JP3613335B2 - Electrochemical treatment method such as electroplating and electrochemical reaction apparatus thereof - Google Patents

Electrochemical treatment method such as electroplating and electrochemical reaction apparatus thereof Download PDF

Info

Publication number
JP3613335B2
JP3613335B2 JP2001137191A JP2001137191A JP3613335B2 JP 3613335 B2 JP3613335 B2 JP 3613335B2 JP 2001137191 A JP2001137191 A JP 2001137191A JP 2001137191 A JP2001137191 A JP 2001137191A JP 3613335 B2 JP3613335 B2 JP 3613335B2
Authority
JP
Japan
Prior art keywords
reaction
plating
electrochemical
reaction bath
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001137191A
Other languages
Japanese (ja)
Other versions
JP2003321793A (en
Inventor
英夫 吉田
清蔵 宮田
正人 曽根
文子 岩尾
美博 浅井
大恵 浅井
Original Assignee
英夫 吉田
清蔵 宮田
美博 浅井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英夫 吉田, 清蔵 宮田, 美博 浅井 filed Critical 英夫 吉田
Priority to JP2001137191A priority Critical patent/JP3613335B2/en
Priority to AU2001275795A priority patent/AU2001275795A1/en
Priority to EP01953331.4A priority patent/EP1314799B1/en
Priority to PCT/JP2001/006525 priority patent/WO2002016673A1/en
Priority to US10/070,516 priority patent/US6793793B2/en
Priority to TW090120725A priority patent/TW588119B/en
Publication of JP2003321793A publication Critical patent/JP2003321793A/en
Application granted granted Critical
Publication of JP3613335B2 publication Critical patent/JP3613335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば電気メッキ等の電気化学的処理に好適で、反応浴槽を加圧して電気化学的反応させ、電解溶液の溶媒の電気分解を抑制して、電気化学的反応を合理的かつ効率良く行ない、緻密で薄厚の金属皮膜を得られるとともに、生産性の向上と設備の小形軽量化とを図れ、また各処理工程を安全で合理的に行なえ、しかも各処理工程における廃液量を低減し、環境汚染を防止し得るようにした電気メッキ等の電気化学的処理方法およびその電気化学的反応装置に関する。
【0002】
【従来の技術】
従来の電気メッキ工程は大別すると、前処理工程とメッキ工程、後処理工程に分けられる。このうち、前処理工程は脱脂洗浄や酸洗いを伴い、これらは通常、専用の浴槽に所定の処理液を収容して加温し、この処理液に被処理物を所定時間浸漬して行なっている。
したがって、複数の浴槽とその作業スペ−スを要し、設備費が高価になるとともに、処理液の飛散や有害なガスが発生する状況下での作業を強いられて作業環境が悪く、しかも前記浸漬に長時間を要して生産性が悪い、という問題があった
【0003】
このような問題を解決するものとして、出願人は、超臨界状態とした物質と、電解質溶液と、界面活性剤とを反応浴槽に導入し、これらの乳濁状態の下で電気メッキし、メッキ後は超臨界物質を気化させ、これを浴槽外に排出することで、洗浄液を要することなく反応浴槽や電極等を洗浄できるようにした電気化学的反応方法を開発し、これを特願2000−253572号として既に提案している
【0004】
しかし、前記電気化学的反応方法は、反応浴槽を高温かつ高圧状態の超臨界状態とするため、その加熱や加圧に大きなエネルギ−を要し、それらの稼働コストの上昇や設備の大形重量化、設備費の上昇を招く問題があった。
【0005】
ところで、電気メッキ等においては、電解液の電気分解によって、水素ガスや酸素ガスが発生し、その気泡が被処理表面に滞留したり移動して、メッキ欠けやメッキムラを発生させ、また前記ガスの発生に電気エネルギ−が消費され、その分メッキが阻害されて、電流効率が低下するという問題があった。
【0006】
このような問題を解決するものとして、例えば特開2000−226671号公報の無電解メッキ装置は、密閉空間内に被処理表面を上向きに配置し、前記空間内の圧力を大気圧以上にし、かつこの圧力を脈動させて、無電解銅メッキ時の還元反応に伴って発生する水素ガス気泡を、メッキ液中へ溶解させるとともに、被処理表面からの離脱を促すようにしている。
【0007】
しかし、無電解メッキにおいては、メッキの析出反応に伴って、水素ガス等が必然的に発生するため、ガスのの発生を抑制する手法は、メッキの析出が低下しメッキそのものが行なえなくなるため、実用的ではない。
すなわち、無電解メッキにおいては、水素ガス等の発生を許容した上でメッキを行ない、不都合な水素ガス等に対しては、浴中に適当な安定剤を添加し、または窒素ガスを用いる等して対応していた。
したがって、このような水素ガス等の発生を許容する前記無電解メッキの手法は、電気メッキ等には採用できない。
【0008】
しかも、前記の手法で電気メッキする場合、被処理面に対向して電極を配置しなければならず、そのようにすると被処理面から発生する水素ガスは電極に滞留して、電解液中の通電を妨げ、電気メッキが困難になるため、前記方法は電気メッキに採用できない。
【0009】
【発明が解決しようとする課題】
本発明はこのような問題を解決し、例えば電気メッキ等の電気化学的処理に好適で、反応浴槽を加圧して電気化学的反応させ、電解溶液の溶媒の電気分解を抑制して、電気化学的反応を合理的かつ効率良く行ない、緻密で薄厚の金属皮膜を得られるとともに、生産性の向上と設備の小形軽量化とを図れ、また各処理工程を安全で合理的に行なえ、しかも各処理工程における廃液量を低減し、環境汚染を防止し得るようにした電気メッキ等の電気化学的処理方法およびその電気化学的反応装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
このため、請求項1の発明は、電解物質を収容可能な反応浴槽に陰極および陽極の電極物質を収容し、前記反応浴槽に加圧液体を導入して加圧し、前記反応浴槽の加圧状態の下で電気化学的反応させる電気メッキ等の電気化学的処理方法において、前記反応浴槽に界面活性剤を添加して撹拌し、前記加圧液体と電解質溶液とを乳濁させて電気化学的反応させ、加圧下で微細化した水素ガスや酸素ガスに対し、界面活性剤を効率良く働かせ、被処理面から前記ガスを速やかに剥離させ、電解質溶液へ速やかに溶融させるようにしている
【0011】
請求項2の発明は、前記反応浴槽で電気化学的反応させる前に、前記加圧液体を反応浴槽へ導入し、前記電極物質を洗浄し、若しくは酸化皮膜を除去するようにして、前記加圧液体による前処理を実行させ、安定した電気化学的反応を実現させるようにしている。
【0012】
請求項の発明は、前記反応浴槽で電気化学的反応させた後、前記加圧液体を反応浴槽へ導入し、前記電極物質を洗浄し、若しくは乾燥するようにして、前記加圧液体による後処理を実行させ、次期電気化学的反応の安定性を得られるようにしている。
【0013】
請求項の発明は、前記反応浴槽に液化二酸化炭素を導入して略1〜7 . 3MPaに加圧するようにして、前記電気化学的反応を超臨界状態よりも低圧状態で実現し、その分省エネルギ−化と設備の小形軽量化ないし稼動コストの低減を図るようにしている。
【0014】
請求項の発明は、電解質を収容可能な反応浴槽に陰極および陽極の電極物質を収容し、前記反応浴槽に加圧液体を導入して加圧可能に設け、前記反応浴槽の加圧状態の下で電気化学的反応を可能にした電気メッキ等の電気化学的反応装置において、前記反応浴槽に界面活性剤を添加して撹拌可能に設け、かつ前記加圧液体と電解質溶液とを乳濁させて電気化学的反応可能にし、加圧下で微細化した水素ガスや酸素ガスに対し、界面活性剤を効率良く働かせ、被処理面から前記ガスを速やかに剥離させ、電解質溶液へ速やかに溶融させるようにしている。
【0015】
請求項の発明は、前記反応浴槽で電気化学的反応させる前に、前記加圧液体を反応浴槽へ導入可能に設け、前記電極物質を洗浄し、若しくは酸化皮膜を除去可能にして、前記加圧液体による前処理を実行させ、安定した電気化学的反応を実現させるようにしている
【0016】
請求項の発明は、前記反応浴槽で電気化学的反応させた後、前記加圧液体を反応浴槽へ導入可能に設け、前記電極物質を洗浄し、若しくは乾燥可能にして、前記加圧液体による後処理を実行させ、次期電気化学的反応の安定性を得られるようにしている。
【0017】
請求項の発明は、前記反応浴槽に液化二酸化炭素を導入して略1〜7.3MPaに加圧可能にして、前記電気化学的反応を超臨界状態よりも低圧状態で実現し、その分省エネルギ−化と設備の小形軽量化ないし稼動コストの低減を図るようにしている。
【0018】
【発明の実施の形態】
以下、本発明を電気化学的処理法である電気メッキ(ニッケルメッキ)に適用した図示の実施形態について説明すると、図1乃至図10において1は電気化学的反応浴槽であるステンレス鋼製のメッキ槽で、その内面を塩化ビニ−ルや硬質ゴムでライニングしており、その上側の開口部に蓋体(図示略)が気密かつ着脱可能に装着されている。
【0019】
前記メッキ槽1の外部に外部電界である直流電源2が設けられ、その正極側に導通する電極物質である陽極3と、負極側に導通する、電極物質でかつ被処理物である陰極4とが、メッキ槽1に収容にされている。
実施形態では陽極3に純ニッケル板、陰極4にハルセル試験用真鍮板を使用している。
【0020】
図中、5は電源2の給電回路に挿入されたスイッチで、電気化学的反応時、つまり電気メッキ時にのみONされ、陽極3および陰極4に通電可能にしている。6はメッキ槽1の底部に設けたスタ−ラ等の攪拌子で、メッキ槽1に導入された圧力液体、実施形態では液化二酸化炭素と、界面活性剤を含む電解質溶液若しくは酸溶液とを攪拌可能にしている。
【0021】
前記メッキ槽1の外部に、加圧媒体ないしは加圧物質である、例えば液化二酸化炭素7を約6MPaに充填したガス容器8と、互いに異種の電解質溶液9、10を収容した電解質溶液槽11,12と、PH7およびそれ以下の酸溶液13を収容した酸溶液槽14と、使用後の液化二酸化炭素15を収容する貯留槽16と、使用後の界面活性剤を含む酸溶液17、若しくは使用後の界面活性剤を含む電解質溶液18,19を収容する、複数の貯留槽である液溜槽20〜22が配置されている。
【0022】
この場合、前記加圧物質ないし媒体は液体または気体の何れでも良いが、電解質溶液9、10を溶解する溶媒が水の場合は、無害かつ安全で化学的に安定した二酸化炭素が好適である。しかし、本発明の加圧液体は電解質溶液と不溶性の全ての液体を含ませることができる。
【0023】
また、この他の加圧物質として窒素やアルゴン等の気体、電解質溶液9、10と混合しないスピンドル油、油脂類、ヘキサン、ベンゼン、トルエン等の石油類、クロロホルム等のハロゲン化炭化水素を用いることができる。 また、前記溶媒がプロピレンカ−ボネ−ト、アセトニリル、ポリエチレンオキサイド等の有機電解質の場合は、これらの溶媒と反応しない気体、相分離し、かつその相にイオンが移行しない種々の圧力物質等を用いることができる。
【0024】
更に、前記加圧物質ないし加圧媒体は、複数種の液体若しくは気体を混合使用することができ、例えば液化圧力が低圧な物質を採択することで、メッキ槽1の強度を緩和でき、これを安価に製作できる。
【0025】
これらの液溜槽20〜22には、前記各溶液槽11,12,14に連通するリターンパイプ49〜51が接続され、使用後の各溶液17〜19を界面活性剤と分離し、または分離せずに若干高濃度に調製して再生後、これを各溶液槽11〜13へ還流させている。
【0026】
前記ガス容器8は導管23を介してメッキ槽1の上部に連通し、該管23に加圧ポンプである圧縮ポンプ24と調圧弁25が介挿されている。
前記圧縮ポンプ24は、二酸化炭素7を所定圧、実施形態では二酸化炭素7を1〜8MPaに加圧可能にしている。
【0027】
前記二酸化炭素7は、加圧かつ液化状態でメッキ作業の各処理工程、つまり脱脂処理、酸化皮膜除去、いわゆる酸洗い処理、メッキ処理、メッキ処理後の乾燥の各処理前と、これら各工程の間に実行するメッキ槽1および陰極4の洗浄工程時に、メッキ槽1へ導入可能にされている。
【0028】
前記導管23の下流側にヒ−タ等の加熱手段26が配置され、前記メッキ処理時に圧力液体二酸化炭素7を、その臨界温度以下の0〜31℃に加熱可能にしている。
前記各槽11〜13は、導管27〜29を介してメッキ槽1の下部に連通し、該管27〜29にバルブ30〜32と、共用の送液ポンプ33が介挿されている
【0029】
このうち、前記バルブ30,31は、メッキ処理前に一定時間開弁し、所定の界面活性剤を含む電解質溶液9,10を、送液ポンプ33を介してメッキ槽1に導入可能にしている。
前記バルブ32は、酸洗い前に一定時間開弁し、所定の界面活性剤を含む酸溶液13を、送液ポンプ33を介してメッキ槽1に導入可能にしている。
【0030】
図中、34〜36は前記電解質溶液9,10および酸溶液13に添加する界面活性剤で、前記溶液9,10,13の供給時に適宜ポンプ(図示略)を介して導入可能にしている。
この場合、また、前記液化二酸化炭素と酸溶液13、電解質溶液9,10との各密度比を、1:5乃至5:1に設定し、界面活性剤による乳濁状態の均一化を図るようにしている。
【0031】
前記貯留槽16は導管37を介してメッキ槽1の上部に連通し、該管37にバルブ38が介挿されている。 前記バルブ38は脱脂処理、酸洗い、メッキ処理、乾燥の各処理前、およびそれらの間に行なう被処理物4の洗浄前に一定時間開弁し、使用後の液体二酸化炭素15を貯留槽16へ導入可能にしている。
【0032】
図中、39は前記貯留槽16に一端を接続したリターンパイプで、他端を前記圧縮ポンプ24に接続し、該パイプ39に水および油脂分を吸収可能なカラム40を挿入している。
そして、貯留槽16に所定量の二酸化炭素15が貯留された際、前記二酸化炭素15をカラム40へ導き、不純物を除去するとともに、酸素ガスや水素ガスを反応させて取り去り、清浄な初期状態に再生し、これを前記圧縮ポンプ24へ還流可能にしている。
【0033】
前記液溜槽20〜22は導管41〜43を介してメッキ槽1の下部に連通し、これらの各管41〜43にバルブ44〜46が介挿されている。
このうち、前記バルブ44は陰極4の酸洗い後、一定時間開弁し、使用後の酸洗い溶液17を界面活性剤36と一緒に液溜槽20へ導入可能にしている。
また、前記バルブ45,46は各メッキ処理後、一定時間開弁し、使用後の電解質溶液18,19を界面活性剤34,35と一緒に液溜槽21,22へ導入可能にしている。
【0034】
この他、図中47は前記送液ポンプ33および導管27〜29に並列に介挿した洗浄水槽で、各溶液9,10,13をメッキ槽1に送液後、前記ポンプ33内を洗浄可能にしている。
48はアルコール、ヘキサン等の有機溶媒からなるエントレーナで、ガス容器8と圧縮機24との間の導管23に選択的に導入し、しつこい油脂分を脱脂可能にしている。
【0035】
このように構成した電気メッキ等の電気化学的反応装置は、メッキ前処理、つまり脱脂、酸洗い、洗浄の各処理、メッキ処理、メッキ後処理、つまり被処理物4の回収、乾燥の多工程を単一のメッキ槽1で行っているから、各処理毎に専用の浴槽を要する従来のメッキ処理法および設備に比べて、構成が簡単で設置スペ−スがコンパクトになり、設備費の低減を図れる。
【0036】
また、本発明装置は、前記脱脂、酸洗い、洗浄、メッキ処理乾燥の各作業から排出する種々の排出物、つまり液化二酸化炭素や界面活性剤を含む酸洗い溶液、電解質溶液等を貯留槽16や複数の液溜槽20〜22へ排出し、外部への排出を回避するとともに、これを後述のように合理的に処理しているから、従来のような高価かつ大形の排水処理設備を要しない。
【0037】
しかも、前記各処理は拡散性を有する圧力液体二酸化炭素を利用して行なっているから、メッキ液に被処理物を浸漬する従来のメッキ法に比べて、酸溶液や電解質溶液の使用量を節減でき、排出処理設備の小形軽量化を図れる。
【0038】
更に、本発明装置は加圧液体物質として、無害で安全かつ化学的に安定した液体二酸化炭素を低温低圧で使用しているから、超臨界状態で電気メッキする場合に比べ、加圧手段や加熱手段の小能力化を図れる。
【0039】
しかも、メッキ槽1の加圧手段として汎用の加圧ポンプ24を使用し、ピストンを内蔵した大掛かりな加圧装置を要しないから、設備の小形軽量化と設備費の低減を図れるとともに、省エネルギ−で稼働コストの低減を図れる。
したがって、前記低圧分、超臨界状態のメッキ槽1に比べ耐圧強度の緩和を図れ、これを安価に製作できる。
【0040】
このような電気化学的反応装置を使用して電気メッキを行なう場合は、電極3,4の通電停止状況の下で、先ずメッキ槽1の負極側に、例えば表面を研磨処理し終えた被処理物4を取り付け、蓋(図示略)を閉めてメッキ槽1を密閉する。
【0041】
次に圧縮ポンプ24を駆動し、ガス容器8を開弁して、容器8内部の液化二酸化炭素を必要に応じて所定圧に加圧し、これを加熱手段26で加熱して、メッキ槽1へ導入する。
【0042】
前記圧力二酸化炭素はメッキ槽1に流入し、該槽1内の前記被処理物4に接触して、該被処理物4および陽極3に付着している油脂分や水分、異物等を効率良く洗浄する。
その際、撹拌子6を作動して圧力二酸化炭素を撹拌すれば、前記洗浄能率が向上し、また従来のエマルジョン洗浄のような水、溶液の使用を廃しているから、その分被処理物4の乾燥が促される。
【0043】
このように本発明は、加圧下の液化二酸化炭素系物質で被処理物4を脱脂洗浄しているから、被処理物を脱脂液に浸漬する従来の方法に比べて、有害な脱脂剤の使用をなくし、作業環境を改善して、これを安全で迅速かつ容易に行なえる。また、メッキ槽1で脱脂洗浄を行なっているから、従来のような専用の脱脂槽を要せず、その分設備費の低減を図れる。
【0044】
そして、所定時間洗浄後、バルブ38を開弁し、代わりにバルブ25を閉じて圧縮ポンプ24の駆動を停止する。
このようにすると、前記液化二酸化炭素が導管37に導かれて貯留槽16へ移動する。この状況は図2のようである。
【0045】
したがって、前記液化二酸化炭素に捕集された油脂分や水分、異物等が貯留槽16へ移動し、かつ前記二酸化炭素の移動時に系に流れが発生して、陽極3および被処理物4を洗浄し、前述の洗浄と相俟って洗浄精度を高める。
こうして、使用後の二酸化炭素15を貯留槽16へ排出後、バルブ38を閉じる。
【0046】
次に前記洗浄後、被処理物4を酸洗いする。
この酸洗いに際しては、前記通電停止状態とメッキ槽1の気密状態の下でバルブ32を開弁し、酸溶液槽14内の酸溶液13を送液ポンプ33へ送り出し、同時に前記酸溶液13に所定の界面活性剤36を加えて、これらをメッキ槽1内へ送り込む。
【0047】
前記酸溶液13と界面活性剤36は、図3(a)のようにメッキ槽1内で二層を形成する。
この状況の下で圧縮ポンプ24を駆動し、ガス容器8を開弁して、容器8内の液化二酸化炭素を必要に応じて所定圧に更に加圧し、これを加熱手段26で加熱して、メッキ槽1へ導入する。
【0048】
こうして、加圧下の液化二酸化炭素がメッキ槽1へ導かれると、これが前記酸溶液13と界面活性剤36とを急速に混合して乳濁させ、その微粒子が被処理物4の表面に接触し、被処理物4表面の錆を落とし酸化皮膜を除去して、表面を活性化する。
この状況は図3(b)のようで、その際撹拌子6を作動し、前記乳濁物質を撹拌すれば、前記拡散が均一化され、酸化皮膜が均一かつ効率良く除去されて、酸洗い能率が向上する。
【0049】
そして、所定時間酸洗い後、バルブ44を開弁すると、前記二酸化炭素が減圧され、前記乳濁状態が消失して、メッキ槽1内に使用後の酸溶液13と界面活性剤36との二層状態が回復される。
この場合、酸溶液13と界面活性剤36は、液化二酸化炭素よりも比重が大きいから、それらの二層状態が液化二酸化炭素の下方に形成される。この状況は図3(c)のようである。
【0050】
その間、バルブ25から加圧下の液化二酸化炭素がメッキ槽1内に導入され、その圧力によって使用後の酸溶液13と界面活性剤36とが押し出され、これが導管41に導かれて液溜槽20へ移動し収容される。 この状況は図4のようである。
【0051】
このように本発明は、加圧下の液化二酸化炭素で被処理物4の酸化皮膜を除去しているから、被処理物を酸溶液に浸漬する従来の酸洗い法に比べて、酸溶液の使用量を低減し、これを迅速かつ容易に行える。
また、メッキ槽1で酸洗いを行なっているから、従来のような専用の酸洗い槽を要せず、その分設備費の低減を図れる。
【0052】
こうして、酸溶液17を排出し終えたところで、前記バルブ44を閉弁し、代わりにバルブ38を開弁して、メッキ槽1内の使用後の液化二酸化炭素を、前記導入下の二酸化炭素によって押し出し、これを導管37に導いて貯留槽15へ移動し、収容する。
【0053】
その際、前記二酸化炭素の移動時に系に流れが発生して、陽極3および被処理物4を洗浄する。
この場合、酸溶液17と使用後の液化二酸化炭素の排出順序を前述と反対にしても良いが、前述のようにすれば両者を合理的かつ能率良く精密に排出できる。
【0054】
そして、使用後の二酸化炭素を排出後、バルブ38を閉じ、加圧かつ加温した液化二酸化炭素7をメッキ槽1内に導入する。
このようにすると、メッキ槽1内が加圧かつ加温され、この二酸化炭素が被処理物4に接触し、該被処理物4および陽極3に付着している水分を高速かつ効率良く洗浄する。
その際、撹拌子6を作動して二酸化炭素を撹拌すれば、前記拡散が増進され洗浄能率が向上する。
【0055】
こうして被処理物4を洗浄し乾燥後、圧縮ポンプ24を停止し調圧弁25を閉じて、液化二酸化炭素の導入を停止し、代わりにバルブ38を開弁し、メッキ槽1内の使用後の液化二酸化炭素を導管37へ導き、貯留16へ収容する。
その際、前記二酸化炭素の移動時に系に流れが発生して、陽極3および被処理物4を洗浄する。
したがって、メッキ槽1内には種々の前処理を終えて、乾燥された被処理物4が置かれる。
【0056】
このような状況の下でバルブ30または31、この例ではバルブ30を開弁し、電解質溶液槽11内の電解質溶液9を送液ポンプ33へ送り出し、同時に前記溶液9に所定の界面活性剤34を加えて、これらをメッキ槽1内へ送り込む。
【0057】
前記電解質溶液9と界面活性剤34は、図5(a)のようにメッキ槽1内で二層を形成する。
この状況の下でガス容器8を開弁し、圧縮ポンプ24を駆動して、ガス容器8内の液化二酸化炭素7を適宜圧(1〜8MPa)に加圧し、これを加熱してメッキ槽1へ導入する。
【0058】
こうして、加圧された液化二酸化炭素がメッキ槽1へ導かれると、これが前記電解質溶液9と界面活性剤34に急速に混合して乳濁化し、その微粒子がメッキ槽1内に高密度に拡散し、被処理物4の表面に接触する。
【0059】
この状況の下でスイッチ5を閉じ、陽極3および陰極4に通電すると、陽極片である純ニッケルが電解して、乳濁化した電解質溶液9に析出し、これが被処理物4の表面に付着する。
その際、撹拌子6を作動し、前記乳濁物質を撹拌して、前記電解ニッケルイオンを均一に分布させ、被処理物4の表面に緻密に付着させる。この状況は図5(b)のようである。
【0060】
この場合、前記電解ニッケルイオンの電解、析出および付着を、加圧下のメッキ槽1で行なっているから、電解ニッケルイオンがメッキ槽1内を速やかに拡散し、かつ均一に分布して、被処理物4の表面および裏面に付着する。
したがって、常圧の電解質溶液中で陽極物質を電解し析出、付着する従来のメッキ法に比べて、いわゆるメッキのつき廻りが良く、被処理物4の表面および裏面に均一かつ緻密なニッケル皮膜を得られ、良好な仕上がり面を得られる。
【0061】
このため、従来のメッキ法のように、被処理物4の表面と裏面のメッキを分けて行なう面倒がなく、その分生産性を向上でき、しかも被処理物4が複雑な形状の場合でも、補助極を要することなく容易に行える。
【0062】
一方、このようなメッキ処理時は、電解質溶液13、つまり水の電気分解によって水素ガスや酸素ガスが発生し、その気泡が被処理物4の表面に滞留し、若しくは前記攪拌により被処理物4表面を移動して、メッキ欠けやメッキムラの原因になる惧れがある。
【0063】
このような電解質溶液13ないし水の電気分解時には、液体の小さい体積からガス状態の大きな体積に変化するが、実施形態のように液化二酸化炭素によってメッキ槽1内を加圧する圧力下では、前記反応は体積の小さな方向へ移行し、前記電気分解を抑制することとなる。
このため、水素ガスや酸素ガスの発生が抑制され、それらの気泡が被処理物4の表面に滞留し、移動する事態を抑制し、これによるメッキ欠けやメッキムラを防止する。
【0064】
また、前記ガスや酸素ガスは、前述のような圧力下では、電解質溶液9に対する溶解度が高くなるから、それらが被処理物4の表面に付着し滞留する量が少なくなり、前述と相俟ってメッキ欠け、メッキムラ防止を増進する。
【0065】
しかも、前述のような圧力下では、前記水素ガスや酸素ガスの気泡は押し縮められ微細化または押し潰されるから、大気圧下で行なう従来のメッキ法に比べ、被処理物4の表面に緻密かつ一様で薄膜のメッキ皮膜を得られ、また被処理物4の細部までメッキ液が進入し、スル−ホ−ルのメッキを容易に行なえる。
したがって、被メッキ物に対し、使用するメッキ金属や電着物質を減量しても、従来と同様なメッキを得られ、特に貴金属のメッキに有利となる。
【0066】
また、前述のように発生ガスが微細化されるから、界面活性剤が効率良く働き、被処理物4の表面に付着する発生ガスを速やかに剥離し、電解質溶液9に対する溶解を促し、前述と相俟ってメッキ欠けやメッキムラを防止する。
【0067】
一方、本発明は前述のように、メッキ時の水の電気分解を抑制するから、その分の電気エネルギ−消費を節減し、これをメッキや電着に使用できるから、電流効率が向上する。
また、メッキ槽1の加圧下では、内部の液体が圧縮され、単位体積当たりのイオン濃度が大きくなり、それらの電気抵抗値が低下するから、ジュ−ル熱の発生も少なくなり、前述と相俟って電流効率の向上を増進する。
【0068】
そして、このようにメッキ槽1内を加圧し、水の電気分解を抑制しても、メッキの電気化学的反応に支障はなく、むしろ電流効率が向上し、また薄厚で良好なメッキを得られる。
【0069】
図8は本発明の適用範囲を示し、メッキ槽1内を超臨界状態よりも低温低圧の液相下の乳濁状態で、電気メッキを行なっている。
したがって、超臨界状態より加圧手段や加熱手段の小能力化を図れ、設備の小形軽量化と設備費の低減を図れ、省エネルギ−で稼働コストの低減を図れる。
また、電気メッキ前後は液化二酸化炭素の給排によって、前処理工程や使用後の各種溶液の排出と、メッキ槽1、被処理物4、電極3の洗浄および乾燥を実現している。
【0070】
本発明による電気メッキの諸特性は図9および図10のようである。
このうち、図9は液化二酸化炭素を加圧して電気メッキした場合のメッキの析出量を、超臨界状態でのメッキの析出量と比較したもので、超臨界状態でのメッキと遜色ないことを示している。しかも、本発明による電流効率は後述のように向上するから、メッキが効率良く析出する。
【0071】
図10は液体二酸化炭素を加圧して電気メッキする際の電解質溶液に対する電流効率を、超臨界二酸化炭素による電流効率と比較したもので、超臨界状態に比べ全体的に劣るが、従来の電気メッキ法よりは優れていることが確認された。
【0072】
こうして、前記メッキ工程終了後、スイッチ5をOFFし、撹拌子6を停止してバルブ45を開弁すると、前記二酸化炭素が減圧され、前記乳濁状態が消失して、電解質溶液10と界面活性剤34とが二層状態を回復する。この状況は図5(c)のようである。
【0073】
この後、バルブ45を開弁し、使用後の電解質溶液18を界面活性剤34と一緒にメッキ槽1から押し出し、これを導管42から液溜槽21へ導いて収容するそして、電解質溶液18を排出後、バルブ45を閉じ、代わりにバルブ38を開いて使用後の液化二酸化炭素をメッキ槽1から押し出し、これを導管37からガス溜槽16へ導いて収容する。
その際、前記二酸化炭素の移動時に系に流れが発生して、陽極3および被処理物4を洗浄する。
【0074】
こうして、使用後の二酸化炭素を排出後、バルブ38を閉じ、液化二酸化炭素7をメッキ槽1に導入する。
このようにすると、前記二酸化炭素が被処理物4に接触し、該被処理物4および陽極3に付着している水分を効率良く洗浄する。
その際、撹拌子6を作動して液化二酸化炭素を撹拌すれば、前記洗浄能率が向上する。
【0075】
こうして被処理物4を洗浄し乾燥後、圧縮ポンプ24を停止しバルブ25を閉じて、液化二酸化炭素の導入を停止し、メッキ槽1の蓋(図示略)を開けて、メッキ処理後の被処理物4を取り出せば、一連のメッキ作業が終了する。
【0076】
なお、使用後の液化二酸化炭素が貯留槽16に所定量貯留されると、外部のバルブを開弁し、前記使用後の二酸化炭素をリターンパイプ39を介してカラム40へ導き、該カラム40でニ酸化炭素中の水および油脂分を吸収し、不純物を除去し、また酸素ガスや水素ガスを反応させて、清浄な初期状態に再生し、適時圧縮ポンプ24へ還流して、再利用する。
したがって、使用後の二酸化炭素を大気中へ放出する無駄を解消し、また前記放出による作業環境の悪化を未然に防止し得る。
【0077】
また、使用後の酸溶液17および電解質溶液18,19が液溜槽20〜22に所定量貯留されると、これらを混入した界面活性剤と分離し、または分離せずに若干高濃度に調製して再生後、各溶液槽11,12,14へ還流する。
したがって、従来のように被処理物4を回収後、メッキ液等の煩雑な汲み戻しや濃縮調整の面倒がない。
【0078】
なお、被処理物4に複数のメッキ層を形成する、いわゆる重ねメッキを行なう場合は、一層目のメッキ終了後、被処理物4をメッキ槽1から取り出すことなく、前述の前処理を実行してメッキ処理すれば良い。
したがって従来の重ねメッキのように、メッキ終了後、被処理物4をメッキ槽からいちいち取り出し、これを各槽へ移動して前処理を行なう面倒がなく、生産性が向上する。
【0079】
図11は本発明の他の実施形態を示し、前述の実施形態と対応する構成部分には同一の符号を用いている。
なお、図11は実施形態の要部のみを図示し、各反応浴槽1,1aに対する加圧した液体二酸化炭素の供給と排出、並びに貯留部分の構成、および各種溶液の供給と排出、並びに貯留部分の構成は、図示を省略しており、当該部は図1と実質的に同一である。
【0080】
この実施形態は、実質的に同一な反応浴槽1,1aを複数、実施形態では2つ並設し、これらを導管52,53で連通し、該導管52,53にバルブ54,55を介挿する。
これらの反応浴槽1,1aは、同一の処理工程、つまり一連のメッキ処理工程を交互に時間をづらせて実行可能で、一方の反応浴槽1で一連のメッキ処理工程の一部、例えば前処理、他方の反応浴槽1aで一連のメッキ処理工程の残部、例えばメッキ処理と後処理とを実行させている。
【0081】
すなわち、一方の反応浴槽1で被処理物4のメッキ処理工程の一部、例えば脱脂洗浄、酸洗い等の前処理を行ない、使用後の各種ガスおよび溶液を前記貯留槽(図示略)に収容する。
他方の反応浴槽1aでは、既に前記前処理工程を終えてメッキ処理を実行し、かつメッキ処理後の被処理物4を回収、洗浄、乾燥し、使用後の各種ガスおよび溶液を前記貯留槽(図示略)に収容する。
この状況はステップ1のようである。この場合、反応浴槽1aに対する二酸化炭素は、バルブ54より下流側の導管52に導入する。
【0082】
次にステップ2では、反応浴槽1が既に前処理工程を終えてメッキ処理を実行し、かつメッキ処理後の被処理物4を回収、洗浄、乾燥し、使用後の各種ガスおよび溶液を前記貯留槽(図示略)に収容する。
一方、反応浴槽1aでは前記メッキ処理を終えて、新たな被処理物4を取り付け、該被処理物4の脱脂洗浄、酸洗い等の前処理を行ない、使用後の各種ガスおよび溶液を前記貯留槽(図示略)に収容する。
【0083】
このようにこの実施形態では、複数の反応浴槽1,1aでメッキ処理の全工程を独自に行なわせ、一連のメッキ作業の生産性の向上を図るようにしている。
【0084】
なお、前述の実施形態のように電解した電極物質を他方の電極物質に析出付着する方法は、原理的に同様な電鋳および陽極酸化皮膜形成法に適用することができ、前述と同様な効果を得られる。
また、反応浴槽に電解物質と電極物質を収容し、一方の電極物質を電解し、これを他方の電極物質側で採集する電解法にも、本発明を適用することが可能であり、そのようにすることで、例えば金属の電解精製、電解抽出、電解研磨等に適用することができ、前述と同様な効果を得られる。
【0085】
【発明の効果】
本発明は以上のように、請求項1の発明は、反応浴槽に界面活性剤を添加して撹拌し、加圧液体と電解質溶液とを乳濁させて電気化学的反応させるから、加圧下で微細化した水素ガスや酸素ガスに対し、界面活性剤を効率良く働かせ、被処理面から前記ガスを速やかに剥離させ、電解質溶液へ速やかに溶融させることができる。
【0086】
請求項2の発明は、前記反応浴槽で電気化学的反応させる前に、前記加圧液体を反応浴槽へ導入し、前記電極物質を洗浄し、若しくは酸化皮膜を除去するようにしたから、前記加圧液体による前処理を実行させ、安定した電気化学的反応を実現させることができる。
【0087】
請求項の発明は、前記反応浴槽で電気化学的反応させた後、前記加圧液体を反応浴槽へ導入し、前記電極物質を洗浄し、若しくは乾燥するようにしたから、前記加圧液体による後処理を実行させ、次期電気化学的反応の安定性を得られる効果がある。
【0088】
請求項の発明は、前記反応浴槽に液化二酸化炭素を導入して略1〜7 . 3MPaに加圧するようにしたから、前記電気化学的反応を超臨界状態よりも低圧状態で実現し、その分省エネルギ−化と設備の小形軽量化ないし稼動コストの低減を図ることができる。
【0089】
請求項の発明は、反応浴槽に界面活性剤を添加して撹拌可能に設け、かつ加圧液体と電解質溶液とを乳濁させて電気化学的反応可能にしたから、加圧下で微細化した水素ガスや酸素ガスに対し、界面活性剤を効率良く働かせ、被処理面から前記ガスを速やかに剥離させ、電解質溶液へ速やかに溶融させることができる。
【0090】
請求項の発明は、前記反応浴槽で電気化学的反応させる前に、前記加圧液体を反応浴槽へ導入可能に設け、前記電極物質を洗浄し、若しくは酸化皮膜を除去可能にしたから、前記加圧液体による前処理を実行させ、安定した電気化学的反応を実現させることができる。
【0091】
請求項の発明は、前記反応浴槽で電気化学的反応させた後、前記加圧液体を反応浴槽へ導入可能に設け、前記電極物質を洗浄し、若しくは乾燥可能にしたから、前記加圧液体による後処理を実行させ、次期電気化学的反応の安定性を得られる効果がある。
【0092】
請求項の発明は、前記反応浴槽に液化二酸化炭素を導入して略1〜7.3MPaに加圧可能にしたから、前記電気化学的反応を超臨界状態よりも低圧状態で実現し、その分省エネルギ−化と設備の小形軽量化ないし稼動コストの低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す説明図で、単一の反応浴槽を用いてメッキ処理の多工程を実施させている。
【図2】前記メッキ処理の脱脂および洗浄処理工程を示す説明図である。
【図3】前記メッキ処理の酸化皮膜除去および被処理物活性化処理工程を順に示す説明図である。
【図4】前記メッキ処理の酸溶液排出および洗浄工程を示す説明図である。
【図5】前記メッキ処理の工程を順に示す説明図である。
【図6】前記メッキ処理の電解質溶液排出および洗浄工程を示す説明図である。
【図7】前記メッキ処理の乾燥および洗浄工程を示す説明図である。
【図8】本発明のメッキ処理への適用範囲を示す相図である。
【図9】本発明を液体二酸化炭素を用いてメッキ処理した際の、電解質溶液に対するメッキの析出量を示す特性図で、超臨界二酸化炭素を用いたメッキの析出量と比較している。
【図10】本発明を液体二酸化炭素を用いてメッキ処理した際の、電解質溶液量に対する電流効率を示す特性図で、超臨界二酸化炭素を用いての電流効率と比較している
【図11】本発明の第2の実施形態の要部を示す説明図で、二つの反応浴槽を用いてそれぞれメッキ処理を実施させている。
【符号の説明】
1,1a 反応浴槽
3 電極物質(陽極)
4 電極物質(陰極)
9,11 電解質溶液
13 酸溶液(酸化皮膜除去溶液)
16,20〜22 貯留槽
34〜36 界面活性剤
[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for an electrochemical treatment such as electroplating, and pressurizes the reaction bath to cause an electrochemical reaction, thereby suppressing the electrolysis of the solvent of the electrolytic solution, thereby making the electrochemical reaction rational and efficient. Perform well, obtain a dense and thin metal film, improve productivity, reduce the size and weight of equipment, perform each treatment process safely and rationally, and reduce the amount of waste liquid in each treatment process The present invention relates to an electrochemical treatment method such as electroplating, which can prevent environmental pollution, and an electrochemical reaction device thereof.
[0002]
[Prior art]
The conventional electroplating process is roughly divided into a pretreatment process, a plating process, and a posttreatment process. Among these, the pretreatment process involves degreasing and pickling, and these are usually performed by storing a predetermined treatment liquid in a dedicated bath and heating, and immersing the object to be treated in this treatment liquid for a predetermined time. Yes.
Therefore, a plurality of bathtubs and their work space are required, the equipment cost is expensive, the work environment is poor due to being forced to work under the situation where the treatment liquid is scattered and harmful gas is generated, and There was a problem that it took a long time to immerse and the productivity was poor
[0003]
In order to solve such a problem, the applicant introduced a substance in a supercritical state, an electrolyte solution, and a surfactant into the reaction bath, electroplated under these emulsion states, and plated. After that, we developed an electrochemical reaction method that vaporizes the supercritical material and discharges it outside the bath so that the reaction bath and electrodes can be cleaned without the need for a cleaning solution. Already proposed as 253572
[0004]
However, the electrochemical reaction method requires a large amount of energy to heat and pressurize the reaction bath in a supercritical state at a high temperature and a high pressure, which increases the operating cost and the large weight of the equipment. There was a problem that led to an increase in equipment costs.
[0005]
By the way, in electroplating or the like, hydrogen gas or oxygen gas is generated by electrolysis of the electrolytic solution, and the bubbles stay or move on the surface to be processed, thereby causing plating defects or plating unevenness. There is a problem that electric energy is consumed for the generation, the plating is hindered, and current efficiency is lowered.
[0006]
In order to solve such a problem, for example, an electroless plating apparatus disclosed in Japanese Patent Application Laid-Open No. 2000-226671 has a surface to be processed facing upward in a sealed space, the pressure in the space is set to atmospheric pressure or higher, and This pressure is pulsated to dissolve hydrogen gas bubbles generated in the reduction reaction during electroless copper plating into the plating solution and to promote separation from the surface to be processed.
[0007]
However, in electroless plating, hydrogen gas and the like are inevitably generated along with the deposition reaction of the plating, so the method of suppressing the generation of gas is because the deposition of the plating is lowered and the plating itself cannot be performed. Not practical.
That is, in electroless plating, plating is performed after allowing the generation of hydrogen gas, etc., and for an unfavorable hydrogen gas, an appropriate stabilizer is added to the bath, or nitrogen gas is used. It corresponded.
Therefore, the electroless plating method that allows generation of hydrogen gas or the like cannot be used for electroplating or the like.
[0008]
Moreover, in the case of electroplating by the above-described method, an electrode must be disposed to face the surface to be processed, and in such a case, hydrogen gas generated from the surface to be processed stays in the electrode and is contained in the electrolytic solution. This method cannot be used for electroplating because it prevents energization and makes electroplating difficult.
[0009]
[Problems to be solved by the invention]
The present invention solves such a problem, and is suitable for electrochemical treatment such as electroplating. For example, the reaction bath is pressurized to cause an electrochemical reaction, and the electrolysis of the solvent of the electrolytic solution is suppressed. The reaction can be carried out rationally and efficiently, and a dense and thin metal film can be obtained, productivity can be improved and the equipment can be reduced in size and weight, and each processing step can be performed safely and rationally. It is an object of the present invention to provide an electrochemical treatment method such as electroplating and an electrochemical reaction device for reducing the amount of waste liquid in the process and preventing environmental pollution.
[0010]
[Means for Solving the Problems]
For this reason, the invention of claim 1 accommodates the cathode and anode electrode materials in a reaction bath capable of accommodating an electrolytic material,AboveReaction bathUnder pressure of the reaction bath.In the electrochemical treatment method such as electroplating for electrochemical reaction in the reaction bath, the reaction bathSurfactant is added to and stirred, and the pressurized liquid and the electrolyte solution are emulsified and electrochemically reacted, and the surfactant is efficiently applied to hydrogen gas and oxygen gas refined under pressure. Work, quickly remove the gas from the surface to be treated, and quickly melt it into the electrolyte solution.Trying to
[0011]
The invention of claim 2 is the reaction bath.Before the electrochemical reaction in the step, the pressurized liquid is introduced into the reaction bath, the electrode material is washed, or the oxide film is removed, so that the pretreatment with the pressurized liquid is performed and stable. Realize the electrochemical reactionI try to do it.
[0012]
Claim3In the invention of the present invention, an electrochemical reaction is caused in the reaction bath.After that, the pressurized liquid is introduced into the reaction bath, the electrode material is washed or dried, and the post-treatment with the pressurized liquid is performed to obtain the stability of the next electrochemical reaction.I try to do it.
[0013]
Claim4The invention ofAbout 1-7 by introducing liquefied carbon dioxide into the reaction bath . By applying pressure to 3 MPa, the electrochemical reaction is realized in a lower pressure state than in the supercritical state, thereby reducing energy consumption, reducing the size and weight of equipment, and reducing operating costs.I try to do it.
[0014]
Claim5The invention ofThe cathode and anode electrode materials are accommodated in a reaction bath capable of accommodating an electrolyte, a pressurized liquid is introduced into the reaction bath so that pressurization is possible, and an electrochemical reaction is performed under the pressurized state of the reaction bath. In an electrochemical reaction apparatus such as electroplating that is made possible, a surfactant is added to the reaction bath so that it can be stirred, and the pressurized liquid and the electrolyte solution are emulsified to enable electrochemical reaction. , Make the surfactant efficiently work against hydrogen gas and oxygen gas refined under pressure, quickly peel off the gas from the surface to be treated, and quickly melt it into the electrolyte solutionI try to do it.
[0015]
Claim6The invention of the reaction bathBefore the electrochemical reaction, the pressurized liquid can be introduced into the reaction bath, the electrode material can be washed, or the oxide film can be removed, and the pretreatment with the pressurized liquid can be performed to stabilize Realized electrochemical reactionTrying to
[0016]
Claim7The invention of the reaction bathAfter the electrochemical reaction, the pressurized liquid can be introduced into the reaction bath, the electrode material can be washed or dried, and the post-treatment with the pressurized liquid can be performed. The stability of the reactionI try to do it.
[0017]
Claim8The invention ofLiquefied carbon dioxide is introduced into the reaction bath so that the pressure can be increased to about 1 to 7.3 MPa, and the electrochemical reaction is realized in a lower pressure state than in the supercritical state. Reduce weight and reduce operating costsI try to do it.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A description will now be given of illustrated embodiments in which the present invention is applied to electroplating (nickel plating) which is an electrochemical treatment method. In FIGS. 1 to 10, reference numeral 1 denotes a stainless steel plating tank which is an electrochemical reaction bath. The inner surface is lined with vinyl chloride or hard rubber, and a lid (not shown) is airtightly and detachably attached to the upper opening.
[0019]
A direct current power source 2 that is an external electric field is provided outside the plating tank 1, and an anode 3 that is an electrode material that conducts to the positive electrode side, and a cathode 4 that is an electrode material and is a treatment object that conducts to the negative electrode side. Is accommodated in the plating tank 1.
In the embodiment, a pure nickel plate is used for the anode 3 and a Hull cell test brass plate is used for the cathode 4.
[0020]
In the figure, 5 is a switch inserted in the power supply circuit of the power source 2 and is turned on only during an electrochemical reaction, that is, during electroplating, so that the anode 3 and the cathode 4 can be energized. Reference numeral 6 denotes a stirrer such as a stirrer provided at the bottom of the plating tank 1, which stirs the pressure liquid introduced into the plating tank 1, in the embodiment, liquefied carbon dioxide, and an electrolyte solution or acid solution containing a surfactant. It is possible.
[0021]
A gas container 8 filled with about 6 MPa of, for example, liquefied carbon dioxide 7, which is a pressurized medium or a pressurized substance, outside the plating tank 1, and an electrolyte solution tank 11 containing different types of electrolyte solutions 9 and 10. 12, an acid solution tank 14 containing an acid solution 13 having a pH of 7 or less, a storage tank 16 containing liquefied carbon dioxide 15 after use, an acid solution 17 containing a surfactant after use, or after use A plurality of reservoirs 20 to 22, which are electrolyte reservoirs 18 and 19 containing the surfactant, are disposed.
[0022]
In this case, the pressurized substance or medium may be either liquid or gas, but harmless, safe and chemically stable carbon dioxide is preferred when the solvent for dissolving the electrolyte solutions 9 and 10 is water. However, the pressurized liquid of the present invention can include any liquid that is insoluble in the electrolyte solution.
[0023]
In addition, as other pressurized substances, gases such as nitrogen and argon, spindle oils not mixed with the electrolyte solutions 9 and 10, fats and oils such as hexane, benzene and toluene, and halogenated hydrocarbons such as chloroform are used. Can do. When the solvent is an organic electrolyte such as propylene carbonate, acetonylyl, polyethylene oxide, etc., gases that do not react with these solvents, various pressure substances that phase separate and ions do not migrate to the phase, etc. Can be used.
[0024]
Furthermore, the pressurizing substance or pressurizing medium can be used by mixing a plurality of kinds of liquids or gases. For example, by adopting a substance having a low liquefaction pressure, the strength of the plating tank 1 can be reduced. Can be manufactured at low cost.
[0025]
These liquid storage tanks 20 to 22 are connected to return pipes 49 to 51 communicating with the respective solution tanks 11, 12, and 14 to separate or separate the used solutions 17 to 19 from the surfactant. Without being adjusted to a slightly higher concentration and regenerated, it is refluxed to each of the solution tanks 11-13.
[0026]
The gas container 8 communicates with the upper part of the plating tank 1 through a conduit 23, and a compression pump 24 and a pressure regulating valve 25, which are pressure pumps, are inserted into the pipe 23.
The compression pump 24 can pressurize the carbon dioxide 7 to a predetermined pressure, and in the embodiment, the carbon dioxide 7 can be pressurized to 1 to 8 MPa.
[0027]
The carbon dioxide 7 is subjected to various treatment steps of plating work in a pressurized and liquefied state, that is, before each treatment of degreasing treatment, oxide film removal, so-called pickling treatment, plating treatment, and drying after plating treatment. During the cleaning process of the plating tank 1 and the cathode 4 executed in the meantime, it can be introduced into the plating tank 1.
[0028]
A heating means 26 such as a heater is disposed on the downstream side of the conduit 23 so that the pressure liquid carbon dioxide 7 can be heated to 0 to 31 ° C. below its critical temperature during the plating process.
The tanks 11 to 13 communicate with the lower part of the plating tank 1 through conduits 27 to 29, and valves 30 to 32 and a common liquid feed pump 33 are inserted into the pipes 27 to 29.
[0029]
Among these, the valves 30 and 31 are opened for a predetermined time before the plating process, and the electrolyte solutions 9 and 10 containing a predetermined surfactant can be introduced into the plating tank 1 via the liquid feed pump 33. .
The valve 32 is opened for a certain period of time before pickling so that an acid solution 13 containing a predetermined surfactant can be introduced into the plating tank 1 via a liquid feed pump 33.
[0030]
In the figure, 34 to 36 are surfactants to be added to the electrolyte solutions 9 and 10 and the acid solution 13, and can be introduced through a pump (not shown) as appropriate when the solutions 9, 10, and 13 are supplied.
In this case, each density ratio of the liquefied carbon dioxide, the acid solution 13 and the electrolyte solutions 9 and 10 is set to 1: 5 to 5: 1 so that the emulsion can be made uniform by the surfactant. I have to.
[0031]
The storage tank 16 communicates with the upper part of the plating tank 1 through a conduit 37, and a valve 38 is inserted in the pipe 37. The valve 38 is opened for a certain period of time before each of the degreasing treatment, pickling, plating treatment, and drying treatment, and before washing of the object 4 to be treated, and the liquid carbon dioxide 15 after use is stored in the storage tank 16. It is possible to introduce to.
[0032]
In the figure, 39 is a return pipe having one end connected to the storage tank 16, the other end connected to the compression pump 24, and a column 40 capable of absorbing water and oil / fat is inserted into the pipe 39.
When a predetermined amount of carbon dioxide 15 is stored in the storage tank 16, the carbon dioxide 15 is guided to the column 40, impurities are removed, oxygen gas and hydrogen gas are reacted and removed, and a clean initial state is obtained. This is regenerated and can be returned to the compression pump 24.
[0033]
The liquid reservoirs 20 to 22 communicate with the lower part of the plating tank 1 through conduits 41 to 43, and valves 44 to 46 are inserted into these pipes 41 to 43, respectively.
Among these, the valve 44 is opened for a certain time after the cathode 4 is pickled, so that the pickling solution 17 after use can be introduced into the reservoir 20 together with the surfactant 36.
In addition, the valves 45 and 46 are opened for a certain time after each plating process, so that the used electrolyte solutions 18 and 19 can be introduced into the liquid reservoirs 21 and 22 together with the surfactants 34 and 35.
[0034]
In addition, 47 in the figure is a washing water tank inserted in parallel with the liquid feeding pump 33 and the conduits 27 to 29. After the solutions 9, 10, 13 are fed to the plating tank 1, the inside of the pump 33 can be washed. I have to.
Reference numeral 48 denotes an entrainer made of an organic solvent such as alcohol or hexane, which is selectively introduced into a conduit 23 between the gas container 8 and the compressor 24 so that persistent oils and fats can be degreased.
[0035]
The electrochemical reaction apparatus such as electroplating configured as described above is a multi-step process of pre-plating treatment, that is, degreasing, pickling, and cleaning, plating treatment, post-plating treatment, that is, recovery of the workpiece 4 and drying. Is performed in a single plating tank 1, compared to conventional plating methods and equipment that require a dedicated bath for each treatment, the structure is simple, the installation space is compact, and equipment costs are reduced. Can be planned.
[0036]
In addition, the apparatus of the present invention stores various discharges discharged from the degreasing, pickling, washing, and plating treatment drying operations, that is, pickling solutions containing liquefied carbon dioxide and surfactants, electrolyte solutions, and the like. In addition, it is discharged to a plurality of liquid storage tanks 20 to 22 to avoid the discharge to the outside, and this is rationally processed as described later, so that an expensive and large-scale waste water treatment facility as in the past is required. do not do.
[0037]
In addition, since each of the treatments is performed using diffusible pressure liquid carbon dioxide, the amount of acid solution or electrolyte solution used can be reduced compared to the conventional plating method in which an object to be treated is immersed in the plating solution. It is possible to reduce the size and weight of the discharge treatment facility.
[0038]
Furthermore, since the apparatus of the present invention uses liquid carbon dioxide that is harmless, safe and chemically stable as a pressurized liquid substance at low temperature and low pressure, compared with the case of electroplating in a supercritical state, the pressure means and heating The ability of the means can be reduced.
[0039]
In addition, since a general-purpose pressurizing pump 24 is used as the pressurizing means for the plating tank 1 and a large pressurizing device with a built-in piston is not required, the equipment can be reduced in size and weight, and the equipment cost can be reduced. -Reduces operating costs.
Therefore, the pressure strength can be reduced compared with the plating tank 1 in the low pressure and supercritical state, and this can be manufactured at low cost.
[0040]
When electroplating is performed using such an electrochemical reaction device, first, for example, on the negative electrode side of the plating tank 1 under the condition that the electrodes 3 and 4 are de-energized, the surface to be processed has been polished. The object 4 is attached, the lid (not shown) is closed, and the plating tank 1 is sealed.
[0041]
Next, the compression pump 24 is driven, the gas container 8 is opened, the liquefied carbon dioxide inside the container 8 is pressurized to a predetermined pressure as necessary, and this is heated by the heating means 26 to the plating tank 1. Introduce.
[0042]
The pressure carbon dioxide flows into the plating tank 1 and comes into contact with the object to be processed 4 in the tank 1 to efficiently remove oils and fats, moisture, foreign matters and the like adhering to the object 4 and the anode 3. Wash.
At this time, if the pressure carbon dioxide is stirred by operating the stirrer 6, the cleaning efficiency is improved, and the use of water and solution as in conventional emulsion cleaning is eliminated. Is encouraged to dry.
[0043]
As described above, since the object to be treated 4 is degreased and washed with the liquefied carbon dioxide-based material under pressure, the present invention uses a harmful degreasing agent as compared with the conventional method of immersing the object to be treated in the degreasing liquid. And improve the working environment, making this safe, quick and easy. Moreover, since the degreasing cleaning is performed in the plating tank 1, a dedicated degreasing tank as in the prior art is not required, and the equipment cost can be reduced accordingly.
[0044]
Then, after washing for a predetermined time, the valve 38 is opened, and instead, the valve 25 is closed and the driving of the compression pump 24 is stopped.
In this way, the liquefied carbon dioxide is guided to the conduit 37 and moves to the storage tank 16. This situation is as shown in FIG.
[0045]
Therefore, the oil and fat, moisture, foreign matter and the like collected in the liquefied carbon dioxide move to the storage tank 16, and a flow is generated in the system during the movement of the carbon dioxide, so that the anode 3 and the workpiece 4 are cleaned. In combination with the aforementioned cleaning, the cleaning accuracy is improved.
Thus, the valve 38 is closed after the used carbon dioxide 15 is discharged to the storage tank 16.
[0046]
Next, after the cleaning, the workpiece 4 is pickled.
At the time of this pickling, the valve 32 is opened while the energization is stopped and the plating tank 1 is airtight, and the acid solution 13 in the acid solution tank 14 is sent to the liquid feed pump 33, and at the same time, the acid solution 13 is poured into the acid solution 13. A predetermined surfactant 36 is added, and these are fed into the plating tank 1.
[0047]
The acid solution 13 and the surfactant 36 form two layers in the plating tank 1 as shown in FIG.
Under this situation, the compression pump 24 is driven, the gas container 8 is opened, the liquefied carbon dioxide in the container 8 is further pressurized to a predetermined pressure as necessary, and this is heated by the heating means 26, Introduce into the plating tank 1.
[0048]
Thus, when the liquefied carbon dioxide under pressure is guided to the plating tank 1, it rapidly mixes the acid solution 13 and the surfactant 36 to make them emulsion, and the fine particles come into contact with the surface of the workpiece 4. Then, rust is removed from the surface of the workpiece 4 to remove the oxide film and activate the surface.
This situation is as shown in FIG. 3 (b). At this time, the stirrer 6 is operated and the emulsion substance is stirred, so that the diffusion is made uniform, the oxide film is removed uniformly and efficiently, and pickling is performed. Efficiency is improved.
[0049]
Then, after pickling for a predetermined time, when the valve 44 is opened, the carbon dioxide is depressurized, the emulsion state disappears, and the acid solution 13 and the surfactant 36 after use are put into the plating tank 1. The layer state is restored.
In this case, since the specific gravity of the acid solution 13 and the surfactant 36 is larger than that of liquefied carbon dioxide, their two-layer state is formed below the liquefied carbon dioxide. This situation is as shown in FIG.
[0050]
Meanwhile, liquefied carbon dioxide under pressure is introduced into the plating tank 1 from the valve 25, and the used acid solution 13 and the surfactant 36 are pushed out by the pressure, and this is led to the conduit 41 to the liquid reservoir 20. Moved and housed. This situation is as shown in FIG.
[0051]
As described above, since the present invention removes the oxide film of the object 4 to be treated with liquefied carbon dioxide under pressure, the use of an acid solution compared to the conventional pickling method in which the object to be treated is immersed in an acid solution. The amount can be reduced and this can be done quickly and easily.
Further, since pickling is performed in the plating tank 1, a dedicated pickling tank as in the prior art is not required, and the equipment cost can be reduced correspondingly.
[0052]
Thus, when the acid solution 17 is completely discharged, the valve 44 is closed, and the valve 38 is opened instead. The used liquefied carbon dioxide in the plating tank 1 is converted into carbon dioxide under the introduction. Extruded, guided to the conduit 37, moved to the storage tank 15, and accommodated.
[0053]
At that time, when the carbon dioxide moves, a flow is generated in the system, and the anode 3 and the workpiece 4 are cleaned.
In this case, the discharge order of the acid solution 17 and the liquefied carbon dioxide after use may be reversed from that described above. However, if it is performed as described above, both can be discharged rationally and efficiently with high precision.
[0054]
Then, after discharging the used carbon dioxide, the valve 38 is closed, and pressurized and heated liquefied carbon dioxide 7 is introduced into the plating tank 1.
If it does in this way, the inside of the plating tank 1 will be pressurized and heated, this carbon dioxide will contact the to-be-processed object 4, and the water | moisture content adhering to this to-be-processed object 4 and the anode 3 will be wash | cleaned quickly and efficiently. .
At that time, if the stirring bar 6 is operated to stir carbon dioxide, the diffusion is promoted and the cleaning efficiency is improved.
[0055]
After cleaning and drying the workpiece 4, the compression pump 24 is stopped, the pressure regulating valve 25 is closed, the introduction of liquefied carbon dioxide is stopped, and the valve 38 is opened instead. The liquefied carbon dioxide is guided to the conduit 37 and stored in the storage 16.
At that time, when the carbon dioxide moves, a flow is generated in the system, and the anode 3 and the workpiece 4 are cleaned.
Therefore, various pretreatments are finished in the plating tank 1 and the dried object 4 is placed.
[0056]
Under such circumstances, the valve 30 or 31, in this example, the valve 30 is opened, and the electrolyte solution 9 in the electrolyte solution tank 11 is sent to the liquid feed pump 33, and at the same time, a predetermined surfactant 34 is added to the solution 9. These are fed into the plating tank 1.
[0057]
The electrolyte solution 9 and the surfactant 34 form two layers in the plating tank 1 as shown in FIG.
Under this condition, the gas container 8 is opened, the compression pump 24 is driven, and the liquefied carbon dioxide 7 in the gas container 8 is appropriately pressurized (1 to 8 MPa), and this is heated to heat the plating tank 1. To introduce.
[0058]
Thus, when the pressurized liquefied carbon dioxide is led to the plating tank 1, it is rapidly mixed with the electrolyte solution 9 and the surfactant 34 to become emulsion, and the fine particles diffuse into the plating tank 1 with high density. And contacts the surface of the workpiece 4.
[0059]
When the switch 5 is closed under this condition and the anode 3 and the cathode 4 are energized, the pure nickel as the anode piece is electrolyzed and deposited on the emulsified electrolyte solution 9, which adheres to the surface of the workpiece 4. To do.
At that time, the stirrer 6 is operated to stir the emulsion substance so that the electrolytic nickel ions are evenly distributed and adhered to the surface of the object 4 to be treated. This situation is as shown in FIG.
[0060]
In this case, since the electrolytic nickel ions are electrolyzed, deposited and adhered in the plating tank 1 under pressure, the electrolytic nickel ions are quickly diffused and uniformly distributed in the plating tank 1 to be treated. It adheres to the front and back surfaces of the object 4.
Therefore, compared with the conventional plating method in which the anode material is electrolyzed, deposited and adhered in an electrolyte solution at normal pressure, so-called plating is better, and a uniform and dense nickel film is formed on the front and back surfaces of the object 4 to be processed. And a good finished surface can be obtained.
[0061]
For this reason, unlike the conventional plating method, there is no hassle to separate the plating of the front surface and the back surface of the object to be processed 4 and the productivity can be improved correspondingly, and even when the object to be processed 4 has a complicated shape, This can be done easily without requiring an auxiliary electrode.
[0062]
On the other hand, during such a plating process, hydrogen gas or oxygen gas is generated by electrolysis of the electrolyte solution 13, that is, water, and the bubbles stay on the surface of the workpiece 4, or the workpiece 4 is processed by the stirring. There is a risk of moving the surface to cause missing plating or uneven plating.
[0063]
At the time of electrolysis of the electrolyte solution 13 or water, the volume changes from a small volume of liquid to a large volume in a gas state. However, under the pressure of pressurizing the inside of the plating tank 1 with liquefied carbon dioxide as in the embodiment, the reaction Shifts in the direction of small volume and suppresses the electrolysis.
For this reason, generation | occurrence | production of hydrogen gas and oxygen gas is suppressed, those bubbles retain on the surface of the to-be-processed object 4, the situation which moves is suppressed, and the plating defect by this and plating unevenness are prevented.
[0064]
In addition, the gas and oxygen gas have high solubility in the electrolyte solution 9 under the pressure as described above. Therefore, the amount of the gas or oxygen gas that adheres to and stays on the surface of the object to be processed 4 is reduced. To prevent plating defects and uneven plating.
[0065]
In addition, under the pressure as described above, the bubbles of hydrogen gas and oxygen gas are compressed and refined or crushed, so that the surface of the workpiece 4 is denser than the conventional plating method performed under atmospheric pressure. In addition, a uniform and thin plating film can be obtained, and the plating solution enters the details of the workpiece 4 so that the through hole can be easily plated.
Therefore, even if the amount of the plating metal or electrodeposition material to be used is reduced with respect to the object to be plated, the same plating as before can be obtained, which is particularly advantageous for the plating of noble metal.
[0066]
Further, since the generated gas is miniaturized as described above, the surfactant works efficiently, and the generated gas adhering to the surface of the object to be processed 4 is quickly peeled off to promote dissolution in the electrolyte solution 9. Together, it prevents plating defects and uneven plating.
[0067]
On the other hand, as described above, the present invention suppresses electrolysis of water at the time of plating, thereby reducing the electric energy consumption and using it for plating and electrodeposition, so that the current efficiency is improved.
In addition, when the plating tank 1 is pressurized, the liquid inside is compressed, the ion concentration per unit volume is increased, and the electrical resistance value thereof is decreased. In turn, it improves current efficiency.
[0068]
And even if the inside of the plating tank 1 is pressurized in this way and the electrolysis of water is suppressed, there is no hindrance to the electrochemical reaction of the plating, rather the current efficiency is improved, and a thin and good plating can be obtained. .
[0069]
FIG. 8 shows the scope of application of the present invention, in which electroplating is performed in the plating tank 1 in a milky state under a liquid phase at a lower temperature and lower pressure than in the supercritical state.
Therefore, it is possible to reduce the capacity of the pressurizing means and the heating means from the supercritical state, to reduce the equipment size and weight and to reduce the equipment cost, and to save energy and reduce the operating cost.
Further, before and after electroplating, supply and discharge of liquefied carbon dioxide realizes discharge of various solutions after the pretreatment process and use, and cleaning and drying of the plating tank 1, the workpiece 4 and the electrode 3.
[0070]
Various characteristics of electroplating according to the present invention are as shown in FIGS.
Of these, FIG. 9 compares the amount of plating deposited when liquefied carbon dioxide is pressurized and electroplated with the amount of plating deposited in the supercritical state, and is comparable to plating in the supercritical state. Show. In addition, since the current efficiency according to the present invention is improved as described later, the plating is efficiently deposited.
[0071]
FIG. 10 compares the current efficiency with respect to the electrolyte solution when electroplating by pressurizing liquid carbon dioxide with that of supercritical carbon dioxide, which is generally inferior to the supercritical state. It was confirmed to be superior to the method.
[0072]
Thus, after the plating process is completed, when the switch 5 is turned off, the stirrer 6 is stopped and the valve 45 is opened, the carbon dioxide is depressurized, the emulsion state disappears, and the electrolyte solution 10 and the surface activity. The agent 34 recovers the two-layer state. This situation is as shown in FIG.
[0073]
Thereafter, the valve 45 is opened, and the used electrolyte solution 18 is pushed out from the plating tank 1 together with the surfactant 34, and is led to the reservoir tank 21 through the conduit 42 and accommodated. Then, the electrolyte solution 18 is discharged. After that, the valve 45 is closed, and the valve 38 is opened instead to push out the used liquefied carbon dioxide from the plating tank 1 and lead it from the conduit 37 to the gas tank 16 to be accommodated.
At that time, when the carbon dioxide moves, a flow is generated in the system, and the anode 3 and the workpiece 4 are cleaned.
[0074]
Thus, after discharging the used carbon dioxide, the valve 38 is closed and the liquefied carbon dioxide 7 is introduced into the plating tank 1.
If it does in this way, the said carbon dioxide will contact the to-be-processed object 4, and will wash | clean the water | moisture content adhering to this to-be-processed object 4 and the anode 3 efficiently.
At this time, if the stirrer 6 is operated to stir the liquefied carbon dioxide, the cleaning efficiency is improved.
[0075]
After cleaning and drying the object to be processed 4, the compression pump 24 is stopped and the valve 25 is closed, the introduction of liquefied carbon dioxide is stopped, the lid (not shown) of the plating tank 1 is opened, and the object after plating is processed. If the processed material 4 is taken out, a series of plating operations are completed.
[0076]
When a predetermined amount of used liquefied carbon dioxide is stored in the storage tank 16, an external valve is opened, and the used carbon dioxide is guided to the column 40 via the return pipe 39. It absorbs water and fats and oils in carbon dioxide, removes impurities, reacts with oxygen gas and hydrogen gas, regenerates to a clean initial state, returns to the compression pump 24 in a timely manner, and is reused.
Therefore, it is possible to eliminate the waste of releasing carbon dioxide after use into the atmosphere and to prevent deterioration of the working environment due to the release.
[0077]
Further, when a predetermined amount of the used acid solution 17 and the electrolyte solutions 18 and 19 are stored in the liquid storage tanks 20 to 22, they are separated from the surfactant mixed therein or prepared to a slightly high concentration without separation. After the regeneration, the solution is refluxed to the solution tanks 11, 12, and 14.
Accordingly, there is no troublesome complicated pumping back of the plating solution or the like after the collection of the workpiece 4 as in the prior art.
[0078]
In addition, when performing so-called overlap plating in which a plurality of plating layers are formed on the workpiece 4, the above-described pretreatment is performed without removing the workpiece 4 from the plating tank 1 after the completion of the first plating. Plating.
Therefore, unlike the conventional overplating, after the end of plating, the object to be processed 4 is taken out from the plating tank one by one, moved to each tank, and the pretreatment is not carried out, thereby improving the productivity.
[0079]
FIG. 11 shows another embodiment of the present invention, and the same reference numerals are used for components corresponding to the above-described embodiment.
FIG. 11 shows only the main part of the embodiment, and the supply and discharge of pressurized liquid carbon dioxide to each reaction bath 1 and 1a, the configuration of the storage part, the supply and discharge of various solutions, and the storage part. The configuration of is omitted in the drawing, and the relevant part is substantially the same as FIG.
[0080]
In this embodiment, a plurality of substantially identical reaction baths 1, 1 a, two in the embodiment are arranged side by side, these are communicated by conduits 52, 53, and valves 54, 55 are inserted into the conduits 52, 53. To do.
These reaction baths 1, 1 a can execute the same processing step, that is, a series of plating processing steps alternately in time, and a part of the series of plating processing steps in one reaction bath 1, for example, pretreatment In the other reaction bath 1a, the rest of the series of plating processes, for example, plating and post-processing are executed.
[0081]
That is, a part of the plating process for the object to be processed 4 is performed in one reaction bath 1, for example, pretreatment such as degreasing and pickling, and various gases and solutions after use are stored in the storage tank (not shown). To do.
In the other reaction bath 1a, the pretreatment step has already been completed and the plating process is performed, and the processed object 4 after the plating process is recovered, washed, and dried, and various gases and solutions after use are stored in the storage tank ( (Not shown).
This situation is like step 1. In this case, carbon dioxide for the reaction bath 1 a is introduced into the conduit 52 downstream from the valve 54.
[0082]
Next, in step 2, the reaction bath 1 has already finished the pretreatment process and executed the plating process, and the processed object 4 after the plating process is collected, washed and dried, and the various gases and solutions after use are stored in the above-mentioned manner. It accommodates in a tank (not shown).
On the other hand, in the reaction bath 1a, the plating process is finished, a new object 4 is attached, pretreatment such as degreasing and pickling of the object 4 is performed, and various gases and solutions after use are stored. It accommodates in a tank (not shown).
[0083]
As described above, in this embodiment, the entire plating process is independently performed in the plurality of reaction baths 1 and 1a to improve the productivity of a series of plating operations.
[0084]
In addition, the method of depositing and adhering the electrolyzed electrode material to the other electrode material as in the above-described embodiment can be applied in principle to the same electroforming and anodic oxide film forming methods, and the same effect as described above. Can be obtained.
In addition, the present invention can be applied to an electrolytic method in which an electrolytic substance and an electrode substance are accommodated in a reaction bath, one electrode substance is electrolyzed, and this is collected on the other electrode substance side. Therefore, it can be applied to, for example, electrolytic refining of metal, electrolytic extraction, electrolytic polishing, etc., and the same effect as described above can be obtained.
[0085]
【The invention's effect】
As described above, the present invention provides a reaction bath.A surfactant is added to and stirred, and the pressurized liquid and the electrolyte solution are emulsified and electrochemically reacted. Therefore, the surfactant is efficiently used against hydrogen gas and oxygen gas that are refined under pressure. Work, quickly peel off the gas from the surface to be treated, and quickly melt into the electrolyte solutionbe able to.
[0086]
The invention of claim 2 is the reaction bath.Since the pressurized liquid is introduced into the reaction bath and the electrode material is washed or the oxide film is removed before the electrochemical reaction in the step, the pretreatment with the pressurized liquid is executed and stabilized. An effective electrochemical reactionbe able to.
[0087]
Claim3In the invention of the present invention, an electrochemical reaction is caused in the reaction bath.After that, since the pressurized liquid is introduced into the reaction bath and the electrode material is washed or dried, the post-treatment with the pressurized liquid is performed to obtain the stability of the next electrochemical reaction. There is an effect.
[0088]
Claim4The invention ofAbout 1-7 by introducing liquefied carbon dioxide into the reaction bath . Since the pressure is increased to 3 MPa, the electrochemical reaction is realized at a pressure lower than the supercritical state, thereby saving energy, reducing the size and weight of the equipment, and reducing operating costs.Can.
[0089]
Claim5Invention to the reaction bathSurfactant is added so that it can be stirred, and the pressurized liquid and electrolyte solution are emulsified to enable electrochemical reaction. Therefore, the surface activity is reduced against hydrogen gas and oxygen gas refined under pressure. Make the agent work efficiently, quickly peel off the gas from the surface to be treated, and quickly melt it into the electrolyte solution.Can.
[0090]
Claim6The invention of the reaction bathBefore the electrochemical reaction in the above, the pressurized liquid is provided so as to be introduced into the reaction bath, the electrode material is washed, or the oxide film can be removed, so that the pretreatment with the pressurized liquid is performed, A stable electrochemical reaction can be realized.
[0091]
Claim7In the invention of the present invention, an electrochemical reaction is caused in the reaction bath.After that, since the pressurized liquid can be introduced into the reaction bath and the electrode material can be washed or dried, the post-treatment with the pressurized liquid is executed, and the stability of the next electrochemical reaction is improved. There is an effect to be obtained.
[0092]
Claim8The invention ofSince liquefied carbon dioxide was introduced into the reaction bath so that the pressure could be increased to about 1 to 7.3 MPa, the electrochemical reaction was realized in a lower pressure state than in the supercritical state, thereby saving energy and reducing the equipment. Reduces size and weight or reduces operating costsCan.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of the present invention, in which a multi-step plating process is performed using a single reaction bath.
FIG. 2 is an explanatory view showing a degreasing and cleaning process of the plating process.
FIGS. 3A and 3B are explanatory views sequentially showing an oxide film removal and an object activation process in the plating process. FIGS.
FIG. 4 is an explanatory view showing an acid solution discharging and cleaning step of the plating treatment.
FIG. 5 is an explanatory view showing the steps of the plating process in order.
FIG. 6 is an explanatory view showing an electrolyte solution discharging and cleaning step of the plating process.
FIG. 7 is an explanatory view showing drying and cleaning steps of the plating process.
FIG. 8 is a phase diagram showing a range of application of the present invention to plating treatment.
FIG. 9 is a characteristic diagram showing the amount of plating deposited on an electrolyte solution when the present invention is plated using liquid carbon dioxide, and is compared with the amount of plating deposited using supercritical carbon dioxide.
FIG. 10 is a characteristic diagram showing the current efficiency with respect to the amount of the electrolyte solution when the present invention is plated using liquid carbon dioxide, and is compared with the current efficiency using supercritical carbon dioxide.
FIG. 11 is an explanatory view showing a main part of a second embodiment of the present invention, in which plating processing is performed using two reaction baths, respectively.
[Explanation of symbols]
1,1a Reaction bath
3 Electrode material (anode)
4 Electrode material (cathode)
9,11 Electrolyte solution
13 Acid solution (Oxide film removal solution)
16, 20-22 Reservoir
34-36 Surfactant

Claims (8)

電解物質を収容可能な反応浴槽に陰極および陽極の電極物質を収容し、前記反応浴槽に加圧液体を導入して加圧し、前記反応浴槽の加圧状態の下で電気化学的反応させる電気メッキ等の電気化学的処理方法において、前記反応浴槽に界面活性剤を添加して撹拌し、前記加圧液体と電解質溶液とを乳濁させて電気化学的反応させるようにしたことを特徴とする電気メッキ等の電気化学的処理方法。It can accommodate reaction bath electrolyte material containing a cathode and an anode of the electrode material, pressurized by introducing a pressurized liquid to said reaction bath, electroplating for electrochemical reaction under a pressurized state of the reaction bath In the electrochemical treatment method, the surfactant is added to the reaction bath and stirred, and the pressurized liquid and the electrolyte solution are emulsified to cause an electrochemical reaction. Electrochemical processing methods such as plating. 前記反応浴槽で電気化学的反応させる前に、前記加圧液体を反応浴槽へ導入し、前記電極物質を洗浄し、若しくは酸化皮膜を除去する請求項1記載の電気メッキ等の電気化学的処理方法。 Prior to electrochemical reaction in the reaction bath, and introducing the pressurized liquid into the reaction bath, the electrode material is washed, or electrochemical treatment method of an electro-plating according to claim 1, wherein the removal of oxide film . 前記反応浴槽で電気化学的反応させた後、前記加圧液体を反応浴槽へ導入し、前記電極物質を洗浄し、若しくは乾燥する請求項記載の電気メッキ等の電気化学的処理方法。 After electrochemical reaction in the reaction bath, the pressure introducing pressure liquid into the reaction bath, the electrode material is washed, or electrochemical treatment method of an electro-plating according to claim 1 wherein the drying. 前記反応浴槽に液化二酸化炭素を導入して略1〜7.3MPaに加圧する請求項1乃至3のうち何れか記載の電気メッキ等の電気化学的処理方法。The electrochemical treatment method such as electroplating according to any one of claims 1 to 3, wherein liquefied carbon dioxide is introduced into the reaction bath and pressurized to about 1 to 7.3 MPa . 電解質を収容可能な反応浴槽に陰極および陽極の電極物質を収容し、前記反応浴槽に加圧液体を導入して加圧可能に設け、前記反応浴槽の加圧状態の下で電気化学的反応を可能にした電気メッキ等の電気化学的反応装置において、前記反応浴槽に界面活性剤を添加して撹拌可能に設け、かつ前記加圧液体と電解質溶液とを乳濁させて電気化学的反応可能にしたことを特徴とする電気メッキ等の電気化学的反応装置。The cathode and anode electrode materials are accommodated in a reaction bath capable of accommodating an electrolyte, a pressurized liquid is introduced into the reaction bath so that pressurization is possible, and an electrochemical reaction is performed under the pressurized state of the reaction bath. In an electrochemical reaction apparatus such as electroplating that can be performed, a surfactant is added to the reaction bath so that it can be stirred, and the pressurized liquid and the electrolyte solution are emulsified to enable electrochemical reaction. Electrochemical reaction equipment such as electroplating, characterized by that. 前記反応浴槽で電気化学的反応させる前に、前記加圧液体を反応浴槽へ導入可能に設け、前記電極物質を洗浄し、若しくは酸化皮膜を除去可能にした請求項記載の電気メッキ等の電気化学的反応装置。 Before Ru is an electrochemical reaction in the reaction bath, the provided to be introduced pressurized liquid into the reaction bath, the electrode material is washed, or electroplating or the like removable to claims 5, wherein an oxide film Electrochemical reactor. 前記反応浴槽で電気化学的反応させた後、前記加圧液体を反応浴槽へ導入可能に設け、前記電極物質を洗浄し、若しくは乾燥可能にした請求項記載の電気メッキ等の電気化学的反応装置。 After electrochemical reaction in said reaction bath, said pressure provided to be introduced pressure liquid into the reaction bath, the electrode material is washed, or dryable to claims 5 electrochemical reactions such as electroplating according apparatus. 前記反応浴槽に液化二酸化炭素を導入して略1〜7.3MPaに加圧可能にした請求項5乃至7のうち何れか記載の電気メッキ等の電気化学的反応装置。 The electrochemical reaction apparatus such as electroplating according to any one of claims 5 to 7, wherein liquefied carbon dioxide is introduced into the reaction bath so as to be pressurized to about 1 to 7.3 MPa .
JP2001137191A 2000-08-24 2001-05-08 Electrochemical treatment method such as electroplating and electrochemical reaction apparatus thereof Expired - Lifetime JP3613335B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001137191A JP3613335B2 (en) 2001-05-08 2001-05-08 Electrochemical treatment method such as electroplating and electrochemical reaction apparatus thereof
AU2001275795A AU2001275795A1 (en) 2000-08-24 2001-07-30 Electrochemical treating method such as electroplating and electrochemical reaction device therefor
EP01953331.4A EP1314799B1 (en) 2000-08-24 2001-07-30 Electrochemical treating method such as electroplating and electrochemical reaction device therefor
PCT/JP2001/006525 WO2002016673A1 (en) 2000-08-24 2001-07-30 Electrochemical treating method such as electroplating and electrochemical reaction device therefor
US10/070,516 US6793793B2 (en) 2000-08-24 2001-07-30 Electrochemical treating method such as electroplating and electrochemical reaction device therefor
TW090120725A TW588119B (en) 2000-08-24 2001-08-23 Method of electrochemical treatment such as electroplating, etc. and electrochemical reaction apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137191A JP3613335B2 (en) 2001-05-08 2001-05-08 Electrochemical treatment method such as electroplating and electrochemical reaction apparatus thereof

Publications (2)

Publication Number Publication Date
JP2003321793A JP2003321793A (en) 2003-11-14
JP3613335B2 true JP3613335B2 (en) 2005-01-26

Family

ID=29533362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137191A Expired - Lifetime JP3613335B2 (en) 2000-08-24 2001-05-08 Electrochemical treatment method such as electroplating and electrochemical reaction apparatus thereof

Country Status (1)

Country Link
JP (1) JP3613335B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063598A (en) * 2005-08-30 2007-03-15 Tokyo Univ Of Agriculture & Technology Porous metallic thin film and production method therefor

Also Published As

Publication number Publication date
JP2003321793A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
EP1314799B1 (en) Electrochemical treating method such as electroplating and electrochemical reaction device therefor
US7857952B2 (en) Method for treating the surface of object and apparatus thereof
KR20120080595A (en) Reduced isotropic etchant material consumption and waste generation
JP3703132B2 (en) Electrochemical treatment method such as electroplating and electrochemical reaction apparatus thereof
JP3830386B2 (en) Anodizing method and processing equipment therefor
JP3613335B2 (en) Electrochemical treatment method such as electroplating and electrochemical reaction apparatus thereof
JP2002105696A (en) Electrolyte cleaning method
JP4101261B2 (en) Surface treatment method and surface treatment apparatus for workpiece
JP2001158997A (en) Method and device for implementing electrochemical treatment
JP4745571B2 (en) Surface treatment method and treatment apparatus for workpiece
JP3841751B2 (en) Electrochemical treatment method and electrochemical reaction apparatus therefor
JP5187500B2 (en) Surface treatment method and surface treatment apparatus for workpiece
CN109824124A (en) A kind of electroplating wastewater processing electrocatalysis oxidation apparatus
JP3985863B2 (en) Surface treatment method
JP4404884B2 (en) Surface treatment equipment for workpieces
JPH11335896A (en) Wafer plating apparatus
JP5256399B2 (en) Plating process and plating process
WO2022038817A1 (en) Concentration reduction-suppression method for persulfuric acid component in sulfuric acid solution containing persulfuric acid component, and concentration reduction-suppression device for persulfuric acid component
JP2005290471A (en) Plated article and plating method
JP4216168B2 (en) Catalyst loading method
DE19820001C2 (en) Process for removing metal layers on metal, glass, ceramics and plastic parts
JP3125012B2 (en) Surface treatment method and surface treatment device
JP2005154816A (en) Surface treatment method for object to be treated, and treatment device therefor
CN1958872B (en) Method for retrieving electroplating solution brought by workpieces and clamp
CN116180175A (en) In-hole local electroplating process of plug terminal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041019

R150 Certificate of patent or registration of utility model

Ref document number: 3613335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term