JPH11214921A - Multiple-beam antenna - Google Patents

Multiple-beam antenna

Info

Publication number
JPH11214921A
JPH11214921A JP1726898A JP1726898A JPH11214921A JP H11214921 A JPH11214921 A JP H11214921A JP 1726898 A JP1726898 A JP 1726898A JP 1726898 A JP1726898 A JP 1726898A JP H11214921 A JPH11214921 A JP H11214921A
Authority
JP
Japan
Prior art keywords
radio waves
reflecting mirror
paraboloid
axis direction
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1726898A
Other languages
Japanese (ja)
Other versions
JP3892566B2 (en
Inventor
Hiroshi Matsubara
寛至 松原
Seiichi Honma
誠一 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maspro Denkoh Corp
Original Assignee
Maspro Denkoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maspro Denkoh Corp filed Critical Maspro Denkoh Corp
Priority to JP01726898A priority Critical patent/JP3892566B2/en
Publication of JPH11214921A publication Critical patent/JPH11214921A/en
Application granted granted Critical
Publication of JP3892566B2 publication Critical patent/JP3892566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a miniaturized antenna to satisfactorily receive radio waves coming from noticeably different directions by forming a reflecting mirror for reflecting the radio waves from a plurality of static satellites at a part of an oval parabolic face. SOLUTION: A multiple-beam antenna 2 is provided with a reflecting mirror 4 for reflecting and converging radio waves arriving from geostationary satellites and a first reception part 6a and a second reception part 6b for receiving radio waves converged by the reflecting mirror 4. The reflecting mirror 4 is a curved face segmented from an oval parabolic face so that its area of opening is an oval (containing circle), where the length of a short axis and a long axis is 1:1 to 1:1.1. The ratio of its effective opening diameter (the length of the short axis of the effective opening) and the focal distance of a parabola which is the cross section of the short axis direction of the oval parabolic face is set to be 1:0.65-1:0.85. The attitude of the reflecting mirror 4 is controlled by the direction of a center axis 8 and a rotary angle with the center axis 8 as an axis, and arriving radio waves from the two geostationary satellites can be received satisfactorily.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、複数の静止衛星
から電波を受信可能なマルチビームアンテナに関する。
The present invention relates to a multi-beam antenna capable of receiving radio waves from a plurality of geostationary satellites.

【0002】[0002]

【従来の技術】従来より、放送衛星や通信衛星等の静止
衛星から電波を受信するためのパラボラアンテナが知ら
れている。パラボラアンテナは、回転放物面の一部から
切出された反射鏡と、その反射鏡の焦点の位置に設けら
れた受信部とを備え、その反射鏡が、回転放物面の中心
軸方向から到来する電波を焦点に集め、受信部がその集
められた電波を受信するものである。こうしたパラボラ
アンテナで複数の静止衛星からの電波を受信するには、
各静止衛星の方向に向けて複数設置すれば良いが、それ
らの設置場所が必要となると共に各パラボラアンテナの
向きを夫々調節しなければならず面倒であることから、
反射鏡の焦点の近傍に複数の受信部を設け、これら受信
部で、複数の静止衛星からの電波を個別に受信するよう
にしたものがあった。
2. Description of the Related Art Parabolic antennas for receiving radio waves from geostationary satellites such as broadcast satellites and communication satellites have been known. The parabolic antenna includes a reflecting mirror cut out from a part of the paraboloid of revolution, and a receiving unit provided at the focal point of the reflecting mirror. And the receiver receives the collected radio waves. To receive radio waves from multiple geostationary satellites with such a parabolic antenna,
It is sufficient to install a plurality of satellites in the direction of each geostationary satellite, but since they need to be installed at the same time, the direction of each parabolic antenna must be adjusted individually, which is troublesome.
In some cases, a plurality of receivers are provided near the focal point of a reflector, and these receivers individually receive radio waves from a plurality of geostationary satellites.

【0003】しかし、電波の到来方向が、回転放物面の
中心軸方向からずれるほど、収差が増加してアンテナ利
得が著しく低下すると共に、電波の到来方向に対して開
口する有効開口面積が減少するため、アンテナの受信電
力が低下するという問題がある。例えば、日本におい
て、BS(東経110°)と日本通信衛星(株)のJC
SAT−3(東経128°)とからの電波を受ける場合
には、電波の到来方向の角度差(以下、「ビーム分離角
度」ともいう。)が小さいので、それらの間に中心軸を
向ければアンテナ利得は大して低下しないが、BSと宇
宙通信(株)のスーパーバードC(東経144°)とか
らの電波を受けようとする場合、ビーム分離角度は約3
8°と大変大きいため、それらの間に中心軸を向けて
も、アンテナ利得が著しく低下してしまう。尚、この場
合、反射鏡を大型化して電波の到来方向に対して開口す
る有効開口面積を拡大することにより受信電力を上げて
も良いが、設置場所が制限されてしまうという問題が生
じる。
However, as the direction of arrival of the radio wave deviates from the direction of the center axis of the paraboloid of revolution, the aberration increases, the antenna gain decreases significantly, and the effective aperture area that opens in the direction of arrival of the radio wave decreases. Therefore, there is a problem that the reception power of the antenna is reduced. For example, in Japan, BS (110 ° E) and JC of Japan Communication Satellite Co., Ltd.
When receiving a radio wave from SAT-3 (128 ° east longitude), the angle difference between the directions of arrival of the radio wave (hereinafter also referred to as “beam separation angle”) is small. The antenna gain does not decrease much, but when trying to receive radio waves from the BS and Superbird C (144 ° east longitude) of Space Communications Co., Ltd., the beam separation angle is about 3
Because it is as large as 8 °, the antenna gain is significantly reduced even if the central axis is directed between them. In this case, the received power may be increased by increasing the size of the reflector and increasing the effective aperture area that opens in the direction of arrival of the radio wave, but there is a problem that the installation location is limited.

【0004】このため、例えば特開平7−46034号
公報に記載の様に、回転楕円面を放物面に近似させて形
成された反射鏡と、その反射鏡(即ち、回転楕円面)の
2つの焦点に夫々配置された2つの受信部とからなるマ
ルチビームアンテナが開発されている。この種のマルチ
ビームアンテナでは、反射鏡が、一方の受信部付近を通
過した電波を他方の受信部に反射するようにして、ビー
ム分離角度が大きくても、夫々の電波を良好なアンテナ
利得で受信できる。
For this reason, as described in Japanese Patent Application Laid-Open No. 7-46034, for example, a reflecting mirror formed by approximating a spheroid to a paraboloid and a reflecting mirror (ie, spheroid) are used. Multi-beam antennas have been developed which consist of two receivers each located at one focal point. In this type of multi-beam antenna, the reflecting mirror reflects the radio wave passing near one receiving unit to the other receiving unit, so that even if the beam separation angle is large, each radio wave can be transmitted with a good antenna gain. Can receive.

【0005】また、特公平4−73881号公報に記載
の様に、隣接する複数の回転放物面を加重平均により融
合して形成された反射鏡と、融合前の各回転放物面に相
当する反射領域の焦点に夫々設けられた複数の受信部と
からなるマルチビームアンテナも開発されている。この
種のマルチビームアンテナでは、複数の方向から到来す
る電波を、各反射領域が対応する受信部に夫々反射し
て、ビーム分離角度が大きくても、各静止衛星からの電
波を受信できる。
[0005] As described in Japanese Patent Publication No. 4-72881, a reflector formed by fusing a plurality of adjacent paraboloids by weighted averaging and corresponding to each paraboloid of revolution before fusing. A multi-beam antenna including a plurality of receiving units respectively provided at the focal point of a reflecting area that has been developed has also been developed. In this type of multi-beam antenna, radio waves arriving from a plurality of directions are respectively reflected by corresponding reflection units in the respective reflection areas, so that radio waves from each geostationary satellite can be received even if the beam separation angle is large.

【0006】[0006]

【発明が解決しようとする課題】しかし、特開平7−4
6034号公報に記載のマルチビームアンテナでは、一
方の受信部が、他方の受信部が受けるべき電波の到来方
向にあるので、その電波をブロッキングしてしまうとい
う問題や、横長であるため美観を損なうという問題があ
る。また、特公平4−73881号公報に記載のマルチ
ビームアンテナは、独立した回転放物面の集合に過ぎ
ず、電波の到来方向に対応した数の回転放物面を融合す
る必要がある。そのため、受信可能な電波の数を増やそ
うとすると反射鏡を大型化せざるを得ない。更に、これ
ら両マルチビームアンテナが受信可能な電波のビーム分
離角度は、反射鏡の形状により固定されてしまうので、
例えば新規に打ち上げられた静止衛星からの電波に対し
ては、受信能力が劣るという問題がある。
However, Japanese Patent Application Laid-Open No. 7-4 / 1994
In the multi-beam antenna described in Japanese Patent No. 6034, one of the receiving units is in the direction of arrival of the radio wave to be received by the other receiving unit, so that there is a problem that the radio wave is blocked. There is a problem. Further, the multi-beam antenna described in Japanese Patent Publication No. 4-72881 is merely a set of independent paraboloids of revolution, and it is necessary to fuse a number of paraboloids of revolution corresponding to the arrival direction of radio waves. Therefore, in order to increase the number of radio waves that can be received, the size of the reflector must be increased. Furthermore, since the beam separation angle of the radio waves that can be received by both of these multi-beam antennas is fixed by the shape of the reflecting mirror,
For example, there is a problem that the reception capability is poor for radio waves from a newly launched geostationary satellite.

【0007】本発明は、上記課題に鑑みなされたもので
あり、小型であっても、到来方向の著しく異なる電波を
良好に受信可能なマルチビームアンテナを提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a multi-beam antenna capable of satisfactorily receiving radio waves having significantly different directions of arrival, even if it is small.

【0008】[0008]

【課題を解決するための手段及び発明の効果】上記課題
を解決するためになされた請求項1に記載の発明は、複
数の静止衛星からの電波を反射する反射鏡と、該反射鏡
により反射された前記各静止衛星からの電波を夫々受信
する複数の受信部とを備えたマルチビームアンテナにお
いて、前記反射鏡は、楕円放物面の一部で形成されたこ
とを特徴とする。
Means for Solving the Problems and Effects of the Invention According to the first aspect of the present invention, there is provided a reflector for reflecting radio waves from a plurality of geostationary satellites, and a reflector for reflecting radio waves from the plurality of geostationary satellites. A multi-beam antenna including a plurality of receiving units for respectively receiving the radio waves from the respective geostationary satellites, wherein the reflecting mirror is formed by a part of an elliptic paraboloid.

【0009】上記の様に構成された本発明(請求項1記
載)のマルチビームアンテナにおいては、反射鏡が楕円
放物面で形成されている。そのため、後述するシミュレ
ーションから分かるように、楕円放物面の中心軸を受信
すべき電波の到来方向の間に向けると共に、曲率の大き
い長軸方向を静止衛星の並びに対して略平行にして楕円
放物面の長径方向に傾いた方向から各電波を受けるよう
にすると、到来方向の著しく異なる電波であっても、夫
々良好に集束させることができる。
[0009] In the multibeam antenna according to the present invention (claim 1) configured as described above, the reflecting mirror is formed as an elliptic paraboloid. Therefore, as can be seen from a simulation described later, the center axis of the elliptic paraboloid is oriented between the arrival directions of the radio waves to be received, and the major axis direction having a large curvature is substantially parallel to the arrangement of the geostationary satellites, and the elliptical paraboloid is set. If each radio wave is received from a direction inclined in the major axis direction of the object surface, it is possible to satisfactorily converge each radio wave even if the arrival direction is significantly different.

【0010】したがって、請求項1のマルチビームアン
テナによれば、回転楕円面を使用したり、複数の回転放
物面を融合したりする必要が無いので、反射鏡が大型化
したり美観を損なったりするのを避けることができる。
しかも、受信可能なビーム分離角度が固定されていない
ので、所定のビーム分離角度以内であれば任意の数の静
止衛星からの電波を受信することができる。尚、受信部
としては、例えば、フィードホーン、パッチ型アンテナ
等を用いることができる。
Therefore, according to the multi-beam antenna of the first aspect, there is no need to use a spheroidal surface or to fuse a plurality of paraboloids of revolution, so that the size of the reflector becomes large or the appearance is impaired. Can be avoided.
Moreover, since the receivable beam separation angle is not fixed, it is possible to receive radio waves from any number of geostationary satellites within a predetermined beam separation angle. In addition, as the receiving unit, for example, a feed horn, a patch-type antenna, or the like can be used.

【0011】後述する様に、3D−CADを使用したシ
ミュレーションの結果、楕円放物面の長軸方向を短軸方
向に対して長くするほど、ビーム分離角度がより大きい
方向からの電波及びその間から到来する電波をより良好
に集束可能であることが分かった。例えば、短軸方向と
長軸方向との長さの比を1:1.05とすれば、到来方
向の角度差が20°までの各電波を良好に集束させて受
信することができ、短軸方向と長軸方向との長さの比を
1:1.1とすれば、到来方向の角度差が40°までの
各電波を良好に受信可能となるのである。ここで、楕円
放物面の短軸方向と長軸方向との長さの比とは、楕円放
物面を、その中心軸に対して垂直な平面で切った断面で
ある楕円の短軸と長軸との比で定義するものとする。
As will be described later, as a result of a simulation using 3D-CAD, as the major axis of the elliptic paraboloid is made longer with respect to the minor axis, the radio wave from the direction in which the beam separation angle is larger and the distance between them It has been found that incoming radio waves can be better focused. For example, if the ratio of the length in the short axis direction to the length in the long axis direction is 1: 1.05, each radio wave having an angle difference of up to 20 ° in the arrival direction can be well focused and received. If the ratio of the length in the axial direction to the length in the long axis direction is 1: 1.1, each radio wave with an angle difference of up to 40 ° in the arrival direction can be satisfactorily received. Here, the ratio of the length of the minor axis direction and the major axis direction of the elliptic paraboloid is the minor axis of the ellipse, which is a cross section of the elliptical paraboloid cut by a plane perpendicular to the central axis. It shall be defined by the ratio to the long axis.

【0012】この様に、短径方向に対する長径方向の比
率を大きくするほど、ビーム分離角度が大きくても電波
をより良好に電波を集束させて受信できるようになる
が、電波が集束する位置(即ち、受信部を配置するべき
位置)が反射鏡から離れ、マルチビームアンテナ全体が
大型になるという問題が生じる。一方、実際の静止衛星
の位置を考慮すると、電波の到来方向の角度差は最も大
きい場合でも略40°となっている。また、回転放物面
を利用した従来のパラボラアンテナでは、電波の到来方
向の角度差が20°以上の場合には、集束が悪くなり、
アンテナ利得が低下する。そこで、請求項2に記載の様
に、楕円放物面の短軸方向と長軸方向との長さの比を、
1:1.05〜1:1.1にすると好ましく、小型であ
るにもかかわらず、到来方向の著しく異なる電波(ビー
ム分離角度が20°〜40°)を良好に受信可能なマル
チビームアンテナを得ることができる。
As described above, as the ratio of the major axis direction to the minor axis direction is increased, the radio waves can be better focused and received even if the beam separation angle is larger. In other words, there is a problem that the position where the receiving unit is to be disposed is separated from the reflecting mirror, and the entire multi-beam antenna becomes large. On the other hand, considering the actual position of the geostationary satellite, the angle difference in the direction of arrival of the radio wave is approximately 40 ° even at the maximum. In addition, in the conventional parabolic antenna using the paraboloid of revolution, when the angle difference between the arrival directions of the radio waves is 20 ° or more, the focusing becomes poor,
Antenna gain decreases. Then, as described in claim 2, the ratio of the length of the minor axis direction and the major axis direction of the elliptic paraboloid is
1: 1.05 to 1: 1.1, and a multi-beam antenna capable of satisfactorily receiving radio waves (beam separation angles of 20 ° to 40 °) having significantly different directions of arrival despite its small size. Obtainable.

【0013】さて反射鏡としては、楕円放物面のどの部
分を利用しても良いが、反射鏡の中心を楕円放物面の中
心軸から離すと、電波が集束し難くなったり、また、集
束位置が反射鏡から離れてアンテナ全体が大型化したり
するという問題が生じる。そこで、請求項3に記載の様
に、反射鏡を、楕円放物面の中心軸を含むよう(即ち、
反射鏡と楕円放物面の中心軸とが交わるよう)形成すれ
ば、電波を良好に集束可能で、集束位置も反射鏡から離
れないので、小型で、しかもアンテナ利得が高いマルチ
ビームアンテナとすることができる。
As the reflecting mirror, any portion of the elliptical paraboloid may be used. However, if the center of the reflecting mirror is separated from the central axis of the elliptic paraboloid, it becomes difficult for the radio waves to converge. There is a problem that the focusing position is separated from the reflector and the entire antenna is enlarged. Then, as described in claim 3, the reflecting mirror is made to include the central axis of the elliptic paraboloid (that is,
If the reflector is formed so that the center axis of the elliptical paraboloid intersects), the radio wave can be well focused and the focusing position does not depart from the reflector, so that the multi-beam antenna is small and has a high antenna gain. be able to.

【0014】また反射鏡の形状としては、静止衛星の並
び方向(即ち、楕円放物面の長軸方向)に長いほうが、
隣接する静止衛星からの干渉を抑制できるので好まし
く、受信部として一般に広く使用される円錐ホーンアン
テナの指向性が円錐形状であることも考慮すると、受信
部に対する反射鏡の開口が円形状か、それに近い楕円形
状となるようにするのが好ましい。従って、楕円放物面
の中心軸方向から見た反射鏡の形状(以下、「有効開
口」という。)を、短軸と長軸との比が1:1〜1:
1.1(特に1:1.06)であって、しかも長軸が楕
円放物面の長軸方向に対して略平行な楕円(円を含む)
となるようにするとよい。
The shape of the reflector should be longer in the direction in which the geostationary satellites are arranged (that is, in the major axis direction of the elliptical paraboloid).
Considering that the directivity of a conical horn antenna generally used as a receiving unit has a conical shape, it is preferable because the interference from an adjacent geostationary satellite can be suppressed. It is preferable to make the shape close to an ellipse. Therefore, the shape of the reflecting mirror (hereinafter referred to as “effective aperture”) as viewed from the central axis direction of the elliptic paraboloid is such that the ratio of the short axis to the long axis is 1: 1 to 1:
1.1 (especially 1: 1.06) and an ellipse (including a circle) whose major axis is substantially parallel to the major axis direction of the elliptic paraboloid
It is good to be.

【0015】この様に、反射鏡の有効開口を楕円形状と
した場合においても、反射鏡が楕円放物面の中心軸を含
むようにすれば、電波を良好に集束可能で、小型のマル
チビームアンテナとすることができるので好ましいが、
有効開口の中心と楕円放物面の中心軸とが完全に一致し
ている状態では、受信部による到来電波のブロッキング
の影響が大きくなる可能性がある。従って、反射鏡の中
心と楕円放物面の中心軸とを離した方が良く、それらの
距離を、有効開口の短軸の長さ(以下、「有効開口径」
という。)の約1/4とすれば、ブロッキングの影響を
抑制できると共に電波も良好に集束可能なことが、後述
するシミュレーションにより確かめられている。この場
合、有効開口の中心が、楕円放物面の中心軸に対して、
楕円放物面の短軸方向にあれば、反射鏡はその短軸を中
心として左右対称となり、意匠的にも好ましいものとな
る。
As described above, even when the effective aperture of the reflecting mirror is elliptical, if the reflecting mirror includes the central axis of the elliptic paraboloid, the radio wave can be well focused and a small multi-beam can be obtained. It is preferable because it can be an antenna,
In a state where the center of the effective aperture and the center axis of the elliptic paraboloid are completely coincident with each other, there is a possibility that the influence of the blocking of the incoming radio wave by the receiving unit becomes large. Therefore, it is better to separate the center of the reflecting mirror and the central axis of the elliptic paraboloid, and to set the distance between them as the length of the short axis of the effective aperture (hereinafter referred to as “effective aperture diameter”).
That. It has been confirmed by simulations described later that the effect of blocking can be suppressed and that radio waves can be well focused when the distance is about 1/4 of the value of (1). In this case, the center of the effective aperture is
If the mirror is in the minor axis direction of the elliptic paraboloid, the reflecting mirror becomes bilaterally symmetric about the minor axis, which is also preferable in terms of design.

【0016】尚、有効開口径と、楕円放物面の短軸方向
の断面である放物線の焦点距離との比は、大きいほどア
ンテナ利得が向上するので好ましいが、一方溢れ放射が
発生したり、アンテナ全体が大型化してしまう等の問題
があることから、1:0.65〜1:0.85の範囲、
特に0.8が最も好ましい。
It is preferable that the ratio between the effective aperture diameter and the focal length of the parabola which is a cross section in the minor axis direction of the elliptic paraboloid is larger because the antenna gain is improved, but overflow radiation is generated. Since there is a problem that the whole antenna becomes large, a range of 1: 0.65 to 1: 0.85,
Particularly, 0.8 is most preferable.

【0017】[0017]

【発明の実施の形態】以下に、本発明の一実施例を図面
と共に説明する。図1は、本発明の一実施例としてのマ
ルチビームアンテナの全体的構成を示す説明図である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing an overall configuration of a multi-beam antenna as one embodiment of the present invention.

【0018】マルチビームアンテナ2は、静止衛星から
到来する電波を反射して集束させるための反射鏡4、そ
の反射鏡4により集束された電波を受信する第1受信部
6a及び第2受信部6b(以下、両受信部を総称すると
きは「受信部6」ともいう。)とを備えている。
The multi-beam antenna 2 includes a reflector 4 for reflecting and converging radio waves arriving from a geostationary satellite, and a first receiver 6a and a second receiver 6b for receiving the radio waves converged by the reflector 4. (Hereinafter, when both receiving units are collectively referred to as “receiving unit 6”).

【0019】反射鏡4は、その有効開口が、短軸と長軸
との長さが1:1〜1:1.1(本実施例では1:1.
06)の楕円形(円形を含む)となるよう、楕円放物面
7から切り出されて構成された曲面である。また、その
有効開口径(即ち、有効開口の短軸の長さ)と、楕円放
物面7の短軸方向7Sの断面である放物線の焦点距離と
の比は、1:0.65〜1:0.85(本実施例では、
1:0.8)とされる。また、有効開口径は、例えば5
0cmとされる。
The effective aperture of the reflecting mirror 4 is such that the length between the short axis and the long axis is from 1: 1 to 1: 1.1 (1: 1.
06) is a curved surface cut out from the elliptical paraboloid 7 so as to have an elliptical shape (including a circle). The ratio between the effective aperture diameter (that is, the length of the minor axis of the effective aperture) and the focal length of a parabola which is a cross section of the elliptical paraboloid 7 in the minor axis direction 7S is 1: 0.65 to 1 : 0.85 (in the present embodiment,
1: 0.8). The effective aperture diameter is, for example, 5
0 cm.

【0020】また、この反射鏡4は、図示しない支持部
材により、楕円放物面7の中心軸8の向き(即ち、方位
角及び仰角)を自由に調節可能とされていると共に、中
心軸8を軸として回転可能とされている。つまり、受信
する地域に応じて、反射鏡4の姿勢を中心軸8の向きと
中心軸8を軸とした回転角度とで調整して、二つの静止
衛星からの到来電波を良好に受信できる。
The direction of the central axis 8 of the parabolic ellipse 7 (ie, azimuth and elevation) can be freely adjusted by a support member (not shown). Is rotatable around the axis. In other words, the attitude of the reflecting mirror 4 is adjusted by the direction of the central axis 8 and the rotation angle about the central axis 8 according to the receiving area, so that the incoming radio waves from the two geostationary satellites can be satisfactorily received.

【0021】第1受信部6aは、第1の静止衛星(以
下、「第1衛星」という)からの到来電波を受信するた
めのものであり、また、第2受信部6bは、第2の静止
衛星(以下、「第2衛星」という。)からの到来電波を
受信するためのものである。これら第1受信部6a及び
第2受信部6bは、反射鏡4が両静止衛星からの到来電
波を夫々集束させる位置に対応するよう反射鏡4に対し
て固定されると共に、反射鏡4の中心に向けられてい
る。尚、両受信部6を中心軸8方向から見ると、有効開
口の長軸と、両受信部6を結ぶ直線とが平行となってい
る。
The first receiving section 6a is for receiving an incoming radio wave from a first geostationary satellite (hereinafter, referred to as a "first satellite"), and the second receiving section 6b is for receiving a second radio signal. This is for receiving an incoming radio wave from a geostationary satellite (hereinafter, referred to as a "second satellite"). The first receiving unit 6a and the second receiving unit 6b are fixed to the reflecting mirror 4 so as to correspond to positions where the reflecting mirror 4 focuses the radio waves arriving from both geostationary satellites, respectively. Is aimed at. When the two receiving units 6 are viewed from the central axis 8 direction, the long axis of the effective aperture and the straight line connecting the two receiving units 6 are parallel.

【0022】さて、反射鏡4は楕円放物面7からその一
部を切り出して形成されるが、反射鏡4の形状は、切り
出される楕円放物面7の形状及びその楕円放物面7から
の切出し方により決定される。発明者は、図2(a)〜
(c)に示す様に、楕円放物面7の形状を決定するにあ
たり、楕円放物面7の短軸方向7Sと長軸方向7Lとの
長さの比を様々に変化させて、二つの静止衛星からの到
来電波が、反射鏡4による反射後、どの程度集束するか
をシミュレーションした。シミュレーションでは、第1
衛星及び第2衛星として、静止衛星軌道上東経144°
にある宇宙通信(株)のスーパーバードC及び東経11
0°にあるBSを想定し、両静止衛星からの到来電波を
反射鏡4に入射させるものとした。
The reflecting mirror 4 is formed by cutting out a part of the elliptic paraboloid 7, and the shape of the reflecting mirror 4 depends on the shape of the cut elliptic paraboloid 7 and the elliptic paraboloid 7. Is determined by the extraction method. The inventor of FIG.
As shown in (c), in determining the shape of the elliptical paraboloid 7, the ratio of the length of the elliptic paraboloid 7 in the short axis direction 7S and the long axis direction 7L is changed variously, and A simulation was performed to determine how much the arriving radio wave from the geostationary satellite converges after being reflected by the reflector 4. In the simulation, the first
144 ° east longitude in geostationary satellite orbit as satellite and second satellite
Space Bird Co., Ltd. Superbird C and East longitude 11
Assuming a BS at 0 °, radio waves arriving from both geostationary satellites are made to enter the reflector 4.

【0023】図2(a)は、回転放物面9によって、両
静止衛星からの到来電波が反射される様子を示す説明図
であり、図2(b)は、短軸方向7Sと長軸方向7Lと
の長さの比が1:1.05である楕円放物面7によって
両電波が反射される様子を示す説明図であり、また、図
2(c)は、短軸方向7Sと長軸方向7Lとの長さの比
が1:1.2である楕円放物面7によって両電波が反射
される様子を示す説明図である。尚、一般に楕円放物面
は、直交座標系において、 z=(x/a)2+(y/b)2 …(1) という式で表されるが、楕円放物面7の短軸方向7S
は、式(1)の楕円放物面のx軸方向に対応し、楕円放
物面7の長軸方向7Lは、式(1)の楕円放物面のy軸
方向に対応し、楕円放物面7の中心軸8は、式(1)の
楕円放物面の中心軸であるz軸に対応する。即ち、図2
(b)に示す楕円放物面7は、式(1)において、2
a:2b=1:1.05(ここで、「2a」及び「2
b」は、夫々、z=1の平面による楕円放物面7の断面
である楕円の「短軸」及び「長軸」の長さである。以下
同じ。)として表される楕円放物面であり、図2(c)
に示す楕円放物面7は、式(1)において、2a:2b
=1:1.2として表される楕円放物面である。ここ
で、上記「z=1」とは、式(1)におけるx、y、z
に対する相対値を表すものであり、式(1)に必要に応
じて実寸法をあてはめて設計を行う。
FIG. 2A is an explanatory view showing a state in which radio waves arriving from both geostationary satellites are reflected by the paraboloid of revolution 9, and FIG. 2B shows a short axis direction 7 S and a long axis. FIG. 2C is an explanatory diagram showing a state in which both radio waves are reflected by the elliptic paraboloid 7 whose length ratio to the direction 7L is 1: 1.05, and FIG. It is explanatory drawing which shows a mode that both radio waves are reflected by the elliptic paraboloid 7 whose length ratio with the major axis direction 7L is 1: 1.2. In general, an elliptic paraboloid is represented by the following equation in a rectangular coordinate system: z = (x / a) 2 + (y / b) 2 (1) 7S
Corresponds to the x-axis direction of the elliptic paraboloid of equation (1), and the major axis direction 7L of the elliptic paraboloid 7 corresponds to the y-axis direction of the elliptic paraboloid of equation (1). The central axis 8 of the object surface 7 corresponds to the z-axis which is the central axis of the elliptic paraboloid of Expression (1). That is, FIG.
The elliptic paraboloid 7 shown in FIG.
a: 2b = 1: 1.05 (where “2a” and “2
“b” is the length of the “short axis” and “long axis” of the ellipse, which is a cross section of the elliptic paraboloid 7 by the plane of z = 1, respectively. same as below. ) Is an ellipsoidal paraboloid represented as FIG.
The elliptic paraboloid 7 shown in FIG.
= 1: 1.2 is an elliptic paraboloid. Here, “z = 1” means x, y, z in equation (1).
And a design is performed by applying actual dimensions to Equation (1) as necessary.

【0024】これらの放物面(回転放物面9又は楕円放
物面7)の中心軸8は、両静止衛星の間にある、静止衛
星軌道上の東経131°の位置の方向に向けられたもの
とする。尚、図2(a)〜(c)は何れも、回転放物面
9或いは楕円放物面7の凹面側(即ち、電波の到来する
面の側)から見込んだ図であり、特に、図2(B)の場
合の斜視図を、図3に示す。
The central axis 8 of these paraboloids (the revolving paraboloid 9 or the ellipsoidal paraboloid 7) is oriented in the direction of 131 ° east longitude on the geostationary satellite orbit between the geostationary satellites. It shall be assumed. 2 (a) to 2 (c) are all views from the concave side of the paraboloid of revolution 9 or the elliptical paraboloid 7 (that is, the side from which radio waves arrive). FIG. 3 shows a perspective view in the case of 2 (B).

【0025】図2(a)〜(c)に示す様に、第1衛星
からの到来電波10a(以下、「第1電波10a」とい
う。)、及び、第2衛星からの到来電波10b(以下、
「第2電波10b」という。)は、反射鏡4により夫々
反射されて別々の位置にて集束している。ここで、図2
(a)〜(c)を比較すると、短軸方向7Sに対して長
軸方向7Lの長さの比が大きくなるほど、第1電波10
a、第2電波10bの双方とも、より狭い範囲に集束す
る傾向にあり好ましいが、その一方、両電波の集束位置
は反射鏡4から離れる傾向にあることから、第1受信部
6a及び第2受信部6bが反射鏡4から遠くなり、マル
チビームアンテナの全体が大型化してしまう。
As shown in FIGS. 2A to 2C, an incoming radio wave 10a from the first satellite (hereinafter, referred to as "first radio wave 10a") and an incoming radio wave 10b from the second satellite (hereinafter, referred to as "first radio wave 10a"). ,
This is referred to as “second radio wave 10b”. ) Are reflected by the reflecting mirror 4 and converged at different positions. Here, FIG.
Comparing (a) to (c), as the ratio of the length of the major axis direction 7L to the minor axis direction 7S increases, the first radio wave 10
a and the second radio wave 10b both tend to converge in a narrower range, which is preferable. On the other hand, since the convergence position of both radio waves tends to be away from the reflecting mirror 4, the first receiving unit 6a and the second The receiving unit 6b becomes far from the reflecting mirror 4, and the entire multi-beam antenna becomes large.

【0026】発明者は、ビーム分離角度を変化させた同
様のシミュレーション行い、ビーム分離角度が20°で
ある場合は、楕円放物面7の短軸方向7Sと長軸方向7
Lとの長さの比を1:1.05とするのが適当であり、
ビーム分離角度が40°である場合には、楕円放物面7
の短軸方向7Sと長軸方向7Lとの長さの比を1:1.
1とするのが適当であることを明らかにした。そして、
特に上記の様に想定した第1衛星及び第2衛星からの到
来電波を受信する場合(ビーム分離角度が約38°)に
は、楕円放物面7の短軸方向7Sと長軸方向7Lとの長
さの比を1:1.075とするのが最も好ましいことを
確かめた。
The inventor performed a similar simulation with the beam separation angle changed. When the beam separation angle was 20 °, the short axis direction 7S and the long axis direction 7S of the elliptic paraboloid 7 were changed.
Suitably, the ratio of the length to L is 1: 1.05,
When the beam separation angle is 40 °, the elliptic paraboloid 7
The length ratio of the short axis direction 7S to the long axis direction 7L is 1: 1.
It has been clarified that a value of 1 is appropriate. And
In particular, when the incoming radio waves from the first satellite and the second satellite assumed as described above are received (the beam separation angle is about 38 °), the short axis direction 7S and the long axis direction 7L of the elliptic paraboloid 7 are It has been found that a length ratio of 1: 1.075 is most preferred.

【0027】以上のことから、楕円放物面7の短軸方向
7Sと長軸方向7Lとの比を1:1.05〜1:1.1
とすれば、現在使用されている上記第1衛星、第2衛星
及びこれらの間の静止衛星軌道上にある静止衛星からの
到来電波を良好に受信できることが分かる。
From the above, the ratio of the short axis direction 7S of the elliptic paraboloid 7 to the long axis direction 7L is 1: 1.05 to 1: 1.1.
Then, it can be understood that the radio waves arriving from the first satellite, the second satellite currently used, and the geostationary satellite in the geostationary satellite orbit between them can be satisfactorily received.

【0028】次に、発明者は、楕円放物面7の短軸方向
7Sと長軸方向7Lとの長さの比を1:1.075とし
て、その楕円放物面7の内、どの部分を反射鏡4として
切り出すのが適当であるかをシミュレーションにより検
討した。図4(a)〜(c)は、短軸方向7Sと長軸方
向7Lとの長さの比が1:1.075である楕円放物面
7から反射鏡4を切出す位置を様々に変化させた場合
に、第1電波10a及び第2電波10bがどのように集
束するかをシミュレーションした様子を示す説明図であ
る。図4(a)〜(c)は何れも、楕円放物面7の凹面
側(即ち、電波の到来する面の側)から見込んだ図であ
る。ここでは、各反射鏡4の有効開口の短軸と長軸との
長さの比を1:1.06の楕円とし、楕円の短軸は楕円
放物面7の短軸方向7Sと一致させてある。尚、反射鏡
4に入射する両静止衛星からの到来電波(第1電波10
a及び第2電波10b)は、反射鏡4の中心Mに入射す
る電波のみを示し、他の部分に入射する電波については
省略した。
Next, the inventors set the ratio of the length of the short axis direction 7S to the long axis direction 7L of the elliptic paraboloid 7 to 1: 1.075, It was examined by simulation whether it is appropriate to cut out as a reflecting mirror 4. FIGS. 4A to 4C show various positions at which the reflecting mirror 4 is cut out from the elliptic paraboloid 7 whose length ratio between the short axis direction 7S and the long axis direction 7L is 1: 1.075. FIG. 9 is an explanatory diagram showing a state of simulating how the first radio wave 10a and the second radio wave 10b converge when changed. 4 (a) to 4 (c) are diagrams as viewed from the concave side of the elliptic paraboloid 7 (that is, the side of the plane from which radio waves arrive). Here, the ratio of the length of the minor axis to the major axis of the effective aperture of each reflecting mirror 4 is an ellipse of 1: 1.06, and the minor axis of the ellipse matches the minor axis direction 7S of the elliptic paraboloid 7. It is. In addition, incoming radio waves (first radio waves 10) from both geostationary satellites incident on the reflector 4.
a and the second radio wave 10b) indicate only the radio wave incident on the center M of the reflecting mirror 4, and the radio wave incident on other portions is omitted.

【0029】図4(a)〜(c)に示す様に、反射鏡4
の中心Mが、楕円放物面7とその中心軸8との交点O
(以下、単に「交点O」という。)に近づくほど、両静
止衛星からの到来電波は、より狭い範囲に集束しており
好ましいが、集束位置が反射鏡4の有効開口の中心に近
付き、受信部6によるブロッキングが生じる可能性があ
る。一方、反射鏡の中心Mを上記交点Oから離すほど、
電波の集束位置が反射鏡から離れることから、受信部6
による到来電波のブロッキングを防止できるが、電波の
集束が悪くなると共に受信部6が反射鏡4から遠くなり
マルチビームアンテナが大型化してしまう。
As shown in FIGS. 4A to 4C, the reflecting mirror 4
Is the intersection O between the elliptical paraboloid 7 and its central axis 8
The radio waves arriving from both geosynchronous satellites are preferably converged in a narrower range as it approaches (hereinafter, simply referred to as “intersection O”). However, the convergence position approaches the center of the effective aperture of the reflecting mirror 4 and the radio wave is received. Blocking by the unit 6 may occur. On the other hand, as the center M of the reflecting mirror is farther from the intersection O,
Since the focus position of the radio wave is far from the reflector, the receiving unit 6
Can prevent the incoming radio wave from being blocked, but the radio wave convergence deteriorates, and the receiving unit 6 becomes farther from the reflecting mirror 4, resulting in an increase in the size of the multi-beam antenna.

【0030】従って、図4(b)に示す様に、反射鏡4
の中心Mと、上記交点Oとの間の長さが、反射鏡4の短
軸の長さの略1/4となるようすれば、電波の集束位置
が反射鏡4の端部に位置するので、受信部6によるブロ
ッキングの影響を抑制できると共に、電波を比較的良好
に集束させることができ、最も好ましい。尚、こうした
ブロッキングは、受信部6を小型化する等して抑制・防
止できるので、楕円放物面7から反射鏡4を切り出すに
当っては、楕円放物面7と中心軸8との交点Oを反射鏡
4に含むようにすれば、マルチビームアンテナ全体が大
型化しないので好ましい。
Therefore, as shown in FIG.
Is set to be approximately 1/4 of the length of the minor axis of the reflecting mirror 4, the focusing position of the radio wave is located at the end of the reflecting mirror 4. Therefore, the effect of blocking by the receiving unit 6 can be suppressed, and radio waves can be focused relatively favorably, which is the most preferable. Such blocking can be suppressed or prevented by, for example, downsizing the receiving unit 6. Therefore, when cutting out the reflecting mirror 4 from the elliptical paraboloid 7, the intersection point between the elliptical paraboloid 7 and the central axis 8 is used. It is preferable to include O in the reflecting mirror 4 because the entire multi-beam antenna does not increase in size.

【0031】以上のシミュレーション結果に基づき、本
実施例では、反射鏡4を切り出す元となる楕円放物面7
の短軸方向7Sと長軸方向7Lとの長さの比を、ビーム
分離角度38°に対応できるよう1:1.075とし、
反射鏡4を、その楕円放物面7の中心軸8との交点O
が、有効開口の短軸上であって中心Mから有効開口径の
1/4離れた位置に来るよう、楕円放物面7から切り出
している。
Based on the above simulation results, in this embodiment, the elliptic paraboloid 7 from which the reflecting mirror 4 is cut out
The ratio of the length of the short axis direction 7S to the length of the long axis direction 7L is set to 1: 1.075 so as to correspond to the beam separation angle of 38 °,
The point of intersection O of the reflecting mirror 4 with the central axis 8 of the elliptic paraboloid 7
Is cut out from the elliptical paraboloid 7 so as to be located on the short axis of the effective opening and at a position 1 / of the effective opening diameter from the center M.

【0032】図1に戻り、この様に形成された反射鏡4
を持つマルチビームアンテナを使用して、第1衛星及び
第2衛星からの電波を受信する方法について説明する。
上記で想定した第1衛星は、静止衛星軌道上の東経14
4°にあり、第2衛星は静止衛星軌道上の東経110°
にある。これら両静止衛星からの到来電波を受信するに
は、例えば、その中間の東経127°の静止衛星軌道に
中心軸8(即ち、反射鏡4の有効開口)を向けるように
しても良いが、第1衛星及び第2衛星の送信電力は夫々
約90W及び約106Wと異なる等の理由で、地上にお
ける各到来電波の電力密度が異なることを考慮し、本実
施例のマルチビームアンテナでは、東経127°よりも
若干、第1衛星に近い東経131°方向に中心軸8を向
けようにしている。この時の中心軸8の仰角は受信地区
によって異なるが、例えば名古屋地区では、中心軸8の
仰角は48.66°となる。また、受信地区によって、
両静止衛星の仰角の差も異なっているため、これに合わ
せて反射鏡4を中心軸8を中心に回転させる必要があ
り、例えば名古屋地区では、静止衛星軌道から反射鏡4
の見ると、左に8.31°回転される。この様に、受信
地区に応じた姿勢に調整されることにより、マルチビー
ムアンテナは、第1電波10aを第1受信部6aにて受
信し、第2電波10bを第2受信部6bにて受信するこ
とができる。
Returning to FIG. 1, the reflecting mirror 4 thus formed
A method of receiving radio waves from the first satellite and the second satellite using the multi-beam antenna having the following will be described.
The first satellite assumed above is 14 east longitude in geostationary satellite orbit.
At 4 °, the second satellite is 110 ° east longitude in geostationary satellite orbit
It is in. In order to receive radio waves arriving from these two geostationary satellites, for example, the central axis 8 (that is, the effective aperture of the reflecting mirror 4) may be directed to the geostationary satellite orbit at 127 ° east in the middle. Considering that the power densities of the arriving radio waves on the ground are different because the transmission powers of the first satellite and the second satellite are respectively about 90 W and about 106 W, respectively, the multi-beam antenna of the present embodiment uses 127 ° east longitude. The central axis 8 is oriented slightly in the 131 ° east longitude direction closer to the first satellite. The elevation angle of the central axis 8 at this time differs depending on the receiving area. For example, in the Nagoya area, the elevation angle of the central axis 8 is 48.66 °. Also, depending on the receiving area,
Since the difference between the elevation angles of the two geostationary satellites is also different, it is necessary to rotate the reflecting mirror 4 about the central axis 8 in accordance with the difference.
Is turned 8.31 ° to the left. As described above, the posture is adjusted according to the receiving area, so that the multi-beam antenna receives the first radio wave 10a at the first receiving unit 6a and receives the second radio wave 10b at the second receiving unit 6b. can do.

【0033】以上の様に、本実施例のマルチビームアン
テナによれば、反射鏡4を楕円放物面7の一部で構成し
ているので、到来方向の著しく異なる電波を夫々良好に
集束させることができる。即ち、各方向に対してサイド
ローブを抑圧して指向性を高めることができるので、高
いアンテナ利得で受信可能となり、受信障害やC/N劣
化を防止できる。そして、回転楕円面を使用したり、複
数の回転放物面を融合したりする必要が無いので、反射
鏡が大型化したり美観を損なったりするのを避けること
ができ、有効開口径が例えば50cmと小型であって
も、上記の効果が得られる。
As described above, according to the multi-beam antenna of this embodiment, since the reflecting mirror 4 is constituted by a part of the elliptic paraboloid 7, the radio waves having significantly different directions of arrival can be focused well. be able to. That is, since the directivity can be enhanced by suppressing the side lobe in each direction, it is possible to receive with a high antenna gain, and it is possible to prevent a reception failure and C / N deterioration. And since there is no need to use a spheroid or to combine a plurality of paraboloids of revolution, it is possible to avoid the reflector from becoming large or spoiling the appearance, and the effective aperture diameter is, for example, 50 cm. Even if the size is small, the above effects can be obtained.

【0034】以上、本発明の一実施例について説明した
が、本発明は上記実施例に限定される物ではなく、種々
の態様を取ることができる。例えば、上記実施例のマル
チビームアンテナを、受信部を2個備えたものとして説
明したが、これに限らず何個設けても良く、第1受信部
6a及び第2受信部6bの間に新たな受信部を設けて、
例えば、静止衛星軌道上の東経128°にある日本通信
衛星(株)のJCSAT−3からの到来電波を受信する
様にしても良い。上記実施例では、楕円放物面7の短軸
方向7Sと長軸方向7Lとの長さの比を1:1.075
として、電波の到来方向の角度差約38°までであれ
ば、良好に集束可能とされているので、その間からの到
来電波も良好に集束できるからである。
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment and can take various forms. For example, the multi-beam antenna of the above embodiment has been described as having two receiving units. However, the present invention is not limited to this, and any number may be provided. With a simple receiving unit,
For example, an incoming radio wave from JCSAT-3 of Japan Communication Satellite Co., Ltd. located at 128 ° east longitude on a geosynchronous satellite orbit may be received. In the above embodiment, the ratio of the length of the short axis direction 7S to the long axis direction 7L of the elliptic paraboloid 7 is 1: 1.075.
This is because if the angle difference between the directions of arrival of the radio waves is up to about 38 °, it is possible to converge well, so that the radio waves arriving from between them can be well converged.

【0035】また、上記実施例のマルチビームアンテナ
は、静止衛星として、通信を主な目的とするCS及び放
送を目的とするBSを想定して、その説明を行ったが、
放送又は通信を目的とする静止衛星に限られるものでは
なく、例えば、配信(一方向のみの通信)を主な目的と
する静止衛星からの到来電波を受信しても良い。つま
り、あらゆる静止衛星に対応することができる。
The multibeam antenna of the above embodiment has been described assuming a geostationary satellite, a CS mainly for communication and a BS for broadcasting.
The present invention is not limited to a geostationary satellite for broadcasting or communication. For example, an incoming radio wave from a geostationary satellite mainly for distribution (only one-way communication) may be received. That is, it can correspond to any geostationary satellite.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例としてのマルチビームアン
テナの構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration of a multi-beam antenna as one embodiment of the present invention.

【図2】 回転放物面及び楕円放物面によって、2つの
静止衛星からの到来電波がどのように集束されるかをシ
ミュレーションした様子を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of simulating how incoming radio waves from two geostationary satellites are converged by a rotating paraboloid and an elliptic paraboloid;

【図3】 図2(b)に示したシミュレーションの様子
を横から示す説明図である。
FIG. 3 is an explanatory diagram showing the state of the simulation shown in FIG. 2B from the side.

【図4】 短軸方向と長軸方向との長さの比が1:1.
075である楕円放物面から、切出す位置を様々に変化
させた場合に、2つの静止衛星からの到来電波がどのよ
うに集束するかをシミュレーションした様子を示す説明
図である。
FIG. 4 shows that the ratio of the length in the minor axis direction to the major axis direction is 1: 1.
FIG. 10 is an explanatory diagram showing a simulation of how incoming radio waves from two geosynchronous satellites are focused when the extraction position is variously changed from an elliptic paraboloid of 075.

【符号の説明】[Explanation of symbols]

2…マルチビームアンテナ、4…反射鏡、6…受信部、
6a…第1受信部、6b…第2受信部、7…楕円放物
面、7L…長軸方向、7S…短軸方向、O…楕円放物面
とその中心軸との交点。
2 multi-beam antenna, 4 reflector, 6 receiver
6a: first receiving section, 6b: second receiving section, 7: elliptical paraboloid, 7L: long axis direction, 7S: short axis direction, O: intersection of the elliptical paraboloid and its central axis.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の静止衛星からの電波を反射する反
射鏡と、 該反射鏡により反射された前記各静止衛星からの電波を
夫々受信する複数の受信部と、 を備えたマルチビームアンテナにおいて、 前記反射鏡は、楕円放物面の一部で形成されたことを特
徴とするマルチビームアンテナ。
1. A multi-beam antenna comprising: a reflector for reflecting radio waves from a plurality of geostationary satellites; and a plurality of receiving units for receiving radio waves from the respective geostationary satellites reflected by the reflectors. A multi-beam antenna, wherein the reflecting mirror is formed by a part of an elliptic paraboloid.
【請求項2】 請求項1に記載のマルチビームアンテナ
において、 前記楕円放物面の短軸方向と長軸方向との長さの比は、
1:1.05〜1:1.1であることを特徴とするマル
チビームアンテナ。
2. The multi-beam antenna according to claim 1, wherein a ratio of a length of the elliptic paraboloid in a minor axis direction to a major axis direction is:
A multi-beam antenna, wherein the ratio is 1: 1.05 to 1: 1.1.
【請求項3】 請求項1又は2に記載のマルチビームア
ンテナにおいて、 前記反射鏡は、該楕円放物面の中心軸を含むことを特徴
とするマルチビームアンテナ。
3. The multi-beam antenna according to claim 1, wherein the reflecting mirror includes a center axis of the elliptic paraboloid.
JP01726898A 1998-01-29 1998-01-29 Multi-beam antenna Expired - Fee Related JP3892566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01726898A JP3892566B2 (en) 1998-01-29 1998-01-29 Multi-beam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01726898A JP3892566B2 (en) 1998-01-29 1998-01-29 Multi-beam antenna

Publications (2)

Publication Number Publication Date
JPH11214921A true JPH11214921A (en) 1999-08-06
JP3892566B2 JP3892566B2 (en) 2007-03-14

Family

ID=11939231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01726898A Expired - Fee Related JP3892566B2 (en) 1998-01-29 1998-01-29 Multi-beam antenna

Country Status (1)

Country Link
JP (1) JP3892566B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014951A1 (en) * 2010-07-27 2012-02-02 マスプロ電工株式会社 Antenna device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014951A1 (en) * 2010-07-27 2012-02-02 マスプロ電工株式会社 Antenna device

Also Published As

Publication number Publication date
JP3892566B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
US6236375B1 (en) Compact offset gregorian antenna system for providing adjacent, high gain, antenna beams
US20070018900A1 (en) Multi-beam and multi-band antenna system for communication satellites
US6262689B1 (en) Antenna for communicating with low earth orbit satellite
US6215452B1 (en) Compact front-fed dual reflector antenna system for providing adjacent, high gain antenna beams
EP0597318B1 (en) Multibeam antenna for receiving satellite
CA2293931C (en) A compact side-fed dual reflector antenna system for providing adjacent, high gain antenna beams
EP0741917A1 (en) Reconfigurable, zoomable, turnable, elliptical-beam antenna
EP0921590A2 (en) Antenna for communicating with low earth orbit satellite
US6424310B1 (en) Compact folded optics antenna system for providing adjacent, high gain antenna beams
US6882323B2 (en) Multi-beam antenna system with shaped reflector for generating flat beams
JPH11214921A (en) Multiple-beam antenna
US6633264B2 (en) Earth coverage reflector antenna for geosynchronous spacecraft
JPS62154905A (en) Multibeam antenna
US6172649B1 (en) Antenna with high scanning capacity
US6411262B1 (en) Shaped reflector antenna system configuration for use on a communication satellite
JP2643560B2 (en) Multi-beam antenna
JPH04250705A (en) Multi-beam antenna
JPS6251809A (en) Satellite reception antenna system
JPH033504A (en) Dual reflection mirror antenna
JPH056802B2 (en)
JPH06104637A (en) Multi-beam antenna
JPH11317617A (en) Spherical mirror antenna device
JPH04264804A (en) Antenna system
JP2004282719A (en) Radio wave lens antenna device
JPS61169005A (en) Antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees