JP3613283B2 - Radio wave lens antenna device - Google Patents

Radio wave lens antenna device Download PDF

Info

Publication number
JP3613283B2
JP3613283B2 JP2004029308A JP2004029308A JP3613283B2 JP 3613283 B2 JP3613283 B2 JP 3613283B2 JP 2004029308 A JP2004029308 A JP 2004029308A JP 2004029308 A JP2004029308 A JP 2004029308A JP 3613283 B2 JP3613283 B2 JP 3613283B2
Authority
JP
Japan
Prior art keywords
lens
reflector
radio wave
antenna device
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004029308A
Other languages
Japanese (ja)
Other versions
JP2004282719A (en
Inventor
昌利 黒田
哲夫 岸本
克之 今井
儀三 芝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001301144A external-priority patent/JP2003110349A/en
Priority claimed from JP2001299843A external-priority patent/JP2003110350A/en
Priority claimed from JP2001300240A external-priority patent/JP2003110352A/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004029308A priority Critical patent/JP3613283B2/en
Publication of JP2004282719A publication Critical patent/JP2004282719A/en
Application granted granted Critical
Publication of JP3613283B2 publication Critical patent/JP3613283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

この発明は、衛星通信やアンテナ間での通信に利用する電波レンズアンテナ装置に関する。   The present invention relates to a radio wave lens antenna device used for satellite communication or communication between antennas.

電波レンズのひとつとして知られるルーネベルグレンズは、球を基本的とする誘電体製のレンズであり、各部の比誘電率εrが、下式(1)に略従うものになっている。   The Luneberg lens, known as one of radio wave lenses, is a lens made of a dielectric material that is basically a sphere, and the relative dielectric constant εr of each part substantially conforms to the following formula (1).

εr=2−(r/a)2 ……… 式(1)
但し a:球の半径
r:球中心からの距離
εr = 2− (r / a) 2 ... Formula (1)
Where a: radius of the sphere
r: Distance from the center of the sphere

このルーネベルグレンズを用いたアンテナ装置は、電波の焦点を半球上の任意の位置に設定してどの方向からの電波も捕捉でき、また、任意方向に電波を送り出すことができる。   The antenna device using the Luneberg lens can capture a radio wave from any direction by setting the focal point of the radio wave at an arbitrary position on the hemisphere, and can transmit the radio wave in an arbitrary direction.

かかるルーネベルグレンズアンテナ装置の中に、半球状のレンズを反射板と組み合わせて球状レンズと等価な機能を持たせたものがある。その装置の概要を図11に示す。図中1は反射板、2は半球状ルーネベルグレンズ、4は一次放射器である。   Among such Luneberg lens antenna devices, there is one having a function equivalent to a spherical lens by combining a hemispherical lens with a reflector. An outline of the apparatus is shown in FIG. In the figure, 1 is a reflector, 2 is a hemispherical Luneberg lens, and 4 is a primary radiator.

この形式のアンテナ装置は、安定した送受信性能を得るために、レンズ中心から反射板1の外端までの距離(反射板の半径R)をレンズ2の半径aよりも大きくする必要がある。その反射板の半径Rは、電波の入射角をθとするとR=a/cosθの式で求まる。その半径Rは、電波の入射角によってはaの2倍を超えることもあり得る。   In this type of antenna device, the distance from the lens center to the outer end of the reflecting plate 1 (the radius R of the reflecting plate) needs to be larger than the radius a of the lens 2 in order to obtain stable transmission / reception performance. The radius R of the reflector is obtained by the equation R = a / cos θ, where θ is the incident angle of the radio wave. The radius R may exceed twice a depending on the incident angle of the radio wave.

ルーネベルグレンズアンテナ装置は、一次放射器をレンズの球面の任意位置に移動させることでどの方位からの電波にも対応できる利点を有しており、従って、従来のこの種装置は、反射板をレンズと同心の円盤とし、これを水平置き(地面と平行)にして上記の利点を生かすことを考えている。   The Luneberg lens antenna device has the advantage that it can handle radio waves from any direction by moving the primary radiator to an arbitrary position on the spherical surface of the lens. A disc concentric with the lens is considered to be placed horizontally (parallel to the ground) to take advantage of the above advantages.

ところが、この構造ではレンズの全周に反射板が張り出すため、装置の大型化、重量増、コスト増、設置スペース増、取扱い性の悪化などの問題が生じる。   However, in this structure, since the reflecting plate projects over the entire circumference of the lens, problems such as an increase in the size of the apparatus, an increase in weight, an increase in cost, an increase in installation space, and a deterioration in handleability occur.

従来は、この不具合を無くすことに関して何ら考察がなされていない。   Conventionally, no consideration has been given to eliminating this defect.

そこで、この発明は、電波レンズアンテナ装置に要求される電気的性能を犠牲にせずに反射板を用いたルーネベルグレンズアンテナ装置の小型化、軽量化、コスト低減などを図ることを課題としている。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to reduce the size, weight, and cost of a Luneberg lens antenna device using a reflector without sacrificing the electrical performance required for the radio wave lens antenna device.

上記の課題を解決するため、この発明においては、静止衛星に対して電波の送信、受信もしくは送受信を行う電波レンズアンテナ装置であって、誘電体で形成される半球状ルーネベルグレンズと、そのレンズの球の2分断面に沿って設けるレンズ径よりも大サイズで、静止衛星の方向に対し、ルーネベルグレンズの反対側を除去した非円形形状である反射板と、保持具で保持してレンズの焦点部に設ける一次放射器とを、有することを特徴とする電波レンズアンテナ装置を提供する。   In order to solve the above problems, in the present invention, a radio wave lens antenna apparatus for transmitting, receiving or transmitting / receiving radio waves to / from a geostationary satellite, a hemispherical Luneberg lens formed of a dielectric, and the lens A reflector that is larger than the lens diameter provided along the bisector of the sphere, and has a non-circular shape with the opposite side of the Luneberg lens removed from the direction of the geostationary satellite, and a lens held by a holder A radio wave lens antenna device comprising a primary radiator provided at a focal portion of the radio wave lens antenna device.

この装置の反射板は、反射板を、レンズ中心と同心のレンズ径よりも径大の大円弧縁と、レンズの外周近傍に位置して大円弧縁に対向する小円弧縁と、大円弧縁と小円弧縁の端々を結ぶ左右の側縁とで画される扇形形状にすると好ましい。その扇形を包含する形状でも反射板のサイズ縮小が図れる。反射板の形状は、上述した扇形形状をベースにして大円弧側の縁部を電波入射角が小さくなる部位ほどレンズ中心から縁端までの距離(R=a/cosθの式で求まるR)が短くなるように切欠いた形状が理想的である。最両端の通信相手からの電波入射角と同一角度で電波の入射方向と反対方向から半球状レンズを反射面に投影し、投影された半楕円の輪郭に沿って両側縁部を除去すればより理想的な形になる。この理想的形状では最両端の通信相手からの電波の入射角が異なる場合、反射板が左右非対称形状となる(これ等をここでは変形扇形と称する)。なお、日本で使用するアンテナ装置については、扇形或いは変形扇形反射板の扇の広がり角が130°あれば現存する静止衛星の全てに対応できる。   The reflecting plate of this apparatus comprises a large arc edge having a diameter larger than the lens diameter concentric with the lens center, a small arc edge located near the outer periphery of the lens and facing the large arc edge, and a large arc edge. And a fan-shaped shape defined by the left and right side edges connecting the ends of the small arc edges. The shape including the fan shape can also reduce the size of the reflector. As for the shape of the reflector, the distance from the lens center to the edge (R determined by the equation R = a / cos θ) is closer to the portion where the radio wave incident angle is smaller at the edge of the large arc side based on the above-described sector shape. Ideally, the shape is notched so as to be shorter. Projecting a hemispherical lens on the reflecting surface from the opposite direction of the radio wave incident direction at the same angle as the radio wave incident angle from the communication partner at the farthest end, and removing both side edges along the projected semi-elliptical contour Become an ideal shape. In this ideal shape, when the incident angles of the radio waves from the communication partners at the extreme ends are different, the reflecting plate has an asymmetric shape (this is referred to as a modified sector here). As for the antenna device used in Japan, all existing geostationary satellites can be supported if the fan divergence angle of the fan-shaped or deformed fan-shaped reflector is 130 °.

発明者等は、反射板を用いたルーネベルグレンズアンテナ装置を静止衛星との間での電波の送受信に利用することを考えた。BS放送等の受信には、パラボラアンテナが用いられているが、これは受信専用であり、しかも特定方位の衛星にしか対応できない。これに対し、ルーネベルグレンズアンテナ装置は、複数の一次放射器を各静止衛星からの電波の焦点部に備えさせることで複数の衛星からの電波を捕捉でき、また、一次放射器の数を増やして時間差なしでの双方向通信(送受信)を行うこともできる。   The inventors considered using a Luneberg lens antenna device using a reflector for transmitting and receiving radio waves to and from a geostationary satellite. A parabolic antenna is used for reception of BS broadcasting or the like, but this is dedicated to reception and can only deal with satellites in a specific direction. In contrast, the Luneberg lens antenna device can capture radio waves from multiple satellites by providing multiple primary radiators at the focal point of radio waves from each geostationary satellite, and increase the number of primary radiators. Thus, bidirectional communication (transmission / reception) can be performed without time difference.

ところで、我が国(日本)においては、現在10基を越える静止衛星が存在し、それ等はいずれも東経110°〜162°の範囲にある。この場合、円形反射板を用いると一部の限られた領域でのみ電波が反射され、他の領域では電波反射がなされない。この発明は、この点に着目し、電波の反射がなされない非機能領域を除去した。これにより、反射板は非円形となり、そのサイズが縮小される。   By the way, in Japan (Japan), there are currently more than 10 geostationary satellites, all of which are in the range of 110 ° to 162 ° east longitude. In this case, when a circular reflector is used, radio waves are reflected only in a limited area, and no radio waves are reflected in other areas. The present invention pays attention to this point, and removes a non-functional region where radio waves are not reflected. As a result, the reflector becomes non-circular and its size is reduced.

なお、電波の送受信方位は、どこに(どの地域のどの地点に)アンテナを設置するかによって変わるが、例えば与那国では東経110°の衛星に対する方位角は真北を0°として209.2°、東経162°の衛星に対する方位角は117.1°であり、その差は92.1°となる。東経110°と162°の静止衛星に対する全国各地での方位角の差は与那国が特に大きく、従って、反射板を左右対称形の扇形や変形扇形にする場合、片側(中心からの開き角が大きい側)の開き角は180−171.1=62.9となり、左右対称形状となすにはその2倍の角度125.8°が必要であるので、扇の開き角を130°程度に設定すれば、同一形状の反射板を全国各地で使用することができる。   The transmission / reception azimuth of radio waves varies depending on where (at which point in which region) the antenna is installed. In Yonaguni, for example, the azimuth angle for a satellite of 110 ° east longitude is 209.2 ° The azimuth angle for a satellite of 162 ° is 117.1 °, and the difference is 92.1 °. Yonaguni has a particularly large difference in azimuth angle across the country for geostationary satellites of 110 ° and 162 ° east longitude. Therefore, when the reflector is made into a symmetrical fan shape or a deformed fan shape, one side (the opening angle from the center is large) Side) is 180-171.1 = 62.9, and a double angle of 125.8 ° is required to obtain a symmetrical shape, so the fan opening angle should be set to about 130 °. For example, a reflector having the same shape can be used throughout the country.

反射板のサイズ(扇の大円弧縁部の半径R)は、各静止衛星に対する電波の入射角θがアンテナの使用場所によって変わるので、使用場所ごとの最適値があるが、使用対象地域を全国、通信対象衛星を例えば12基と考えた場合、R≧a×2.19(aはレンズの半径)となり、その式を満足する半径を有していれば同一サイズの反射板を全国で共通して使用することができる。   The size of the reflector (radius R of the large arc edge of the fan) varies depending on where the antenna is used. Suppose, for example, that 12 satellites are to be communicated, R ≧ a × 2.19 (where a is the radius of the lens), and if the radius satisfies the equation, the same size reflector is common throughout the country. Can be used.

以上述べたように、この発明の電波レンズアンテナ装置は、反射板の電波反射に寄与しない部位を除去して所定範囲の方位からの電波に対応させた部位のみを残すので、反射板を最小限の大きさにして小型化、軽量化、コスト低減を図ることができ、取扱い性の向上、設置スペースの削減にもつながる。   As described above, the radio wave lens antenna device according to the present invention removes a portion of the reflector that does not contribute to radio wave reflection and leaves only a portion corresponding to radio waves from a predetermined range of directions, so that the reflector is minimized. The size can be reduced in size, weight, and cost, leading to improved handling and reduced installation space.

また、アンテナに要求される電気性能は十分に確保でき、BS、CS放送用のパラボラアンテナよりも小型のもので複数の静止衛星や相手アンテナからの電波を受信したり、送受信を行ったりすることが可能になる。   In addition, the electrical performance required for the antenna can be secured sufficiently, and it is smaller than the parabolic antenna for BS and CS broadcasting, and can receive and transmit radio waves from multiple geostationary satellites and other antennas. Is possible.

以下、この発明の電波レンズアンテナ装置の実施形態を図1乃至図3に基づいて説明する。   Embodiments of the radio wave lens antenna device of the present invention will be described below with reference to FIGS.

図に示すように、このアンテナ装置は、反射板1上に半球状のルーネベルグレンズ2を固定し、さらに、一次放射器4を反射板1上に設けた保持具3で保持してレンズ2の球面近傍に設けて成る。   As shown in the figure, in this antenna device, a hemispherical Luneberg lens 2 is fixed on a reflecting plate 1, and further, a primary radiator 4 is held by a holding tool 3 provided on the reflecting plate 1 and a lens 2. It is provided near the spherical surface.

反射板1は、電波反射性の良い金属板や、プラスチック板と電波反射用の金属シートを貼り合わせた複合板などで形成されている。この反射板1は、レンズ2の半径よりも径大の大円弧縁1a、レンズ2の外周近傍に位置して大円弧縁に対向する小円弧縁1b、両円弧縁の端々を結ぶ左右の直線縁1c、1dとで画される扇形形状をなしているが、この形に限定されるものではない。要は通信相手からの電波を反射でき、その電波反射に寄与しない非機能領域を極力除去した形になっていればよい。   The reflection plate 1 is formed of a metal plate having good radio wave reflectivity, a composite plate obtained by bonding a plastic plate and a metal sheet for radio wave reflection, or the like. The reflector 1 includes a large arc edge 1a having a diameter larger than the radius of the lens 2, a small arc edge 1b positioned near the outer periphery of the lens 2 and opposed to the large arc edge, and left and right straight lines connecting the ends of both arc edges. Although it has a sector shape defined by the edges 1c and 1d, it is not limited to this shape. In short, it is only necessary to be able to reflect radio waves from the communication partner and to remove as much as possible non-functional areas that do not contribute to the radio wave reflection.

ルーネベルグレンズ2は、誘電体で形成される中心の半球体上に比誘電率と径を徐々に変化させた誘電体製の半球殻を全体が多層構造(例えば8層)となるように積層一体化して作られており、各部の比誘電率が先の(1)式で求まる値に近似したものになっている。   The Luneberg lens 2 is formed by laminating a dielectric hemispherical shell whose relative permittivity and diameter are gradually changed on a central hemisphere formed of a dielectric so that the whole has a multilayer structure (for example, eight layers). It is made by integrating, and the relative dielectric constant of each part approximates the value obtained by the above equation (1).

この半球状ルーネベルグレンズ2の球の2分断面(円形平面)を接着するなどして反射板1の反射面上に固定している。レンズ2は、その中心が反射板1の大円弧縁1aのアール中心上にあり、従って、小円弧縁1b側にオフセット配置されて反射板に取り付けられた状態になっている。   A half-section (circular plane) of the sphere of the hemispherical Luneberg lens 2 is fixed on the reflecting surface of the reflecting plate 1 by bonding or the like. The center of the lens 2 is on the center of the radius of the large arc edge 1a of the reflecting plate 1, and is thus offset from the small arc edge 1b and attached to the reflecting plate.

保持具3は、一次放射器4の位置調整が行えるものが好ましい。例示の保持具3は、レンズ2を跨ぐアーチ状の支持アーム3aを設けてその支持アーム3aに一次放射器4をアーム長手方向に位置調整が行えるように取り付けている。支持アーム3aは両端に反射板の反射面と平行な支軸3b(この軸はレンズ中心を通る線上にある)を有し、その支軸を支点にした支持アームの回転と、アーム上でのスライドを組み合わせて一次放射器4を電波捕捉効率の高い位置(焦点近傍)に位置決めするようにしている。この保持具3は、勿論、図示の形態のものに限定されるものではない。   The holder 3 is preferably one that can adjust the position of the primary radiator 4. The illustrated holder 3 is provided with an arch-shaped support arm 3a straddling the lens 2, and the primary radiator 4 is attached to the support arm 3a so that the position of the primary radiator 4 can be adjusted in the arm longitudinal direction. The support arm 3a has a support shaft 3b parallel to the reflecting surface of the reflecting plate at both ends (this axis is on a line passing through the center of the lens), and the rotation of the support arm with the support shaft as a fulcrum, The primary radiator 4 is positioned at a position where the radio wave capturing efficiency is high (near the focal point) by combining the slides. Of course, the holder 3 is not limited to the one shown in the figure.

一次放射器4の設置数も特に限定されない。その数を例えばひとつとして1基の静止衛星からの電波を受信してもよいし、その数を複数にし、マルチビームアンテナにして複数ある静止衛星からの電波を受信してもよい。また、一次放射器の数を増やして送受信を行うこともできる。   The number of installed primary radiators 4 is not particularly limited. For example, the number may be one, and radio waves from one geostationary satellite may be received, or the number may be plural and a multi-beam antenna may be used to receive radio waves from a plurality of geostationary satellites. In addition, transmission / reception can be performed by increasing the number of primary radiators.

このように構成した電波レンズアンテナ装置は、従来円形にしていた反射板1の図1鎖線部を除去したことにより小型化が実現されるが、複数の静止衛星に対応する場合、反射板が小さ過ぎると送受信性能が著しく低下させる。そこで、反射板の最適形状とサイズについて検討した。その形状、サイズは、使用する衛星、アンテナの使用場所、使用方法によって若干異なるので、対象地域、対象衛星数に合わせた設計例を表1に示す。同表中のaは図1に示すレンズの半径、Rは反射板の機能部半径を表す。扇の開き角ψは、設計例1、2については反射板を体裁を考えて左右対称形状にした場合の開き角、設計例3〜11は反射板を左右非対称形とした場合の開き角を示している。   The radio wave lens antenna device configured as described above can be reduced in size by removing the chain line portion in FIG. 1 of the reflector 1 that has been made circular in the past, but the reflector is small when corresponding to a plurality of geostationary satellites. If it is too long, the transmission / reception performance is significantly reduced. Therefore, the optimum shape and size of the reflector were examined. Since the shape and size vary slightly depending on the satellite used, the place where the antenna is used, and the method used, Table 1 shows a design example according to the target area and the number of target satellites. In the table, a represents the radius of the lens shown in FIG. 1, and R represents the functional part radius of the reflector. The opening angle ψ of the fan for the design examples 1 and 2 is the opening angle when the reflector is made to have a bilaterally symmetrical shape in consideration of the appearance, and the design examples 3 to 11 are the opening angles when the reflecting plate is asymmetrical to the left and right. Show.

日本の現存静止衛星を先ず記す。
・BSAT−2a 東経110°
・JCSAT−110 東経110°
・スーパーバードD 東経110°
・JCSAT−4A 東経124°
・JCSAT−3 東経128°
・N−STARa 東経132°
・S−STARb 東経136°
・スーパーバードC 東経144°
・JCSAT−1B 東経150°
・JCSAT−2 東経154°
・スーパーバードA 東経158°
・スーパーバードB2 東経162°
First of all, the existing geostationary satellites in Japan.
・ BSAT-2a 110 ° East
・ JCSAT-110 East longitude 110 °
・ Super Bird D East 110 °
・ JCSAT-4A 124 ° East longitude
・ JCSAT-3 128 degrees east longitude
・ N-STARa 132 ° East
・ S-STARb 136 ° east longitude
・ Super Bird C 144 ° East
・ JCSAT-1B 150 ° East
・ JCSAT-2 East longitude 154 °
・ Super Bird A East 158 °
・ Super Bird B2 162 ° East

Figure 0003613283
Figure 0003613283

なお、反射板1の実際の半径Rは、エッジでの電波の散乱を防止するために計算式R=a/cosθで求まる値よりも一波長程度長くしておくのが望ましい。小円弧部の半径Lもレンズ2の半径aより一波長程度長くしておくのが望ましい。   The actual radius R of the reflector 1 is preferably about one wavelength longer than the value obtained by the calculation formula R = a / cos θ in order to prevent scattering of radio waves at the edge. It is desirable that the radius L of the small arc portion is also longer than the radius a of the lens 2 by about one wavelength.

反射板の形状は、コンパクト性を損なわなければ扇形で無くてもよく、また半径R、Lは、望ましいとした値よりも長くてよく、扇の開き角ψも表1の値より大きくても差し支えない。   The shape of the reflector may not be a fan shape as long as the compactness is not impaired, and the radii R and L may be longer than desired values, and the fan opening angle ψ may be larger than the values in Table 1. There is no problem.

図4は、反射板1を全国対応型となす場合の理想的形状の決定法を解説したものである。この図において今、A〜Eの各方位から電波が到来すると考える。ここではA、Eからの電波の入射角θ1 は等しく、またB、Dからの電波の入射角θ2 も等しいと仮定し、さらにθ1 >θ2 >θ3 (θ3 はC方位からの入射角)の関係が成立すると仮定している。 FIG. 4 explains a method for determining an ideal shape when the reflector 1 is of a nationwide type. In this figure, it is assumed that radio waves arrive from each of the directions A to E. Here, it is assumed that the incident angles θ 1 of the radio waves from A and E are equal, and the incident angles θ 2 of the radio waves from B and D are also equal, and θ 1 > θ 2 > θ 33 is from the C direction. It is assumed that the relationship of the incident angle is established.

この条件でA、Eと反対方向からθ1 の角度でレンズ2に例えば光を当てると、2R1 を長軸、2aを短軸とする楕円の半分が反射面上に投影される。また、B、Dと反対方向からθ2 の角度でレンズ2に光を当てると、2R2 を長軸、2aを短軸とする楕円の半分が反射面上に投影され、さらにCと反対方向からのθ3 の角度での投光では2R3 を長軸、2aを短軸とする楕円の半分が投影される。そこで各楕円を包絡線5で結ぶ。こうして描かれる実線の変形扇形状(素子保持具の取付け部等は別途必要。また、レンズの比誘電率が既述の式(1)からずれていれば、ずれに応じた形状補正が必要になる場合がある。)が最良の形になる。なお、アンテナの設置点によっては、包絡線5が凹形に弯曲したり、扇の形状が左右非対称となったりすることもある。包絡線5が凹形に弯曲する場合には包絡線に代えて両端の楕円間を直線で結んでもよく、この場合、包絡線は直線縁の内側にあるので、電波の反射には支障が出ない。 Under this condition, when, for example, light is applied to the lens 2 at an angle θ 1 from the direction opposite to A and E, half of the ellipse having 2R 1 as the major axis and 2a as the minor axis is projected onto the reflecting surface. Further, when light is applied to the lens 2 at an angle θ 2 from the opposite direction to B and D, half of the ellipse having 2R 2 as the major axis and 2a as the minor axis is projected onto the reflecting surface, and the direction opposite to C In the projection at an angle of θ 3 from, half of the ellipse having 2R 3 as the major axis and 2a as the minor axis is projected. Therefore, each ellipse is connected by an envelope 5. Solid fan shape drawn in this way (element holder mounting part is required separately. Also, if the relative dielectric constant of the lens deviates from the above-mentioned equation (1), shape correction according to the deviation is necessary. Is the best form.) Depending on the installation point of the antenna, the envelope 5 may be bent in a concave shape, or the shape of the fan may be asymmetrical. When the envelope 5 bends in a concave shape, the ellipses at both ends may be connected by a straight line instead of the envelope, and in this case, the envelope is inside the straight edge, so that the reflection of radio waves is hindered. Absent.

図5は、上記の思想に基づいて設計された全国対応型の左右対称形状の反射板の具体例である。図中、一点鎖線は日本の最北東点で、また、点線は最南西点で各々現存する静止衛星の総てに対応させて決定した左右対称形の反射板形状である。その2つの図形を重ねて両図形を包含する実線形状の反射板1にすれば、これを共通反射板として日本全国どこででも使用することができる。最北東点での反射板形状は、図6の線Cを基準にした右半分の図形を左右対称にしたもの、最南西点での反射板形状は、図10の線Cを基準にした左半分の図形を左右対称にしたものとほぼ一致する。   FIG. 5 is a specific example of a horizontally-symmetrical reflector that is designed on the basis of the above-mentioned concept. In the figure, the alternate long and short dash line is the most northeastern point of Japan, and the dotted line is the symmetrical reflector shape determined corresponding to all existing geostationary satellites at the southwestern point. If the two figures are overlapped to form a solid-line reflector 1 that includes both figures, this can be used as a common reflector anywhere in Japan. The shape of the reflector at the most northeastern point is the right half of the shape of the right half with respect to line C in FIG. 6, and the shape of the reflector at the southwestern point is on the left with reference to line C in FIG. It almost coincides with the half-shape made symmetrical.

なお、地域対応型反射板の理想形状は捕捉する静止衛星の数や位置、アンテナの使用場所によって変わる。その例を図6〜図10に示す。   Note that the ideal shape of the regional reflector varies depending on the number and position of geostationary satellites to be captured and the place where the antenna is used. Examples thereof are shown in FIGS.

図6のように特定地域毎に求めた図形をいくつか重ね、図5と同じ考えに基いて重ねた図形が全て包含される実線形状にすれば、例えば北海道対応型の反射板ができる(他の地方も考え方は同じ)。また、例えば、図6の北海道対応型の反射板形状と図7の東北対応型の反射板形状を重ねて各地域の図形が包含される形状にすれば北海道と東北の共用反射板が得られる。地域対応型、複数地域対応型の反射板も、線Cを基準にして大きい側の半分の図形を反転させ、小さい側の図形と置きかえることで体裁の良い左右対称形状の反射板となすことができる。他の地域も形状決定の考え方は全く同じであり、このようにして無駄な部分を省き、コンパクト化を図る。   If several figures obtained for each specific area are overlapped as shown in FIG. 6 and a solid line shape including all the overlapping figures based on the same idea as in FIG. The idea is the same in other regions). Further, for example, if the shape of the reflector for Hokkaido in FIG. 6 and the shape of the reflector for Tohoku in FIG. . The regional and multi-region reflectors can also be formed into a symmetrical reflector with good appearance by inverting the half of the large figure with the line C as a reference and replacing it with the small figure. it can. The concept of shape determination is the same in other regions, and in this way, wasteful parts are eliminated and downsizing is achieved.

この発明のアンテナ装置の実施形態を示す平面図The top view which shows embodiment of the antenna apparatus of this invention 同上のアンテナ装置の側面図Side view of the antenna device 同上のアンテナ装置の斜視図Perspective view of the antenna device 反射板の形状決定法の解説図Illustration of how to determine reflector shape 全国対応型反射板の最良の形状を示す図The figure which shows the best shape of a nation-compatible reflector 地域対応型反射板を示す図The figure which shows an area correspondence type reflector 地域対応型反射板を示す図The figure which shows an area correspondence type reflector 地域対応型反射板を示す図The figure which shows an area correspondence type reflector 地域対応型反射板を示す図The figure which shows an area correspondence type reflector 地域対応型反射板を示す図The figure which shows an area correspondence type reflector (a)円形反射板を有するルーネベルグアンテナ装置の側面図、(b)同じく平面図(A) Side view of a Luneberg antenna device having a circular reflector, (b) Plan view

符号の説明Explanation of symbols

1 反射板
1a 大円弧縁部
1b 小円弧縁部
1c、1d 直線縁
2 半球状ルーネベルグレンズ
3 保持具
4 一次放射器
R 反射板の大円弧縁部の半径
a 球の半径
L 反射板の小円弧縁部の半径
ψ 扇の開き角
1 reflector 1a large arc edge 1b small arc edge 1c, 1d linear edge 2 hemispherical Luneberg lens 3 holder 4 primary radiator R radius of large arc edge of reflector a radius of sphere L small of reflector Arc edge radius ψ Fan opening angle

Claims (5)

静止衛星に対して電波の送信、受信もしくは送受信を行う電波レンズアンテナ装置であって、誘電体で形成される半球状ルーネベルグレンズと、そのレンズの球の2分断面に沿って設けるレンズ径よりも大サイズで、静止衛星の方向に対し、ルーネベルグレンズの反対側を除去した非円形形状である反射板と、保持具で保持してレンズの焦点部に設ける一次放射器とを、有することを特徴とする電波レンズアンテナ装置。   A radio wave lens antenna apparatus for transmitting, receiving, or transmitting / receiving radio waves to / from a geostationary satellite, comprising a hemispherical Luneberg lens formed of a dielectric and a lens diameter provided along a bisector of the lens sphere A reflector that is a non-circular shape with the opposite side of the Luneberg lens removed from the direction of the geostationary satellite, and a primary radiator that is held by a holder and provided at the focal point of the lens. A radio wave lens antenna device characterized by. 反射板を、レンズ中心と同心のレンズ径よりも径大の大円弧縁と、レンズの外周近傍に位置して大円弧縁に対向する小円弧縁と、大円弧縁と小円弧縁の端々を結ぶ左右の側縁とで画される扇形形状又はその扇形を包含する形状にした請求項1記載の電波レンズアンテナ装置。   The reflector has a large arc edge larger than the lens diameter concentric with the lens center, a small arc edge located near the outer periphery of the lens and facing the large arc edge, and the ends of the large arc edge and the small arc edge. The radio wave lens antenna device according to claim 1, wherein the radio wave lens antenna device has a sector shape defined by left and right side edges to be connected or a shape including the sector shape. 反射板を、請求項2記載の扇形形状をベースにして大円弧側の縁部を電波入射角が小さくなる部位ほどレンズ中心から縁端までの距離が短くなるように切欠いた形状にした請求項1記載の電波レンズアンテナ装置。   The reflector is formed in a shape in which the edge on the large arc side is notched so that the distance from the center of the lens to the edge becomes shorter as the angle of incidence of the radio wave becomes smaller, based on the sector shape described in claim 2. 1. The radio wave lens antenna device according to 1. 反射板を、左右非対称形にした請求項2又は3に記載の電波レンズアンテナ装置。   The radio wave lens antenna device according to claim 2 or 3, wherein the reflector is asymmetric. 反射板を左右対称形状にし、かつその反射板の扇の広がり角を130°以下にした請求項2又は3に記載の電波レンズアンテナ装置。   The radio wave lens antenna device according to claim 2 or 3, wherein the reflector is symmetrical, and the fan has a spread angle of 130 ° or less.
JP2004029308A 2001-09-28 2004-02-05 Radio wave lens antenna device Expired - Fee Related JP3613283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029308A JP3613283B2 (en) 2001-09-28 2004-02-05 Radio wave lens antenna device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001301144A JP2003110349A (en) 2001-09-28 2001-09-28 Electromagnetic lens antenna apparatus
JP2001299843A JP2003110350A (en) 2001-09-28 2001-09-28 Electromagnetic lens antenna apparatus
JP2001300240A JP2003110352A (en) 2001-09-28 2001-09-28 Electromagnetic lens antenna apparatus, and pointing map for the same apparatus
JP2004029308A JP3613283B2 (en) 2001-09-28 2004-02-05 Radio wave lens antenna device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003533395A Division JP3613280B2 (en) 2001-09-28 2002-09-09 Radio wave lens antenna device

Publications (2)

Publication Number Publication Date
JP2004282719A JP2004282719A (en) 2004-10-07
JP3613283B2 true JP3613283B2 (en) 2005-01-26

Family

ID=33304016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029308A Expired - Fee Related JP3613283B2 (en) 2001-09-28 2004-02-05 Radio wave lens antenna device

Country Status (1)

Country Link
JP (1) JP3613283B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594709A (en) * 2021-08-05 2021-11-02 吉林大学 Vehicle-mounted millimeter wave radar reflector working at 24GHz and setting method

Also Published As

Publication number Publication date
JP2004282719A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JPWO2003030303A1 (en) Radio wave lens antenna device
US6522305B2 (en) Microwave antennas
JP2012509001A (en) Compact multi-beam reflector antenna
WO2004091048A1 (en) Radiowave lens antenna device
JP3613283B2 (en) Radio wave lens antenna device
JP2002232230A5 (en)
JP2003110349A (en) Electromagnetic lens antenna apparatus
US4636801A (en) Multiple reflector system with dielectric support webs and foam body
JP3189050B2 (en) Mobile station antenna device
JP2643560B2 (en) Multi-beam antenna
JP3613281B2 (en) Radio wave lens antenna device
JP2710416B2 (en) Elliptical aperture double reflector antenna
JPH0585110U (en) Multiple satellite selective reception antenna
JPS6347061Y2 (en)
JP3034262B2 (en) Aperture antenna device
CA2225225C (en) Satellite antenna system
JPH023562B2 (en)
JPS6120404A (en) Antenna device
JP4513797B2 (en) Radio wave lens antenna device
CA1185364A (en) Antenna system for different frequency bands
JPH08316729A (en) Antenna system
JPH11214921A (en) Multiple-beam antenna
JPH03191604A (en) Antenna equipment
JPH04145702A (en) Dual reflecting mirror antenna
JPH01123506A (en) Offsetting type parabolic antenna

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees