JP3611314B2 - Plasma ash melting furnace - Google Patents

Plasma ash melting furnace Download PDF

Info

Publication number
JP3611314B2
JP3611314B2 JP2001276457A JP2001276457A JP3611314B2 JP 3611314 B2 JP3611314 B2 JP 3611314B2 JP 2001276457 A JP2001276457 A JP 2001276457A JP 2001276457 A JP2001276457 A JP 2001276457A JP 3611314 B2 JP3611314 B2 JP 3611314B2
Authority
JP
Japan
Prior art keywords
furnace
ash melting
molten salt
melting furnace
plasma ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001276457A
Other languages
Japanese (ja)
Other versions
JP2003083530A (en
Inventor
武彦 平田
健太郎 佐伯
野間  彰
敬太 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001276457A priority Critical patent/JP3611314B2/en
Publication of JP2003083530A publication Critical patent/JP2003083530A/en
Application granted granted Critical
Publication of JP3611314B2 publication Critical patent/JP3611314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharge Heating (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマ灰溶融炉に関わり、特に、炉本体に挿入された電極から発生する高温のプラズマにより飛灰を含む焼却灰等を溶融するプラズマ灰溶融炉のサイド電流を防止する発明に関する。
【0002】
【従来の技術】
従来より、都市ごみ及び産業廃棄物の焼却により生じる焼却灰は、最終処分場の延命化及び二次公害防止対策として溶融固化されてスラグとして回収されている。スラグとして回収された焼却灰は、有害物質が溶出する怖れが無く、土木、建築材料として再利用が出来る為かかる方法は広く普及している。
焼却灰をスラグ化する溶融炉のうち、図9に示されるプラズマ灰溶融炉は、円筒形状を有する鉄製炉本体12と、該炉本体の内壁を被覆する耐火材13と、炉蓋から挿入されて垂下する主電極14と、これに対向して炉下部から挿入される電極34とを備えている。
【0003】
かかるプラズマ灰溶融炉11は、灰ホッパ30から投入される焼却灰が定量供給機31により該溶融炉11に移送され、前記焼却灰は、直流電源32に接続された主電極14と対電極34の間に発生したアーク35によりプラズマ状態となった炉内に導入される。このとき、炉頂部から供給されるNガス等の不活性ガスにより炉内は還元性雰囲気に保たれている。
前記プラズマ高温ガス流により1500℃以上の温度で溶融された溶融スラグ15は溶融メタル16から分離して出さい口より排出されてスラグが生成され、様々な用途で再利用される。
尚、灰溶融炉内で発生した排ガスは、冷却空気で減温されてバグフィルタ38を経て不図示の排ガス処理装置に送給される。
【0004】
しかしながら、溶融処理される焼却灰、特に飛灰中には比較的融点が低い塩類が多量に含まれている為、高温で溶融処理した場合その大部分はガス中に揮散して炉内壁に付着する。このように付着した塩化カリウムや塩化ナトリウム等の溶融塩は導電性が高く、このため絶縁不良に伴いサイド電流が発生する惧れがある。
また、前記溶融塩の付着により炉壁に被覆された耐火物13が損傷、消耗しやすくなり、該損傷、消耗に伴い、炉壁に付着した低抵抗の溶融塩から耐火材の支持に用いられている金属製金具へ導通し、溶融スラグに対する溶融効率が低下してしまうという問題がある。
【0005】
そこで、電極付近のサイド電流の発生を防止するため、図8の従来のプラズマ灰溶融炉の概略断面図(a)のD部拡大図(b)に示されるように、炉体12及び耐火材13と電極14との間に絶縁スリーブ16を設けたり、電極14と炉体との間に間隙を設けたりする方法が採られている。さらに、特開平11−351541号公報では、シールガスを均一に吹き込むとともに、炉内部に向かって絶縁スリーブ16と主電極14のクリアランスCを大とし、溶融塩が付着しても主電極14と接触することのないような構成としている。
【0006】
また、炉内壁への溶融塩の付着による導通を防ぐ為に特開平10−288231号公報では、電極の周囲を、外層が絶縁性耐火物で内層が発泡性耐火物で構成される筒状体により包囲する方法を提案している。このように筒状体で電極を保護することにより溶融塩による電極の腐食や電極間若しくは電極と炉壁に付着した溶融塩との短絡を防止することが出来る。
【0007】
【発明が解決しようとする課題】
しかしながら、前記従来技術では絶縁スリーブと電極との隙間に溶融塩が侵入してしまい絶縁を十分に採ることが出来ず、また、特開平11−351541号のようにクリアランス形状を溶融塩が付着して主電極と接触しないように形成しても、溶融塩の蓄積により電極との距離が近くなり導通してしまう惧れがある。また、特開平10−288231号のように電極を包囲する管状体を設けても、電極周囲の高温雰囲気による管状体の劣化、損傷が著しく、該管状体の耐久性に問題が残る。
本発明はかかる従来技術の問題に鑑み、簡単な構造で以って溶融塩の絶縁隙間への侵入を防ぐとともに、炉内壁への溶融塩の付着を限定し、絶縁不良防ぐことのできるプラズマ灰溶融炉の提供を目的とする。
【0008】
【課題を解決するための手段】
そこで、本発明はかかる課題を解決するために、請求項1記載の発明は、
内壁を耐火材で被覆した鉄製炉体の上部に管状電極を有し、該電極の炉貫通部に間隙を存して絶縁スリーブを配したプラズマ灰溶融炉において、
前記絶縁スリーブを、該絶縁スリーブと前記電極間の間隙が炉内へ向けて複数段階に傾斜角度をもたせて拡開させ、灰溶融により発生する溶融塩が前記傾斜面に沿って流下する構成としたことを特徴とする。
かかる発明では、前記絶縁スリーブの上部傾斜面を、前記間隙をシールする不活性ガスが旋回せずに拡散する方向に流路を決定する角度とし、下部傾斜面を付着した溶融塩が流下し易い角度とする。これにより、電極周辺の絶縁スリーブに溶融塩が付着しても炉外側へ流れ落ち、絶縁を十分に取ることができる。
【0009】
また、請求項2記載のように、前記絶縁スリーブが、該絶縁スリーブ周囲の炉壁より突出して形成されるように構成することにより、流下する溶融塩が絶縁スリーブを経て炉蓋に付着固化することなく溶融スラグ上に流れ落ち、付着物を最小限に抑えることが出来る。
さらに、請求項3記載のように、前記絶縁スリーブを、前記電極を取り囲むように中空円錐状に切り欠いたその下部を該円錐より傾斜角度を大として中空円錐状に切り欠き、灰溶融により発生する溶融塩の絶縁スリーブへの付着を防止する構成とすることにより、簡単な構造で以って前記効果を実現できる。
【0010】
また、請求項4記載の発明は、前記炉貫通部の間隙が、水平方向に対して傾斜角略10°から25°の前記絶縁スリーブの下部傾斜面により形成される溶融塩退避部と、垂直方向に対して傾斜角略2°未満の上部傾斜面により形成されるガス流逃がし部とを有することを特徴とする。かかる発明は、前記傾斜面の最も適した角度を示したもので、該傾斜面を前記角度とすることで、上部傾斜面ではガス流が旋回することなく、下部傾斜面では溶融塩が円滑に流れ落ちる。
【0011】
請求項5記載の発明は、内壁を耐火材で被覆した鉄製炉体の上部に管状電極を有し、該電極の炉貫通部に間隙を存して絶縁スリーブを配したプラズマ灰溶融炉において、
前記灰溶融炉側面内壁若しくは炉蓋内壁に1又は複数の溶融塩退避部を設け、該溶融塩退避部により灰溶融にて発生する溶融塩が炉壁を流下する構成としたことを特徴とする。
かかる発明によれば、溶融塩が付着し易い炉壁に前記溶融塩退避部を設けることにより、溶融塩の付着を最小限に抑えることができる。尚、前記炉蓋を炉外縁へ向けて下方へ傾斜させるとよく、これにより、溶融塩が炉中心から外部へ向けて流れ落ちるため溶融塩退避部が有効に作用する。
【0012】
また、請求項6記載発明は、前記炉蓋が炉外縁に向けて下方へ傾斜しているプラズマ灰溶融炉であって、前記溶融塩退避部が、炉蓋に設けられ炉側壁側に段差を有するように傾斜する段差部若しくは庇部であることを特徴とする。
さらに、請求項7記載の発明は、前記溶融塩退避部が、炉内側壁上部に設けられ下部が拡径した段差部若しくは庇部であることを特徴とする。
これらの発明によれば、溶融塩が炉側壁に付着することなく溶融塩退避部に限定され、さらに段差部若しくは庇部の角度を溶融塩が滴下する角度とすることで、炉蓋への溶融塩の付着も最小限に抑えられる。
【0013】
また、請求項8記載の発明は、前記耐火材を前記鉄製炉本体と接合する支持金物、若しくは炉蓋を貫通する各種センサ類を支持する支持金物が、セラミックス等の絶縁性耐火物で構成されることを特徴とする。
このように、前記溶融塩退避部により溶融塩の付着部が限定されるため、該付着部のみ支持金物に絶縁性耐火物を用いることにより、耐火物の消耗に伴う支持金具からの漏電を防止でき、低コストで以って絶縁不良を起こし難い装置が可能となる。尚、前記絶縁性耐火物には、アルミナ系セラミックス等を用いるのが好ましい。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施形態にかかるプラズマ灰溶融炉の概略断面図、図2は図1のプラズマ灰溶融炉上部を示すA部拡大図、図3は、図1のプラズマ灰溶融炉上部側壁の第1実施例を示すB部拡大図、図3は第2実施例を示すB部拡大図である。
【0015】
図1において、11はプラズマ灰溶融炉本体で、12は前記炉本体11の外皮を形成する鉄製炉体で、13は前記炉体12の内壁を覆う耐火物で、例えば硅石レンガ、アルミナ系キャスタブル等で形成されている。本実施形態において、前記溶融炉の炉蓋は中心部が上部に突出した円錐形状で、該炉蓋の傾斜角度は水平方向に対して略1°以上とする。かかる形状により、前記耐火物の構造強度を保持できるとともに、後述する溶融塩の付着防止に寄与する。また、14は前記灰溶融炉の頂部を貫通して垂下する主電極で、本実施形態では管状黒鉛電極を用いている。その他の構成は、図9にて説明した従来技術のプラズマ灰溶融炉とほぼ同様であるため省略する。
【0016】
かかるプラズマ灰溶融炉11は、図9に示される直流電源に接続される主電極14と炉底電極34との間に直流電圧を印加し、プラズマアークを発生させて灰ホッパから順次供給される焼却灰を溶融し、スラグ化する。このとき、溶融スラグ15の電気抵抗に基づくジュール熱も利用され溶融状態が維持される。
前記主電極14にて生成されたプラズマ高温ガス流により溶融状態にあるスラグ15中には融点の低い塩類が多量に含まれており、これらは蒸気となって揮散し、溶融塩23として炉蓋へ付着、凝縮する。
【0017】
図2は図1のA部拡大図で、前記炉蓋の電極14貫通部に間隙を存して絶縁スリーブ16が配されており、該間隙からはNガス等のシールガスが炉内に供給されている。そして、前記絶縁スリーブ16と主電極14との間隙を炉内へ向けて2段階に傾斜角度をもたせて拡開されている。このとき、下部傾斜面16aを水平方向に対して傾斜角α=略10°〜25°、好ましくは略20°とし、下部傾斜面16bを垂直方向に対して傾斜角β=略2°未満、好ましくは略2°とする。
【0018】
さらに、かかる絶縁スリーブ16を該スリーブ周囲の炉壁より突出するように構成する。尚、該突出部は高温雰囲気においても耐久性を保持できる突出長さとする。
かかる実施形態によれば、前記上部傾斜面16bにより前記シールガスが旋回せずに炉内に導入されるとともに、下部傾斜面16aにより、揮散した前記溶融塩23が絶縁スリーブ16に付着した際にも該傾斜面を流下し、炉底に流れ落ちて絶縁不良を防ぐことが出来る。
【0019】
図3は図1のB部拡大図の第1実施例、図4は第2実施例を示す。
かかる実施例は、炉側壁上部に溶融塩退避部を具備したもので、第1実施例は鉄製炉体12の覆う耐火物13の側壁上部に段差部17を設け、炉蓋に付着して流下した溶融塩23が該段差部17で滴下するように構成され、第2実施例は前記耐火物13の側壁上部に炉中心へ向かって傾斜する庇18を設け、前記第1実施例と同様に該庇18から溶融塩23が流れ落ちるように構成されている。
かかる構成により、揮散して炉蓋に付着した溶融塩は傾斜した炉蓋を流下して前記段差部17若しくは庇18により溶融スラグ中に落下するため、炉壁への溶融塩の付着を防止できる。
【0020】
次に、図5乃至図7により炉本体に挿設された支持金物を備えた灰溶融炉について説明する。
図5は本発明の実施形態にかかるプラズマ灰溶融炉の炉壁に絶縁性支持金物を挿着したときの概略断面図、図6は本発明の実施形態にかかるプラズマ灰溶融炉上部にセンサ類を挿着したときの要部断面図、図7は本実施形態で用いられる絶縁性支持金物の概略断面図である。
図5に示されるように、支持金物22は、前記炉体12と前記耐火物13とを貫通して接合する為に用いられ、一体の炉につき複数の支持金物が使用されている。
【0021】
かかる支持金物22は、図7(a)に示されるように螺子型支持金物22A、(b)に示されるようにY型支持金物などが挙げられる。これらの支持金物22には、セラミック製支持タイル等のように絶縁性が高く、さらに耐久性のあるものが良い。
しかしながら、かかる支持金物22は高価であるため、図5に示されるように、例えば庇18を具備する灰溶融炉の場合には、該庇18により炉側壁には溶融塩は付着しないため炉蓋に挿着された支持金物22のみに前記絶縁性耐火物を使用するとよい。このように、支持金物22を絶縁化することにより、耐火材13の消耗した際にも鉄製炉体12と溶融塩23とが直接接触することなく、電流の導通を防ぐことが出来る。
【0022】
また、図6に示されるように、炉蓋に複数設けた段差部19の間の溶融塩の凝縮し易い場所に絶縁性を有するファイバー及び絶縁性支持金物22を挿設するとよく、さらに、前記2段階傾斜面を有する絶縁スリーブ16を設けることにより耐火物への溶融塩の付着を最小限に抑えることができ、サイド電流の発生をほぼ確実に防止することができる。
【0023】
【発明の効果】
以上記載のごとく本発明によれば、前記絶縁スリーブの上部傾斜面を、前記間隙をシールする不活性ガスが旋回せずに拡散する方向に流路を決定する角度とし、下部傾斜面は付着した溶融塩が流下する角度とすることにより、電極周辺の絶縁スリーブに溶融塩が付着しても炉外側へ流れ落ち、絶縁を十分に取ることができる。
また、前記絶縁スリーブを周囲の耐火材から突出させることで、流下する溶融塩が絶縁スリーブを経て炉蓋に付着固化することなく溶融スラグ上に流れ落ち、付着物を最小限に抑えることが出来る。
さらに、溶融塩の付着し易い炉壁部分に段差部や庇等の溶融塩退避部を設けることにより、溶融塩が流下して付着量を減少することが出来るとともに、付着可能性のある部分の支持金物にセラミックス等の絶縁性材料を用いることで、サイド電流の発生をほぼ確実に防止することが出来る。
【図面の簡単な説明】
【図1】本発明の実施形態にかかるプラズマ灰溶融炉の概略断面図を示す。
【図2】図1のプラズマ灰溶融炉上部を示すA部拡大図である。
【図3】図1のプラズマ灰溶融炉上部側壁の第1実施例を示すB部拡大図である。
【図4】図1のプラズマ灰溶融炉上部側壁の第2実施例を示すB部拡大図である。
【図5】本発明の実施形態にかかるプラズマ灰溶融炉の炉壁に絶縁性支持金物を挿着したときの概略断面図を示す。
【図6】本発明の実施形態にかかるプラズマ灰溶融炉上部にセンサ類を挿着したときの要部断面図を示す。
【図7】本実施形態で用いられる絶縁性支持金物の概略断面図を示す。
【図8】従来のプラズマ灰溶融炉の概略断面図(a)、及びD部拡大図(b)である。
【図9】従来のプラズマ灰溶融炉の全体構成図を示す。
【符号の説明】
11 溶融炉
12 鉄皮
13 耐火物
14 電極
15 溶融灰
16 絶縁スリーブ
16a 下部傾斜面
16b 上部傾斜面
17 耐火材段差
18 耐火材庇
19 段差
20 絶縁材
21 ファイバー
22 支持金物
22A、22B セラミックス製支持金物
23 溶融塩
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma ash melting furnace, and more particularly to an invention for preventing a side current of a plasma ash melting furnace that melts incinerated ash containing fly ash by high-temperature plasma generated from an electrode inserted in the furnace body.
[0002]
[Prior art]
Conventionally, incineration ash generated by incineration of municipal waste and industrial waste has been recovered as slag after being melted and solidified as a measure to prolong the life of the final disposal site and prevent secondary pollution. Incinerated ash collected as slag has no fear of leaching of harmful substances, and can be reused as civil engineering and building materials.
Among the melting furnaces for converting incinerated ash into slag, the plasma ash melting furnace shown in FIG. 9 is inserted from an iron furnace body 12 having a cylindrical shape, a refractory material 13 covering the inner wall of the furnace body, and a furnace lid. A main electrode 14 that hangs down and an electrode 34 that is inserted from the lower part of the furnace so as to face the main electrode 14.
[0003]
In the plasma ash melting furnace 11, the incinerated ash charged from the ash hopper 30 is transferred to the melting furnace 11 by the quantitative feeder 31, and the incinerated ash is connected to the main electrode 14 and the counter electrode 34 connected to the DC power source 32. It is introduced into the furnace in a plasma state by the arc 35 generated during the period. At this time, the inside of the furnace is maintained in a reducing atmosphere by an inert gas such as N 2 gas supplied from the top of the furnace.
The molten slag 15 melted at a temperature of 1500 ° C. or higher by the plasma high-temperature gas flow is separated from the molten metal 16 and discharged from the discharge port to generate slag, which is reused for various purposes.
The exhaust gas generated in the ash melting furnace is reduced in temperature by cooling air, and sent to an exhaust gas treatment device (not shown) through a bag filter 38.
[0004]
However, incinerated ash that is melt-processed, especially fly ash, contains a large amount of salts with a relatively low melting point, so when it is melted at high temperatures, most of it is volatilized in the gas and adheres to the inner wall of the furnace. To do. Molten salts such as potassium chloride and sodium chloride attached in this way have high conductivity, and therefore there is a risk that side current will be generated due to poor insulation.
Further, the refractory 13 covered on the furnace wall is easily damaged and consumed due to the adhesion of the molten salt, and is used to support the refractory material from the low-resistance molten salt adhering to the furnace wall accompanying the damage and consumption. There is a problem in that the melting efficiency with respect to the molten slag is reduced due to conduction to the metal fitting.
[0005]
Therefore, in order to prevent the generation of a side current in the vicinity of the electrode, as shown in the enlarged view (b) of the D section of the schematic cross-sectional view (a) of the conventional plasma ash melting furnace of FIG. A method is adopted in which an insulating sleeve 16 is provided between the electrode 13 and the electrode 14, or a gap is provided between the electrode 14 and the furnace body. Further, in Japanese Patent Application Laid-Open No. 11-351541, the sealing gas is blown uniformly, and the clearance C between the insulating sleeve 16 and the main electrode 14 is increased toward the inside of the furnace, and even if molten salt adheres, it contacts the main electrode 14. The structure is such that it will not be done.
[0006]
Further, in order to prevent conduction due to adhesion of molten salt to the furnace inner wall, Japanese Patent Laid-Open No. 10-288231 discloses a cylindrical body in which an outer layer is made of an insulating refractory and an inner layer is made of a foam refractory. A method of sieving is proposed. Thus, by protecting an electrode with a cylindrical body, the corrosion of the electrode by molten salt and the short circuit between the electrodes or the molten salt adhering to the furnace wall can be prevented.
[0007]
[Problems to be solved by the invention]
However, in the above prior art, molten salt penetrates into the gap between the insulating sleeve and the electrode, so that sufficient insulation cannot be obtained, and the molten salt adheres to the clearance shape as disclosed in JP-A-11-351541. Even if it is formed so as not to be in contact with the main electrode, there is a possibility that the distance from the electrode becomes close due to the accumulation of molten salt and conduction is caused. Further, even when a tubular body surrounding the electrode is provided as disclosed in Japanese Patent Application Laid-Open No. 10-288231, the tubular body is significantly deteriorated and damaged by a high-temperature atmosphere around the electrode, and a problem remains in the durability of the tubular body.
In view of the problems of the prior art, the present invention is a plasma ash capable of preventing molten salt from entering the insulating gap with a simple structure and limiting adhesion of the molten salt to the furnace inner wall to prevent insulation failure. The purpose is to provide a melting furnace.
[0008]
[Means for Solving the Problems]
Therefore, in order to solve the problem, the present invention described in claim 1
In a plasma ash melting furnace having a tubular electrode at the top of an iron furnace body whose inner wall is coated with a refractory material, and having an insulating sleeve disposed with a gap in the furnace penetration part of the electrode,
A configuration in which the insulating sleeve is expanded with a plurality of steps at an inclination angle so that a gap between the insulating sleeve and the electrode is directed into the furnace, and molten salt generated by ash melting flows down along the inclined surface; It is characterized by that.
In this invention, the upper inclined surface of the insulating sleeve is set to an angle that determines the flow path in the direction in which the inert gas sealing the gap diffuses without swirling, and the molten salt adhering to the lower inclined surface easily flows down. An angle. Thereby, even if the molten salt adheres to the insulating sleeve around the electrode, it flows down to the outside of the furnace, and sufficient insulation can be obtained.
[0009]
According to a second aspect of the present invention, the insulating sleeve is formed so as to protrude from the furnace wall around the insulating sleeve, so that the molten salt flowing down adheres to the furnace lid through the insulating sleeve and solidifies. Without falling on the molten slag and minimizing deposits.
Further, according to claim 3, the insulating sleeve is notched in a hollow cone shape so as to surround the electrode, and the lower portion thereof is notched in a hollow cone shape with a larger inclination angle than the cone, and is generated by ash melting. By adopting a configuration that prevents the molten salt from adhering to the insulating sleeve, the above effect can be realized with a simple structure.
[0010]
According to a fourth aspect of the present invention, there is provided a molten salt retracting portion formed by a lower inclined surface of the insulating sleeve having a gap between the furnace penetrating portions having an inclination angle of approximately 10 ° to 25 ° with respect to a horizontal direction. And a gas flow escape portion formed by an upper inclined surface having an inclination angle of less than about 2 ° with respect to the direction. This invention shows the most suitable angle of the inclined surface. By making the inclined surface the angle, the gas flow does not swirl on the upper inclined surface, and the molten salt smoothly flows on the lower inclined surface. run down.
[0011]
The invention according to claim 5 is a plasma ash melting furnace having a tubular electrode on the upper part of an iron furnace body whose inner wall is coated with a refractory material, and having an insulating sleeve disposed with a gap in the furnace penetration part of the electrode.
One or a plurality of molten salt evacuation parts are provided on the inner wall of the ash melting furnace side wall or the inner wall of the furnace lid, and the molten salt generated by ash melting flows down the furnace wall by the molten salt evacuation part. .
According to this invention, the adhesion of the molten salt can be minimized by providing the molten salt retracting portion on the furnace wall to which the molten salt easily adheres. Note that the furnace lid may be inclined downward toward the outer edge of the furnace, so that the molten salt flows down from the furnace center to the outside, so that the molten salt retracting portion works effectively.
[0012]
The invention according to claim 6 is the plasma ash melting furnace in which the furnace lid is inclined downward toward the outer edge of the furnace, wherein the molten salt retracting portion is provided on the furnace lid and has a step on the side wall of the furnace. It is the level | step-difference part or collar part which inclines so that it may have.
Furthermore, the invention according to claim 7 is characterized in that the molten salt retracting portion is a stepped portion or a flange portion provided at the upper portion of the inner wall of the furnace and having an enlarged diameter at the lower portion.
According to these inventions, the molten salt is limited to the molten salt retracting portion without adhering to the furnace side wall, and further, the molten portion is melted into the furnace lid by setting the angle of the stepped portion or the flange portion to an angle at which the molten salt drops. Salt adhesion is also minimized.
[0013]
In the invention according to claim 8, the support metal for joining the refractory material to the iron furnace body or the support metal for supporting various sensors penetrating the furnace lid is made of an insulating refractory such as ceramics. It is characterized by that.
As described above, since the molten salt depositing portion is limited by the molten salt retracting portion, by using an insulating refractory for the support metal only in the depositing portion, leakage from the support metal fitting due to consumption of the refractory is prevented. Therefore, it is possible to realize a device that is less likely to cause insulation failure at low cost. The insulating refractory is preferably made of alumina ceramics or the like.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
1 is a schematic sectional view of a plasma ash melting furnace according to an embodiment of the present invention, FIG. 2 is an enlarged view of a portion A showing the upper part of the plasma ash melting furnace of FIG. 1, and FIG. 3 is an upper side wall of the plasma ash melting furnace of FIG. FIG. 3 is an enlarged view of part B showing the second embodiment. FIG. 3 is an enlarged view of part B showing the second embodiment.
[0015]
In FIG. 1, 11 is a plasma ash melting furnace body, 12 is an iron furnace body that forms the outer shell of the furnace body 11, and 13 is a refractory material that covers the inner wall of the furnace body 12, such as meteorite bricks and alumina castables. Etc. are formed. In this embodiment, the furnace lid of the melting furnace has a conical shape with the center portion protruding upward, and the inclination angle of the furnace lid is approximately 1 ° or more with respect to the horizontal direction. Such a shape can maintain the structural strength of the refractory and contribute to prevention of adhesion of the molten salt described later. Reference numeral 14 denotes a main electrode penetrating through the top of the ash melting furnace. In this embodiment, a tubular graphite electrode is used. Other configurations are substantially the same as those of the conventional plasma ash melting furnace described with reference to FIG.
[0016]
The plasma ash melting furnace 11 applies a DC voltage between the main electrode 14 connected to the DC power source shown in FIG. 9 and the furnace bottom electrode 34 to generate a plasma arc and sequentially supply it from the ash hopper. Melt incineration ash to make slag. At this time, the Joule heat based on the electric resistance of the molten slag 15 is also utilized and the molten state is maintained.
A large amount of low melting point salts are contained in the slag 15 which is in a molten state by the plasma high-temperature gas flow generated by the main electrode 14, and these are vaporized and vaporized to form a molten salt 23 as a furnace lid. Adhere to and condense.
[0017]
FIG. 2 is an enlarged view of part A in FIG. 1, and an insulating sleeve 16 is disposed in the furnace 14 through the electrode 14 through a gap, from which a sealing gas such as N 2 gas enters the furnace. Have been supplied. The gap between the insulating sleeve 16 and the main electrode 14 is expanded with an inclination angle in two stages toward the furnace. At this time, the lower inclined surface 16a has an inclination angle α = approximately 10 ° to 25 °, preferably approximately 20 ° with respect to the horizontal direction, and the lower inclined surface 16b has an inclination angle β = approximately less than 2 ° with respect to the vertical direction, Preferably, the angle is approximately 2 °.
[0018]
Further, the insulating sleeve 16 is configured to protrude from the furnace wall around the sleeve. The projecting portion has a projecting length capable of maintaining durability even in a high temperature atmosphere.
According to this embodiment, when the sealing gas is introduced into the furnace without being swirled by the upper inclined surface 16b, and the volatilized molten salt 23 is adhered to the insulating sleeve 16 by the lower inclined surface 16a. However, it can flow down the inclined surface and flow down to the furnace bottom to prevent insulation failure.
[0019]
FIG. 3 shows a first embodiment of an enlarged view of part B of FIG. 1, and FIG. 4 shows a second embodiment.
In this embodiment, a molten salt evacuation portion is provided at the upper portion of the furnace side wall, and in the first embodiment, a step portion 17 is provided on the upper portion of the side wall of the refractory 13 covered by the iron furnace body 12 and flows down after being attached to the furnace lid. The molten salt 23 is dripped at the stepped portion 17, and the second embodiment is provided with a trough 18 inclined toward the furnace center on the upper side wall of the refractory 13, as in the first embodiment. The molten salt 23 is configured to flow down from the trough 18.
With such a configuration, the molten salt that has been volatilized and adhered to the furnace lid flows down the inclined furnace lid and falls into the molten slag by the stepped portion 17 or the trough 18, so that adhesion of the molten salt to the furnace wall can be prevented. .
[0020]
Next, an ash melting furnace provided with a supporting metal member inserted in the furnace body will be described with reference to FIGS.
FIG. 5 is a schematic cross-sectional view when an insulating metal support is inserted into the furnace wall of the plasma ash melting furnace according to the embodiment of the present invention. FIG. 6 is a diagram showing sensors on the upper part of the plasma ash melting furnace according to the embodiment of the present invention. FIG. 7 is a schematic cross-sectional view of an insulating support hardware used in the present embodiment.
As shown in FIG. 5, the support hardware 22 is used for penetrating and joining the furnace body 12 and the refractory 13, and a plurality of support hardware is used for an integrated furnace.
[0021]
Examples of the support metal 22 include a screw-type support metal 22A as shown in FIG. 7A, and a Y-type support metal as shown in FIG. 7B. These support hardwares 22 are preferably highly insulating and durable, such as ceramic support tiles.
However, since the support hardware 22 is expensive, as shown in FIG. 5, for example, in the case of an ash melting furnace equipped with a rod 18, the molten salt does not adhere to the furnace side wall due to the rod 18, so The insulating refractory material may be used only for the support metal member 22 inserted into the metal plate. As described above, by insulating the support metal member 22, even when the refractory material 13 is consumed, the iron furnace body 12 and the molten salt 23 are not in direct contact with each other, and current conduction can be prevented.
[0022]
In addition, as shown in FIG. 6, it is preferable to insert an insulating fiber and an insulating support metal 22 in a place where the molten salt is easily condensed between the stepped portions 19 provided in the furnace lid, and further, By providing the insulating sleeve 16 having the two-step inclined surface, the adhesion of the molten salt to the refractory can be minimized, and the generation of the side current can be almost surely prevented.
[0023]
【The invention's effect】
As described above, according to the present invention, the upper inclined surface of the insulating sleeve is set to an angle that determines the flow path in the direction in which the inert gas sealing the gap diffuses without swirling, and the lower inclined surface is attached. By setting the angle at which the molten salt flows down, even if the molten salt adheres to the insulating sleeve around the electrode, it flows down to the outside of the furnace and sufficient insulation can be obtained.
Further, by causing the insulating sleeve to protrude from the surrounding refractory material, the molten salt flowing down flows down on the molten slag without adhering to the furnace lid through the insulating sleeve and solidifying, and the deposits can be minimized.
Furthermore, by providing a molten salt retreating part such as a stepped part or a soot on the furnace wall part where the molten salt is likely to adhere, the molten salt can flow down and the amount of adhesion can be reduced. By using an insulating material such as ceramics for the support metal, generation of side current can be prevented almost certainly.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a plasma ash melting furnace according to an embodiment of the present invention.
FIG. 2 is an enlarged view of a part A showing the upper part of the plasma ash melting furnace of FIG.
FIG. 3 is an enlarged view of part B showing a first embodiment of the upper side wall of the plasma ash melting furnace of FIG. 1;
FIG. 4 is an enlarged view of part B showing a second embodiment of the upper side wall of the plasma ash melting furnace of FIG.
FIG. 5 is a schematic cross-sectional view when an insulating support metal is inserted into the furnace wall of the plasma ash melting furnace according to the embodiment of the present invention.
FIG. 6 is a cross-sectional view of the main part when sensors are inserted into the upper part of the plasma ash melting furnace according to the embodiment of the present invention.
FIG. 7 is a schematic sectional view of an insulating support metal used in the present embodiment.
FIG. 8 is a schematic cross-sectional view (a) of a conventional plasma ash melting furnace, and an enlarged view of a D part (b).
FIG. 9 is an overall configuration diagram of a conventional plasma ash melting furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Melting furnace 12 Iron skin 13 Refractory material 14 Electrode 15 Molten ash 16 Insulating sleeve 16a Lower inclined surface 16b Upper inclined surface 17 Refractory material step 18 Refractory material ridge 19 Step 20 Insulating material 21 Fiber 22 Support metal object 22A, 22B Ceramic support metal 23 Molten salt

Claims (8)

内壁を耐火材で被覆した鉄製炉体の上部に管状電極を有し、該電極の炉貫通部に間隙を存して絶縁スリーブを配したプラズマ灰溶融炉において、
前記絶縁スリーブを、該絶縁スリーブと前記電極間の間隙が炉内へ向けて複数段階に傾斜角度をもたせて拡開させ、灰溶融により発生する溶融塩が前記傾斜面に沿って流下する構成としたことを特徴とするプラズマ灰溶融炉。
In a plasma ash melting furnace having a tubular electrode at the top of an iron furnace body whose inner wall is coated with a refractory material, and having an insulating sleeve disposed with a gap in the furnace penetration part of the electrode,
A structure in which the insulating sleeve is expanded with a plurality of steps at an inclination angle so that a gap between the insulating sleeve and the electrode is directed into the furnace, and molten salt generated by ash melting flows down along the inclined surface; A plasma ash melting furnace characterized by that.
前記絶縁スリーブが、該絶縁スリーブ周囲の炉壁より突出して形成されることを特徴とする請求項1記載のプラズマ灰溶融炉。The plasma ash melting furnace according to claim 1, wherein the insulating sleeve is formed so as to protrude from a furnace wall around the insulating sleeve. 前記絶縁スリーブを、前記電極を取り囲むように中空円錐状に切り欠いたその下部を該円錐より傾斜角度を大として中空円錐状に切り欠き、灰溶融により発生する溶融塩の絶縁スリーブへの付着を防止する構成としたことを特徴とする請求項1若しくは2記載のプラズマ灰溶融炉。The insulation sleeve is cut out in a hollow conical shape so as to surround the electrode, and the lower portion thereof is cut out in a hollow conical shape with an inclination angle larger than that of the cone so that the molten salt generated by ash melting adheres to the insulating sleeve. 3. The plasma ash melting furnace according to claim 1, wherein the plasma ash melting furnace is configured to prevent. 前記炉貫通部の間隙が、水平方向に対して傾斜角略10°から25°の前記絶縁スリーブの下部傾斜面により形成される溶融塩退避部と、垂直方向に対して傾斜角略2°未満の上部傾斜面により形成されるガス流逃がし部とを有することを特徴とする請求項1若しくは2記載のプラズマ灰溶融炉。The gap between the furnace penetrating portions is a molten salt retracting portion formed by the lower inclined surface of the insulating sleeve having an inclination angle of approximately 10 ° to 25 ° with respect to the horizontal direction, and an inclination angle of less than approximately 2 ° with respect to the vertical direction. The plasma ash melting furnace according to claim 1, further comprising a gas flow escape portion formed by an upper inclined surface. 内壁を耐火材で被覆した鉄製炉体の上部に管状電極を有し、該電極の炉貫通部に間隙を存して絶縁スリーブを配したプラズマ灰溶融炉において、
前記灰溶融炉側面内壁若しくは炉蓋内壁に1又は複数の溶融塩退避部を設け、該溶融塩退避部により灰溶融にて発生する溶融塩が炉壁を流下する構成としたことを特徴とするプラズマ灰溶融炉。
In a plasma ash melting furnace having a tubular electrode at the top of an iron furnace body whose inner wall is coated with a refractory material, and having an insulating sleeve disposed with a gap in the furnace penetration part of the electrode,
One or a plurality of molten salt retracting portions are provided on the inner wall of the ash melting furnace side wall or the inner wall of the furnace lid, and the molten salt generated by ash melting flows down the furnace wall by the molten salt retracting portion. Plasma ash melting furnace.
前記炉蓋が炉外縁に向けて下方へ傾斜しているプラズマ灰溶融炉であって、前記溶融塩退避部が、炉蓋に設けられ炉側壁側に段差を有するように傾斜する段差部若しくは庇部であることを特徴とする請求項5記載のプラズマ灰溶融炉。A plasma ash melting furnace in which the furnace lid is inclined downward toward the outer edge of the furnace, wherein the molten salt evacuation part is provided on the furnace lid and is inclined so as to have a step on the side wall of the furnace. The plasma ash melting furnace according to claim 5, wherein the plasma ash melting furnace is a part. 前記溶融塩退避部が、炉内側壁上部に設けられ下部が拡径した段差部若しくは庇部であることを特徴とする請求項5記載のプラズマ灰溶融炉。6. The plasma ash melting furnace according to claim 5, wherein the molten salt retracting portion is a stepped portion or a flange portion provided at an upper portion of the inner wall of the furnace and having a lower portion expanded in diameter. 前記耐火材を前記鉄製炉本体と接合する支持金物、若しくは炉蓋を貫通する各種センサ類を支持する支持金物が、セラミックス等の絶縁性耐火物で構成されることを特徴とする請求項5記載のプラズマ灰溶融炉。The support metal for joining the refractory material to the iron furnace body or the support metal for supporting various sensors penetrating the furnace lid is made of an insulating refractory such as ceramics. Plasma ash melting furnace.
JP2001276457A 2001-09-12 2001-09-12 Plasma ash melting furnace Expired - Fee Related JP3611314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276457A JP3611314B2 (en) 2001-09-12 2001-09-12 Plasma ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276457A JP3611314B2 (en) 2001-09-12 2001-09-12 Plasma ash melting furnace

Publications (2)

Publication Number Publication Date
JP2003083530A JP2003083530A (en) 2003-03-19
JP3611314B2 true JP3611314B2 (en) 2005-01-19

Family

ID=19101149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276457A Expired - Fee Related JP3611314B2 (en) 2001-09-12 2001-09-12 Plasma ash melting furnace

Country Status (1)

Country Link
JP (1) JP3611314B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645578A (en) * 2019-08-26 2020-01-03 光大环保技术装备(常州)有限公司 Plasma melting furnace and electrode structure thereof
CN115127353B (en) * 2022-06-15 2024-09-13 中冶赛迪工程技术股份有限公司 Long-life horizontal air-cooled direct current arc furnace bottom structure

Also Published As

Publication number Publication date
JP2003083530A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP3611314B2 (en) Plasma ash melting furnace
EP0696879A2 (en) Plasma melting method and plasma melting furnace
JP2001263620A (en) Plasma arc melting furnace
JP3722674B2 (en) Method and apparatus for lowering melting furnace
JP3921706B2 (en) Electrode sealing device for ash melting furnace
JP3590243B2 (en) Furnace wall cooling structure of electric melting furnace
JPH1027687A (en) Plasma melting furnace
JP3576468B2 (en) Electric ash melting furnace and method for removing solids from electric ash melting furnace
JP3732676B2 (en) Melting furnace outlet structure
JP2002295979A (en) Structure of furnace wall of electric melting furnace and method for suppressing wear of fireproof material of furnace wall
JPH11108330A (en) Melting furnace
JP3542263B2 (en) Furnace wall structure of electric melting furnace
JP2004150755A (en) Ash melting furnace
JP3744668B2 (en) Ash melting furnace
JPH11211057A (en) Ash treating electic melting furnace for refuse treating facility
JP2003207122A (en) Plasma ash melting furnace
JP3542300B2 (en) Method and apparatus for supplying molten material to melting furnace
JP3149726B2 (en) Electric resistance type incineration ash melting furnace and its operation method
JP3568351B2 (en) Restart method of plasma melting furnace
JP4095774B2 (en) How to restart the plasma ash melting furnace
JP2747654B2 (en) Industrial waste incineration residue melting furnace
JP3325480B2 (en) Plasma melting furnace
JP2002162010A (en) Waste melting furnace
JP3831930B2 (en) Electrode sealing device for ash melting furnace
JP2000274649A (en) Ash melting furnace

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees