0015]
Al: 0.3 wt% or less Al is an element effective for deoxidation, but if added excessively, the workability of the hot-rolled annealed plate is deteriorated, so 0.3 wt% or less, preferably 0.1 wt% % Or less.
[0016]
Ti: 0.4 wt% or less Ti is a strong C and N stabilizing element and has an effect of improving the moldability. Moreover, it has the effect of suppressing the grain boundary precipitation of Cr carbonitride and improving the corrosion resistance. In order to exert these effects, the addition amount of Ti needs to satisfy the relationship with C and N as described later. On the other hand, if the amount of Ti added exceeds 0.4 wt%, the moldability is lowered and the workability of the welded portion is greatly lowered. In addition, the toughness is deteriorated and the productivity is lowered. Therefore, the Ti addition amount is set to 0.4 wt% or less.
[0017]
V: 0.02-0.4 wt%,
B: 0.0002 to 0.0050 wt%, and V / B> 10
V and B are extremely important elements in the present invention. By adding V and B in a composite manner satisfying 0.02 to 0.4 wt%, 0.0002 to 0.0050 wt%, and V / B> 10, respectively, the crystal grains of the hot-rolled annealed plate can be made finer. And has the effect of suppressing grain growth after recrystallization.
The reason why such an effect can be obtained is not necessarily clear, but V is used as a solid solution in the ferrite grains to suppress recrystallization grain refinement and grain growth during annealing, and B is a ferrite after annealing recrystallization. It is thought that it helps to suppress grain growth by concentrating at grain boundaries and delaying grain boundary movement. Further, the effect varies depending on the content ratio of V and B. It seems that the balance between the volume of ferrite crystal grains and the interfacial area of ferrite grains is related. By achieving finer crystal grains in this way, the surface roughness after molding is remarkably improved, and high-cycle mechanical vibration is performed at high temperatures like automobile exhaust system members (exhaust pipes, etc.). The fatigue properties of the material subjected to the stress are also improved.
The reason why the fatigue characteristics are improved by making the crystal grains finer is considered to be due to the following reasons.
1) It is possible to reduce rough skin after molding, which is likely to be a starting point of fracture due to stress concentration.
2) The grain boundary has a large stress concentration and becomes a propagation path of cracks. However, if the grain boundary is made finer, the stress concentration per unit grain boundary is relieved by increasing the grain boundary area.
3) The grain boundary strength is enhanced by the grain boundary concentration of B.
Here, when precipitation precipitation fixation of C by Ti and Nb is not sufficient, V reacts with C and precipitates as V 2 C or VC, so that the effect of suppressing grain growth decreases. On the other hand, when the precipitation fixation of N by Ti is not sufficient, B reacts with N and precipitates as BN, and conversely promotes grain growth.
Therefore, C must be precipitated and fixed by sufficient addition of Ti and Nb, which are carbide forming elements stronger than V, and N must be precipitated and fixed by sufficient addition of Ti, a nitride forming element stronger than V and B. .
In addition to the above, the effect of addition of B has the effect of promoting the accumulation of processing strain during hot rolling, increasing the accumulation of {111} faces with respect to the recrystallized texture after annealing, and improving the formability. Therefore, the significance of the addition is great for a hot-rolled steel sheet that is inferior in formability compared to a cold-rolled steel sheet.
The addition effect of V and B described above is exhibited only when the V amount is 0.02 wt% or more, the B amount is 0.0002 wt% or more, and the ratio V / B> 10 of each addition amount is satisfied.
On the other hand, when V and B are added excessively exceeding 0.4 wt% and 0.0050 wt%, respectively, not only the effects of crystal grain refinement and growth suppression during annealing and improvement of formability are saturated, but conversely The material is cured, the elongation characteristics are deteriorated, and the moldability is lowered. Therefore, the V amount is 0.02 to 0.4 wt%, the B amount is 0.0002 to 0.0050 wt%, and V / B> 10.
[0018]
Nb: 0.5 wt% or less Nb is a C and N stabilizing element and supplements Ti to improve forming processability and suppress grain boundary precipitation of Cr carbonitride to improve corrosion resistance. Has an effect. In order to exert these effects, the amount of Nb added must satisfy the relationship with C and N as described later. On the other hand, when the Nb addition amount exceeds 0.5 wt%, the moldability is deteriorated on the contrary, and the workability of the welded portion is greatly lowered. In addition, the toughness is deteriorated and the manufacturing process is hindered. Therefore, the Nb addition amount is set to 0.4 wt% or less. In addition, when adding together with Ti, it is preferable to restrict | limit to 0.6 wt% or less by Ti + Nb.
[0019]
Ti / 48> N / 14 and Ti / 48 + Nb / 92> N / 14 + C / 12
Ti and Nb are added to effectively act the above-described effects of V and B, that is, to precipitate and fix N as TiN and C as TiC or NbC. Therefore, from the stoichiometric ratio, when Ti and Nb are added together, it is necessary to add an amount satisfying Ti / 48> N / 14 and Ti / 48 + Nb / 92> N / 14 + C / 12. is there.
[0020]
In the present invention, the following elements can be further contained as required.
Ca: 0.01 wt% or less Ca is an element useful for suppressing nozzle clogging caused by TiS-based inclusions that are generated when casting molten steel containing Ti by generating CaS in molten steel. However, excessive addition causes deterioration of corrosion resistance, so the addition amount is 0.01 wt% or less, preferably in the range of S ≦ (32/40) Ca ≦ 1.5 S in relation to the S content.
[0021]
Mo: 2.0 wt% or less Mo has an effect of further improving the corrosion resistance, and can be added as necessary. However, if the addition amount exceeds 2.0 wt%, the workability during hot rolling is lowered, so the content is set to 2.0 wt% or less. In addition, when adding together with Cu, it is desirable to set it as 2.0 wt% or less by the total content of both.
[0022]
Cu: 2.0 wt% or less Cu has an effect of further improving the corrosion resistance, and can be added as necessary. However, if the addition amount exceeds 2.0 wt%, the workability during hot rolling is lowered, so the content is set to 2.0 wt% or less. In addition, when adding together with Mo, it is desirable to set it as 2.0 wt% or less by the total content of both.
[0023]
Although P was not mentioned, P generally increases the hot cracking property similarly to Pb and Sn and decreases the hot rolling property and hot rolled sheet toughness, so it may be 0.03 wt% or less. desirable.
Further, in the production of the steel sheet of the present invention, it is desirable to anneal at 800 to 1100 ° C. after hot rolling at a heating temperature of 1250 to 1050 ° C., a finishing temperature of 900 to 600 ° C., and a winding temperature of 700 ° C. or less. .
[0024]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
Steels 1 to 22 having chemical compositions shown in Table 1 were melted in a vacuum melting furnace with a capacity of 30 kg. The obtained small steel ingot was heated to 1250 ° C., and then a hot rolled sheet having a thickness of 2 mm was manufactured by hot rolling consisting of a finishing temperature: 700 ° C. and the number of rolling passes: 8 passes. This hot-rolled sheet was annealed at a temperature shown in Table 2 for 60 seconds and pickled.
[0025]
[Table 1]
[0026]
[Table 2]
[0027]
About the obtained hot-rolled annealing board, the surface was grind | polished with # 1000 emery paper and the influence of a hot-rolling roll surface etc. was removed.
From this specimen, a JIS No. 13 B tensile test piece was taken in the rolling direction, and the r value (measured by a three-point method after giving a tensile strain of 15%) was measured. Further, the surface roughness (Ra) in the tensile direction was investigated for the test piece after 15% tension as an index of skin roughness. Finally, this test piece was pulled to break and the elongation at break (El.) Was measured.
Further, the high temperature fatigue characteristics were evaluated by using a Schenk type high temperature plane bending fatigue tester having a test temperature of 700 ° C. and a test speed of 1700 times / minute using the plate-like test piece shown in FIG. As shown in FIG. 2, the outline of the test method is that a fatigue test is performed by fixing one end of a test piece and repeatedly applying a bending moment on the opposite side.
As an example of the test results, FIG. 8 (invention example) and No. The result of 6b (comparative example) is shown. From such test results, a stress (10 7 fatigue limit stress, hereinafter simply abbreviated as “fatigue limit stress”) having a failure life of 10 7 cycles was determined. By the above method, the moldability (r value, elongation at break), rough skin resistance (Ra), and high temperature fatigue properties (fatigue limit stress) were evaluated, and these test results are shown in Table 2.
[0028]
Steels 1 to 3 are based on 11 wt% Cr. Steel No. 1 with insufficient amounts of V and B added was annealed at 850 ° C. No. No. 1a had a low annealing temperature, insufficient recrystallization, elongation, and a low r value. No. which raised the annealing temperature to 900 degreeC. In 1b, the elongation and the r value were improved and the workability was satisfactory, but the surface roughness was as high as Ra = 7, 3, and severe skin roughness was confirmed by visual observation. Further, the annealing temperature was increased to 950 ° C. No. 1c was manufactured at an annealing temperature at which not only the rough skin resistance was further deteriorated but also the fatigue limit stress satisfied the moldability. It turns out that it is 7.7% lower than 1b and the high temperature fatigue characteristics are also deteriorated. Moreover, No. which annealed the steel with insufficient B addition amount at 900 degreeC. 2 is No.2. Although the skin roughness resistance and the high temperature fatigue characteristics are slightly improved with respect to 1b, the effect is not sufficient. No. V is insufficient. 3 is the same.
[0029]
In contrast, Invention Example No. 1 in which V and B were added in combination based on
In addition, comparative example No. which contains B excessively. 11, Comparative Example No. containing excessive V No. 12 is inferior in workability (elongation, r value).
[0030]
Steels 13 to 22 are of 18Cr type. No. with insufficient amounts of V and B In No. 13, the recrystallized grains are coarsened, and the skin roughness resistance and the high temperature fatigue properties are inferior. No. with excessive amount of C. No. 14 is not only inferior in molding processability at room temperature, but also has low skin resistance and high temperature fatigue strength. No. in which Ti is insufficient with respect to N amount. 15 is inferior to rough skin resistance.
In contrast, Invention Example No. 16, 17, 18a, and 19 all have excellent rough skin resistance and high temperature fatigue characteristics. Further, 18b annealed at a higher temperature of 1100 ° C. also has suppressed grain growth, and Comparative Example No. 18 annealed at 1050 ° C. Better formability than 13 and rough skin resistance and high temperature fatigue properties. This tendency is similar to that of No. to which Mo was further added. No. 20 and Cu added. 21, No. 1 with Mo and Cu added. The same applies to the case 22.
[0031]
【The invention's effect】
As described above, according to the present invention, it is possible to improve the deep drawability ( r value ) , the rough surface of the surface after the molding process, and the high temperature fatigue property under a high temperature vibration environment without deteriorating the molding processability. Accordingly, it is possible to provide a ferritic stainless hot rolled steel sheet that can be applied to uses such as automobile exhaust system members that have conventionally had to use expensive cold rolled steel sheets. Furthermore, according to the present invention, since the annealing temperature range during the annealing of the hot-rolled steel sheet can be allowed in a wide range, it can be easily manufactured industrially.
[Brief description of the drawings]
FIG. 1 is a view showing a plate test piece for a Schenck type high-temperature plane bending fatigue test.
FIG. 2 is a diagram showing an outline of a Schenck type high-temperature plane bending fatigue test method.
FIG. 3 is a graph showing the relationship between failure life and fatigue limit stress in a high temperature fatigue test.
Claims (2)
Mn:0.8wt%以下、S:0.03wt%以下、
Cr:6〜25wt%、N:0.03wt%以下、
Al:0.3wt%以下、Ti:0.4wt%以下、
V:0.02〜0.4wt%、B:0.0002〜0.0050wt%、Nb:0.5wt%以下を含み、かつ下記式:
Ti/48>N/14
Ti/48+Nb/92>N/14+C/12
V/B>10
を満たして含有し、残部がFeおよび不可避的不純物からなり、r値が 1.05 以上であることを特徴とする深絞り性、成形加工後の耐肌あれ性および高温疲労特性に優れるフェライト系ステンレス熱延鋼板。C: 0.03 wt% or less, Si: 2.0 wt% or less ,
Mn: 0.8 wt% or less, S: 0.03 wt% or less,
Cr: 6 to 25 wt%, N: 0.03 wt% or less,
Al: 0.3 wt% or less, Ti: 0.4 wt% or less,
V: 0.02 to 0.4 wt%, B: 0.0002 to 0.0050 wt%, Nb: 0.5 wt% or less, and the following formula:
Ti / 48> N / 14
Ti / 48 + Nb / 92> N / 14 + C / 12
V / B> 10
Containing meets the balance Ri Do of Fe and unavoidable impurities, deep drawability r value is characterized der Rukoto 1.05 or more, ferrite excellent in耐肌any resistance and high temperature fatigue characteristics after shaping Stainless hot rolled steel sheet.
Mn:0.8wt%以下、S:0.03wt%以下、
Cr:6〜25wt%、N:0.03wt%以下、
Al:0.3wt%以下、Ti:0.4wt%以下、
V:0.02〜0.4wt%、B:0.0002〜0.0050wt%、Nb:0.5wt%以下を含み、かつ下記式:
Ti/48>N/14
Ti/48+Nb/92>N/14+C/12
V/B>10
を満たして含有し、さらにCa:0.01wt%以下、Mo:2.0wt%以下、Cu:2.0wt%以下から選ばれるいずれか1種または2種以上を含有し、残部がFeおよび不可避的不純物からなり、r値が 1.05 以上であることを特徴とする深絞り性、成形加工後の耐肌あれ性および高温疲労特性に優れるフェライト系ステンレス熱延鋼板。C: 0.03 wt% or less, Si: 2.0 wt% or less ,
Mn: 0.8 wt% or less, S: 0.03 wt% or less,
Cr: 6 to 25 wt%, N: 0.03 wt% or less,
Al: 0.3 wt% or less, Ti: 0.4 wt% or less,
V: 0.02 to 0.4 wt%, B: 0.0002 to 0.0050 wt%, Nb: 0.5 wt% or less, and the following formula:
Ti / 48> N / 14
Ti / 48 + Nb / 92> N / 14 + C / 12
V / B> 10
In addition, it contains any one or more selected from Ca: 0.01 wt% or less, Mo: 2.0 wt% or less , Cu: 2.0 wt% or less, and the balance from Fe and inevitable impurities Do Ri, deep drawability r value is characterized der Rukoto 1.05 or more, 耐肌any resistance and ferritic stainless hot-rolled steel sheet having excellent high-temperature fatigue characteristics after molding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36137499A JP3613387B2 (en) | 1995-06-22 | 1999-12-20 | Ferritic stainless steel hot rolled steel sheet with excellent skin resistance and high temperature fatigue properties after forming |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7156440A JP3064871B2 (en) | 1995-06-22 | 1995-06-22 | Ferritic stainless steel hot-rolled steel sheet with excellent roughening resistance and high temperature fatigue properties after forming |
JP36137499A JP3613387B2 (en) | 1995-06-22 | 1999-12-20 | Ferritic stainless steel hot rolled steel sheet with excellent skin resistance and high temperature fatigue properties after forming |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7156440A Division JP3064871B2 (en) | 1995-06-22 | 1995-06-22 | Ferritic stainless steel hot-rolled steel sheet with excellent roughening resistance and high temperature fatigue properties after forming |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000144344A JP2000144344A (en) | 2000-05-26 |
JP3613387B2 true JP3613387B2 (en) | 2005-01-26 |
Family
ID=34196328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36137499A Expired - Lifetime JP3613387B2 (en) | 1995-06-22 | 1999-12-20 | Ferritic stainless steel hot rolled steel sheet with excellent skin resistance and high temperature fatigue properties after forming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3613387B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1446152A (en) | 2000-08-01 | 2003-10-01 | 日新制钢株式会社 | Stainless steel fuel tank for motor vehicle |
KR100762151B1 (en) | 2001-10-31 | 2007-10-01 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel sheet having excellent deep-drawability and brittle resistance to secondary processing and method for making the same |
JP5239645B2 (en) * | 2008-08-29 | 2013-07-17 | Jfeスチール株式会社 | Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and high temperature salt corrosion resistance |
JP5239643B2 (en) * | 2008-08-29 | 2013-07-17 | Jfeスチール株式会社 | Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and workability |
JP5239642B2 (en) * | 2008-08-29 | 2013-07-17 | Jfeスチール株式会社 | Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance |
TWI495736B (en) * | 2012-09-03 | 2015-08-11 | Jfe Steel Corp | Ferritic stainless steel |
EP2933349B1 (en) * | 2012-12-17 | 2018-09-05 | JFE Steel Corporation | Stainless steel sheet and stainless steel foil |
-
1999
- 1999-12-20 JP JP36137499A patent/JP3613387B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000144344A (en) | 2000-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4235077B2 (en) | High strength low specific gravity steel plate for automobile and its manufacturing method | |
JP3064871B2 (en) | Ferritic stainless steel hot-rolled steel sheet with excellent roughening resistance and high temperature fatigue properties after forming | |
CN107835865B (en) | Hot-rolled ferritic stainless steel sheet, hot-rolled annealed sheet, and methods for producing same | |
JP5904306B2 (en) | Ferritic stainless steel hot-rolled annealed steel sheet, manufacturing method thereof, and ferritic stainless steel cold-rolled annealed steel sheet | |
JP2933826B2 (en) | Chromium steel sheet excellent in deep drawing formability and secondary work brittleness and method for producing the same | |
JP3858770B2 (en) | High-tensile hot-rolled steel sheet and manufacturing method thereof | |
JP2005520054A (en) | High-strength cold-rolled steel sheet excellent in formability and weldability and its manufacturing method | |
JP4185425B2 (en) | Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time | |
JPH05140652A (en) | Manufacture of low yield ratio cold rolled high tensile strength steel sheet excellent in corrosion resistance | |
JP3613387B2 (en) | Ferritic stainless steel hot rolled steel sheet with excellent skin resistance and high temperature fatigue properties after forming | |
JP4374701B2 (en) | Manufacturing method of ferritic stainless steel sheet for automobile exhaust system with excellent deep drawability | |
JP4281535B2 (en) | Ferritic stainless steel plate with excellent surface strain resistance | |
JP4205893B2 (en) | High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof | |
JP3993831B2 (en) | Steel sheet with excellent curability and impact properties after hot forming and method of using the same | |
JP2987815B2 (en) | Method for producing high-tensile cold-rolled steel sheet excellent in press formability and secondary work cracking resistance | |
JP2910497B2 (en) | Cold rolled steel sheet and surface treated steel sheet with excellent bake hardenability | |
JP2002030346A (en) | METHOD FOR PRODUCING Cr-CONTAINING HEAT AND CORROSION RESISTANT STEEL SHEET EXCELLENT IN FORMABILITY | |
JP2942073B2 (en) | Ferritic stainless steel for exhaust manifold with excellent high-temperature strength | |
JP3420373B2 (en) | Chrome steel sheet with excellent formability | |
JP3674502B2 (en) | Bake-hardening cold-rolled steel sheet and method for producing the same | |
JP3299287B2 (en) | High strength steel sheet for forming and its manufacturing method | |
JP3420371B2 (en) | Chrome steel sheet with excellent formability and weatherability | |
JP2806121B2 (en) | Method for producing high-strength hot-dip galvanized steel with excellent workability and material stability | |
JP4562281B2 (en) | Ferritic stainless steel sheet with excellent workability and method for producing the same | |
JP3911075B2 (en) | Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041020 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071105 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081105 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091105 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101105 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111105 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111105 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121105 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131105 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |