JP3611992B2 - Extraction method of palladium - Google Patents
Extraction method of palladium Download PDFInfo
- Publication number
- JP3611992B2 JP3611992B2 JP27887699A JP27887699A JP3611992B2 JP 3611992 B2 JP3611992 B2 JP 3611992B2 JP 27887699 A JP27887699 A JP 27887699A JP 27887699 A JP27887699 A JP 27887699A JP 3611992 B2 JP3611992 B2 JP 3611992B2
- Authority
- JP
- Japan
- Prior art keywords
- extraction
- palladium
- concentration
- extracting
- selenium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、パラジウムを含有する水溶液から、高い純度でパラジウムを抽出し、回収する方法に関する。特に、本発明は、銅製錬工程において副生する貴金属含有残滓からパラジウムを選択的に高純度で抽出・回収する方法に関する。
【0002】
【従来の技術】
パラジウムを含有するとともに、他の白金属元素などを含有する水溶液からパラジウムを選択的に抽出するための方法としてジアルキルスルフィドを抽出溶剤とする方法が知られている(特開平10−130744号公報、特開平9−279264号公報参照)。
【0003】
特開平10−130744号公報には、金と白金族金属の塩化物含有水溶液から金をジブチルカルビトール(DBC)中へ抽出し、金を選択除去した溶液を塩酸で希釈して酸性溶液を得、この溶液中のパラジウムを硫化ジアルキル中に抽出し、塩酸を用いてスクラビングし、スクラビングを行った硫化ジアルキルからアンモニア水を用いてパラジウムを逆抽出する段階を含むパラジウムの抽出方法において、塩化物含有水溶液の塩酸酸度を4規定以上に調整し、かつ金抽出の後液[A]に対するジブチルカルビトール(DBC)[O]の比率(O/A)が1/2以上の条件で金の抽出を行うとともに、前記逆抽出後パラジウムを溶解したアンモニア水を濾過する段階を有することを特徴とする方法が記載されている。この方法は、鉄及びテルルによるパラジウムの純度低下を防止するものであって、その特徴とするところは、塩化物含有水溶液の塩酸酸度を4規定以上、好ましくは5規定以上に調整し、かつ金抽出の後液[A]に対するジブチルカルビトール(DBC)[O]の比率(O/A)が1/2以上の条件で金の抽出を行うとともに、前記逆抽出後パラジウムを溶解したアンモニア水を濾過する点にある。
【0004】
また、特開平9−279264号公報には、白金族元素を含有する貴金属溶液からパラジウムを連続的に選択抽出する方法であって、濃度40vol%以上のジアルキルスルフィドを含有する抽出液を、単位時間あたり、上記貴金属溶液中のパラジウム量に対して4モル倍以上のジアルキルスルフィド量となる範囲で、かつ数分以内の接触時間で、上記貴金属溶液に連続接触させることにより、パラジウムを他の白金族元素から選択的に抽出する方法が記載されている。このように通液量と接触時間を選択することにより、抽出速度の遅いオスミウムやルテニウム等の抽出が抑制され、パラジウムが選択的に抽出されることが記載されている。
【0005】
本発明者らは、従来のパラジウムの選択的抽出法によって得られたスポンジパラジウム中に、白金、セレン(Se)の品位が高くなり、規格に合格できないことがあることを見出した。
前記の先行技術はいずれも、パラジウム中のセレン含有量を抑制することは記載されていない。
また、本発明者らは、パラジウムを溶媒抽出する際に、多量のスラッジが発生し、スラッジ中にパラジウムが移行するので、パラジウムを高収率で回収できないという問題点があることを見出した。
【0006】
【発明が解決しようとする課題】
本発明は、白金、セレンを含有するパラジウム含有水溶液から、ジアルキルスルフィドを用いてパラジウムを抽出する際に、スラッジを多量に発生することなく、パラジウムを選択的に抽出・回収する方法を提供することを課題とする。さらに、本発明は、銅製錬工程において副生する貴金属含有残滓を塩酸で浸出して得られた浸出後液から金を抽出除去した水溶液から、白金、セレンの抽出を抑制し、パラジウムを選択的に抽出・回収する方法を提供することも課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、白金、セレンを含有するパラジウム含有水溶液から、ジアルキルスルフィドを用いてパラジウムを抽出する際に、抽出時の塩酸(HCl)濃度を3モル/L〜4モル/Lに調整することで、前記の課題を解決できることを見出し、本発明に至った。
さらに、本発明は、銅製錬工程において副生する貴金属含有残滓を塩酸で浸出して得られた浸出後液から金を抽出除去した水溶液から硫化ジアルキルによりパラジウムを抽出する際に、HCl濃度を3モル/L〜4モル/Lに調整することにより、白金及びセレンの抽出を抑制して、パラジウムを選択的に抽出できること見出したことにより、本発明に至った。
【0008】
【発明の実施の形態】
以下、本発明を、図1に示す貴金属回収フローチャートに沿って説明する。
銅製錬工程において副生する白金やパラジウムを含有する残滓に、塩化浸出を施し、貴金属類を水溶液中に溶出させる。この浸出後液からDBCによる金抽出を行う。金を抽出した抽出後液は純水を用いて酸調整してから、硫化ジアルキルによるパラジウム抽出を行う。この硫化ジアルキルによるパラジウム抽出工程においてHCl濃度(モル/L)を3〜4に調整することが本発明の特徴である。パラジウムを抽出した硫化ジアルキルは、HCl水溶液によりスクラビングを行い、随伴する不純物を除去した後、アンモニア水で逆抽出すると、パラジウムはジクロロアンミンパラジウム([Pd(NH3)2]Cl2)としてアンモニア水溶液中に溶解してくる。
硫化ジアルキルとしては、ジヘキシルスルフィド(DHS)、ジオクチルスルフィドなどが用いられるが、DHSが好ましい。
【0009】
以下、実施例により本発明をさらに詳しく説明する。
【実施例1】
DHS抽出時のHCl濃度(モル/L、以下単に「M」という)を3M〜6Mまで変化させてPd、Pt、及びSeの抽出挙動とスラッジの発生量とを測定した。
【0010】
1)抽出前工程
Au抽出後液は、図1のフローに沿って得たもので、5Cの濾紙にて濾過し、濾液を分析試料とした。試験に使用したAu蒸留後液は表1の組成を有するものである。
【表1】
Au抽出後液の液組成
【0011】
この液を、HCl濃度が3,4,5,6Mになるように純水にて希釈して、試験液を作成した。
HCl濃度が3Mより低くなるとPtがDHS抽出工程で抽出されるので好ましくない。よって、3Mより低いHCl濃度の試験液は作成しなかった。
【0012】
2)抽出工程
各HCl濃度に希釈したAu抽出後液450mlとDHS450mlを混合して3時間攪拌抽出した。抽出終了後、水相と有機相に分相して、両者の一部を分析試料にした。
【0013】
表2に、抽出前後における水相と有機相の分析値を示す。表3には、抽出後の分配率を示すが、ここでの分配率は、Au抽出後液中の各成分が水相と有機相に移行した率である。
【表2】
抽出工程における水相及び有機相の分析値
【0014】
【表3】
抽出工程における分配率
【0015】
表2より、抽出時のHCl濃度が3〜6Mの範囲であれば、DHS抽出において殆どのPt、Seは水相に残り、有機相には移行しないことが分かる。
また、表2によると、抽出時のHCl濃度が高いほど、抽出後のDHS中の各成分濃度は高くなるが、これは、DHSの抽出性能が抽出前液の各成分濃度に依存するためである。HCl濃度を高くするということは、Au抽出後液の希釈度を小さくすることであり、被抽出液中の各成分濃度が高くなるため、抽出時のHCl濃度が高いほど、DHS中の各成分濃度が高くなると言える。
表3によると、抽出時のHCl濃度が高くなると、有機相への Ptの分配率は低下し、僅かであるがSeの分配率が高くなることが分かる。
【0016】
抽出工程では、HCl濃度が3〜6Mのいずれの条件においても、エマルジョンが発生した。抽出後分相した状態で水相と有機相との中間に発生するスラッジ相の量を表4に示す。
【表4】
スラッジ発生量
【0017】
表4より、抽出時のHCl濃度を5M以上にすると、急激にスラッジ量が増加するため、抽出時のHCl濃度は4M以下にする必要がある。
【0018】
2)スクラビング工程
抽出後のスクラビング工程は、抽出後のDHS400mlを採取して、HCl溶液を用いて、O/A比=1、反応時間0.5時間の条件で行った。
抽出時のHCl濃度が3〜6Mのいずれにおいても、スクラビング工程でPt、Pdは全く溶出せず、また、分相状況も良好であった。
【0019】
3)逆抽出工程
逆抽出工程は、スクラビング後のDHS350mlを採集して、アンモニア水溶液525ml(O/A=1/1.5)を1時間かけて添加した後、30分間攪拌した。逆抽出終了後、分相して、水相と有機相の一部を分析試料とした。
分析の結果を表5に、分配率を表6に示す。ここでの分配率は、スクラビング工程でのDHS中の各成分量を100%とした。
【0020】
【表5】
逆抽出工程における水相及び有機相の分析値
【0021】
【表6】
逆抽出工程における分配率
【0022】
逆抽出時にも中間相スラッジが発生したため、その容積と発生重量を測定し、分析した結果を表7に示す。
【表7】
逆抽出工程にて発生したスラッジ容量、重量及び分析値
【0023】
表5表6によると、逆抽出工程ではPdは水相中に移行するが、その分配率は、抽出時のHCl濃度が5M以上になると低下している。これは、表7の結果から分かるように、抽出時のHCl濃度を高くすると、スラッジの発生量が増加してスラッジへのPd移行率が増えるためである。したがって、逆抽出時のPdの損失を避けるためには、抽出時のHCl濃度は、4M以下でなければならない。
Pt、Seは抽出時のHCl濃度が高いほど、有機相への分配率は低下するが、その分スラッジへの分配が高くなる。
表7から、逆抽出工程においても、抽出工程と同様に、抽出時のHCl濃度が5M以上になると、スラッジ発生量が顕著に多くなるため、この濃度より低い濃度にて抽出する必要があることが分かる。
4)Pd晶析工程
逆抽出工程により水相中に移行したPdは、HCl水溶液を添加することで、塩化パラジウム酸アンモニウムとして晶析させた。晶析物を分析した結果を表8に示す。
【表8】
パラジウム晶析物の分析値
表8から、晶析物中のPt、Seはいずれも5ppm以下であり、Pdが高純度で回収できていることが分かる。
【0024】
【実施例2】
Pt、Seの形態による、DHSへの抽出挙動の影響を測定した。
Ptは、Pt(II)、Pt(IV)として存在するため、PtCl2,PtCl4・2H2Oの試薬を用い、SeはSe(IV)、Se(VI)として存在するため、H2SeO3、H2SeO4の試薬を用いて、DHS抽出時のHCl濃度と形態の影響について試験した。被抽出液は、3,5,7MHCl溶液に、各成分濃度が500mg/L相当になるように調整して作成した。ただし、Pt(II)はHClに対する溶解度が小さく、Pt(II)濃度は3MHClでは98mg/L、5MHClでは237mg/L,7MHClでは421mg/Lであった。
抽出は、O/A=1、抽出時間3時間、室温で行った。
【0025】
結果を表9に示す。
【表9】
抽出工程の初期濃度と抽出後液中の液濃度
【0026】
表9の結果から、Seは形態にかかわらず、抽出時の濃度が5Mまでは、殆ど抽出されず、5Mを超えて7Mになると数%から約20%抽出されることが分かる。
このことから、Seの抽出を抑えるためには、抽出時のHCl濃度が、4M以下の方が良いということになる。
【0027】
以上の実施例1,2の結果から、DHS抽出工程において、抽出時のHCl濃度が3〜4Mの範囲であると、抽出工程における有機相へのPd分配率、及び逆抽出工程における水相へのPd分配率が共に良好で、Seの抽出も抑制され、スラッジの発生量も少ないことが分かる。
それに対して、抽出時のHCl濃度が5M以上になると、抽出時、逆抽出時のいずれにおいてもスラッジの発生量が急激に多くなり、Se抽出率も上昇するため、不適当であることが分かった。
【0028】
【発明の効果】
本発明において、パラジウムを含有する水溶液から硫化ジアルキルによりパラジウムを抽出する際に、塩酸濃度を3モル/L〜4モル/Lとすることによって、Pt、Seを含有する溶液からであっても、Pdを高純度で抽出・回収できるという効果が奏される。また、塩酸濃度を3モル/L〜4モル/Lにすることによって、スラッジ発生量が少なく、したがって、Pdを高収率で回収できるという効果も奏される。
【図面の簡単な説明】
【図1】本発明による貴金属回収フローチャートを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for extracting and recovering palladium with high purity from an aqueous solution containing palladium. In particular, the present invention relates to a method for selectively extracting and recovering palladium with high purity from noble metal-containing residues by-produced in a copper smelting process.
[0002]
[Prior art]
As a method for selectively extracting palladium from an aqueous solution containing palladium and other white metal elements, a method using dialkyl sulfide as an extraction solvent is known (Japanese Patent Laid-Open No. 10-130744, JP, 9-279264, A).
[0003]
In JP-A-10-130744, gold is extracted into dibutyl carbitol (DBC) from a chloride-containing aqueous solution of gold and a platinum group metal, and a solution obtained by selectively removing gold is diluted with hydrochloric acid to obtain an acidic solution. In the method for extracting palladium, which comprises extracting palladium in this solution into dialkyl sulfide, scrubbing with hydrochloric acid, and back-extracting palladium from the scrubbed dialkyl sulfide with aqueous ammonia. Adjusting the hydrochloric acidity of the aqueous solution to 4 N or more, and extracting gold under the condition that the ratio (O / A) of dibutyl carbitol (DBC) [O] to the liquid [A] after gold extraction is 1/2 or more And performing a step of filtering ammonia water in which palladium is dissolved after the back extraction. This method prevents the decrease in the purity of palladium by iron and tellurium, and is characterized by adjusting the hydrochloric acidity of the chloride-containing aqueous solution to 4 N or higher, preferably 5 N or higher, and gold. Extraction of gold was conducted under the condition that the ratio (O / A) of dibutyl carbitol (DBC) [O] to post-extraction liquid [A] was 1/2 or more, and ammonia water in which palladium was dissolved after the back extraction was added. It is in the point to filter.
[0004]
Japanese Patent Application Laid-Open No. 9-279264 discloses a method for continuously extracting and extracting palladium from a noble metal solution containing a platinum group element, wherein an extract containing a dialkyl sulfide having a concentration of 40 vol% or more is used for a unit time. In the range where the amount of dialkyl sulfide is 4 moles or more with respect to the amount of palladium in the noble metal solution, and in contact time within a few minutes, the palladium is continuously contacted with the other platinum group by contacting the noble metal solution. A method for selective extraction from elements is described. As described above, it is described that by selecting the flow rate and the contact time, extraction of osmium, ruthenium or the like having a low extraction rate is suppressed, and palladium is selectively extracted.
[0005]
The present inventors have found that the quality of platinum and selenium (Se) in the sponge palladium obtained by the conventional selective extraction method of palladium is high and the standard may not be passed.
None of the above prior art describes the suppression of the selenium content in palladium.
Further, the present inventors have found that when palladium is extracted with a solvent, a large amount of sludge is generated and palladium moves into the sludge, so that palladium cannot be recovered in a high yield.
[0006]
[Problems to be solved by the invention]
The present invention provides a method for selectively extracting and recovering palladium without generating a large amount of sludge when palladium is extracted from a palladium-containing aqueous solution containing platinum and selenium using dialkyl sulfide. Is an issue. Furthermore, the present invention suppresses the extraction of platinum and selenium from an aqueous solution obtained by extracting and removing gold from the post-leaching solution obtained by leaching the noble metal-containing residue produced as a by-product in the copper smelting process with hydrochloric acid. It is also an object to provide a method for extraction and recovery.
[0007]
[Means for Solving the Problems]
When extracting palladium from a palladium-containing aqueous solution containing platinum and selenium using dialkyl sulfide, the present inventors adjust the hydrochloric acid (HCl) concentration at the time of extraction to 3 mol / L to 4 mol / L. Thus, the inventors have found that the above-described problems can be solved, and have reached the present invention.
Furthermore, the present invention provides an HCl concentration of 3 when extracting palladium with dialkyl sulfide from an aqueous solution obtained by extracting and removing gold from the post-leaching solution obtained by leaching the noble metal-containing residue by-produced in the copper smelting process with hydrochloric acid. By adjusting to mol / L-4 mol / L, it discovered that platinum and selenium extraction were suppressed and palladium could be selectively extracted, and it came to this invention.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described along the noble metal recovery flowchart shown in FIG.
Chlorine leaching is performed on the residue containing platinum and palladium by-produced in the copper smelting process, and noble metals are eluted in the aqueous solution. Gold extraction by DBC is performed from this leached solution. The liquid after extraction after extracting gold is acid-adjusted with pure water and then extracted with palladium by dialkyl sulfide. It is a feature of the present invention that the HCl concentration (mol / L) is adjusted to 3 to 4 in this palladium extraction step with dialkyl sulfide. Dialkyl sulfide extracted from palladium is scrubbed with an aqueous HCl solution to remove accompanying impurities, and then back-extracted with aqueous ammonia to obtain palladium as dichloroamminepalladium ([Pd (NH 3 ) 2 ] Cl 2 ). It will dissolve in.
As dialkyl sulfide, dihexyl sulfide (DHS), dioctyl sulfide and the like are used, and DHS is preferable.
[0009]
Hereinafter, the present invention will be described in more detail with reference to examples.
[Example 1]
The extraction behavior of Pd, Pt, and Se and the generation amount of sludge were measured by changing the HCl concentration (mol / L, hereinafter simply referred to as “M”) during DHS extraction from 3M to 6M.
[0010]
1) Pre-extraction step The Au post-extraction solution was obtained along the flow of FIG. 1 and was filtered with 5C filter paper, and the filtrate was used as an analysis sample. The Au-distilled solution used in the test has the composition shown in Table 1.
[Table 1]
Liquid composition of the liquid after Au extraction
[0011]
This solution was diluted with pure water so that the HCl concentration was 3, 4, 5, 6 M, and a test solution was prepared.
If the HCl concentration is lower than 3M, Pt is extracted in the DHS extraction step, which is not preferable. Therefore, a test solution having an HCl concentration lower than 3M was not prepared.
[0012]
2) Extraction step 450 ml of post-Au extraction solution diluted to each HCl concentration and 450 ml of DHS were mixed and extracted with stirring for 3 hours. After the extraction was completed, the aqueous phase and the organic phase were separated, and a part of both was used as an analysis sample.
[0013]
Table 2 shows analytical values of the aqueous phase and the organic phase before and after extraction. Table 3 shows the distribution rate after extraction. The distribution rate here is the rate at which each component in the solution after Au extraction has shifted to the aqueous phase and the organic phase.
[Table 2]
Analytical values of aqueous and organic phases in the extraction process
[0014]
[Table 3]
Distribution rate in the extraction process
[0015]
From Table 2, it can be seen that when the HCl concentration during extraction is in the range of 3 to 6 M, most of Pt and Se remain in the aqueous phase and do not migrate to the organic phase in the DHS extraction.
Also, according to Table 2, the higher the HCl concentration at the time of extraction, the higher the concentration of each component in the DHS after extraction, because the DHS extraction performance depends on the concentration of each component in the pre-extraction solution. is there. Increasing the HCl concentration means decreasing the dilution of the solution after Au extraction, and the concentration of each component in the liquid to be extracted increases. Therefore, the higher the HCl concentration at the time of extraction, the more each component in the DHS. It can be said that the concentration increases.
According to Table 3, it can be seen that as the HCl concentration during extraction increases, the distribution ratio of Pt to the organic phase decreases and the distribution ratio of Se increases slightly.
[0016]
In the extraction process, an emulsion was generated under any condition of HCl concentration of 3 to 6M. Table 4 shows the amount of sludge phase generated between the aqueous phase and the organic phase in a state after phase separation after extraction.
[Table 4]
Sludge generation amount
[0017]
According to Table 4, when the HCl concentration at the time of extraction is 5M or more, the amount of sludge increases abruptly. Therefore, the HCl concentration at the time of extraction needs to be 4M or less.
[0018]
2) Scrubbing Step The scrubbing step after extraction was performed by collecting 400 ml of DHS after extraction and using an HCl solution under the conditions of O / A ratio = 1 and reaction time of 0.5 hour.
Pt and Pd were not eluted at all in the scrubbing process at any HCl concentration of 3 to 6 M during extraction, and the phase separation state was good.
[0019]
3) Back extraction step In the back extraction step, 350 ml of DHS after scrubbing was collected, and 525 ml of an aqueous ammonia solution (O / A = 1 / 1.5) was added over 1 hour, followed by stirring for 30 minutes. After the back extraction was completed, the phases were separated, and a part of the aqueous phase and the organic phase was used as an analysis sample.
The results of the analysis are shown in Table 5, and the distribution ratio is shown in Table 6. In this case, the distribution ratio was set so that the amount of each component in DHS in the scrubbing step was 100%.
[0020]
[Table 5]
Analytical values of water phase and organic phase in back extraction process
[0021]
[Table 6]
Distribution rate in back extraction process
[0022]
Since intermediate phase sludge was generated even during back extraction, the volume and generated weight were measured and the results of analysis are shown in Table 7.
[Table 7]
Sludge volume, weight and analytical value generated in the back extraction process
[0023]
According to Table 6 and Table 6, Pd moves into the aqueous phase in the back extraction process, but the distribution rate decreases when the HCl concentration during extraction becomes 5 M or more. This is because, as can be seen from the results in Table 7, when the HCl concentration at the time of extraction is increased, the amount of sludge generated increases and the Pd transfer rate to the sludge increases. Therefore, in order to avoid loss of Pd during back extraction, the HCl concentration during extraction must be 4M or less.
As the concentration of HCl during extraction of Pt and Se increases, the distribution rate to the organic phase decreases, but the distribution to sludge increases accordingly.
From Table 7, in the back extraction process, as in the extraction process, if the HCl concentration at the time of extraction is 5M or more, the amount of sludge generated is significantly increased, so it is necessary to extract at a concentration lower than this concentration. I understand.
4) Pd crystallization step Pd transferred into the aqueous phase by the back extraction step was crystallized as ammonium chloropalladate by adding an aqueous HCl solution. The results of analyzing the crystallized product are shown in Table 8.
[Table 8]
Analytical value of palladium crystallized product
From Table 8, it can be seen that Pt and Se in the crystallized product are both 5 ppm or less, and Pd can be recovered with high purity.
[0024]
[Example 2]
The influence of extraction behavior on DHS due to the form of Pt and Se was measured.
Since Pt exists as Pt (II) and Pt (IV), the reagents PtCl 2 and PtCl 4 .2H 2 O are used. Since Se exists as Se (IV) and Se (VI), H 2 SeO 3 , H 2 SeO 4 reagent was used to test the effect of HCl concentration and morphology during DHS extraction. The liquid to be extracted was prepared by adjusting 3,5,7M HCl solution so that each component concentration was equivalent to 500 mg / L. However, Pt (II) had low solubility in HCl, and the Pt (II) concentration was 98 mg / L for 3M HCl, 237 mg / L for 5M HCl, and 421 mg / L for 7M HCl.
Extraction was performed at room temperature with O / A = 1, extraction time 3 hours.
[0025]
The results are shown in Table 9.
[Table 9]
Initial concentration in the extraction process and concentration in the solution after extraction
[0026]
From the results of Table 9, it can be seen that, regardless of the form, Se is hardly extracted until the concentration at the time of extraction is 5M, and is extracted from several percent to about 20% when it exceeds 7M and becomes 7M.
From this, in order to suppress the extraction of Se, it is better that the HCl concentration at the time of extraction is 4M or less.
[0027]
From the results of Examples 1 and 2 above, when the HCl concentration at the time of extraction is in the range of 3 to 4M in the DHS extraction step, the Pd distribution ratio to the organic phase in the extraction step and the water phase in the back extraction step It can be seen that the Pd distribution ratio of each is good, Se extraction is suppressed, and sludge generation is small.
On the other hand, if the HCl concentration at the time of extraction is 5M or more, the amount of sludge generated abruptly increases both at the time of extraction and at the time of back extraction, and the Se extraction rate increases, which proves inappropriate. It was.
[0028]
【The invention's effect】
In the present invention, when extracting palladium with dialkyl sulfide from an aqueous solution containing palladium, the hydrochloric acid concentration is 3 mol / L to 4 mol / L, so that even from a solution containing Pt and Se, Pd can be extracted and recovered with high purity. Further, when the hydrochloric acid concentration is 3 mol / L to 4 mol / L, the amount of sludge generated is small, and therefore, the effect that Pd can be recovered in a high yield is also exhibited.
[Brief description of the drawings]
FIG. 1 shows a noble metal recovery flowchart according to the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27887699A JP3611992B2 (en) | 1999-09-30 | 1999-09-30 | Extraction method of palladium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27887699A JP3611992B2 (en) | 1999-09-30 | 1999-09-30 | Extraction method of palladium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001107156A JP2001107156A (en) | 2001-04-17 |
JP3611992B2 true JP3611992B2 (en) | 2005-01-19 |
Family
ID=17603357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27887699A Expired - Lifetime JP3611992B2 (en) | 1999-09-30 | 1999-09-30 | Extraction method of palladium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3611992B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4323492B2 (en) * | 2006-03-31 | 2009-09-02 | 日鉱金属株式会社 | Method for recovering platinum in waste liquid containing selenium using hydrazine |
US7918918B2 (en) | 2008-01-15 | 2011-04-05 | National Institute Of Advanced Industrial Science & Technology | Extractants for palladium and method of rapidly separating and recovering palladium using the same |
JP2013159821A (en) * | 2012-02-03 | 2013-08-19 | Sumitomo Metal Mining Co Ltd | Method for recovering palladium from palladium-containing selenium powder |
-
1999
- 1999-09-30 JP JP27887699A patent/JP3611992B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001107156A (en) | 2001-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4323492B2 (en) | Method for recovering platinum in waste liquid containing selenium using hydrazine | |
JP5454461B2 (en) | Method for recovering selenium from copper electrolytic slime | |
JP2013508566A (en) | Precious metal recovery method | |
KR100230826B1 (en) | Method of recovering gold | |
JP5556701B2 (en) | Method for separating impurity elements from platinum group solution | |
JP4323493B2 (en) | Method for recovering platinum in waste liquid containing selenium using copper powder | |
JP5408412B2 (en) | Platinum recovery process | |
KR100209124B1 (en) | Method of platinum recovery | |
JP4116490B2 (en) | High-purity platinum group recovery method | |
JP3611992B2 (en) | Extraction method of palladium | |
JPH09279264A (en) | Method for continuously extracting noble metal and method for recovering the same | |
JPH08209259A (en) | Method for separating and recovering platinum group from plantinum group-containing iron alloy | |
JP3229218B2 (en) | Platinum purification method | |
JP4100671B2 (en) | Method for removing platinum and palladium in liquid | |
JP3407600B2 (en) | Silver extraction and recovery method | |
JP3550537B2 (en) | Extraction method of palladium | |
JP3479483B2 (en) | Recovery method of high purity platinum | |
JPH10265863A (en) | Method for recovering noble metals from smelting residue | |
JP3480216B2 (en) | Separation method of platinum and ruthenium | |
JP3431427B2 (en) | Extraction method of palladium | |
JP3309801B2 (en) | How to collect gold | |
JP3753554B2 (en) | Silver recovery method | |
JP3437506B2 (en) | How to recover high purity platinum | |
JP6222469B2 (en) | Platinum family recovery methods | |
JP2771218B2 (en) | Recovery of palladium from aqueous solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041015 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041021 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3611992 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071029 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091029 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111029 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111029 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121029 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121029 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |