JP3610499B2 - Multi-purpose thermal light concentrating power generator - Google Patents

Multi-purpose thermal light concentrating power generator Download PDF

Info

Publication number
JP3610499B2
JP3610499B2 JP27821994A JP27821994A JP3610499B2 JP 3610499 B2 JP3610499 B2 JP 3610499B2 JP 27821994 A JP27821994 A JP 27821994A JP 27821994 A JP27821994 A JP 27821994A JP 3610499 B2 JP3610499 B2 JP 3610499B2
Authority
JP
Japan
Prior art keywords
heat
power generation
light
condensing
concentrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27821994A
Other languages
Japanese (ja)
Other versions
JPH08110100A (en
Inventor
久雄 泉
Original Assignee
久雄 泉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP27821994A priority Critical patent/JP3610499B2/en
Application filed by 久雄 泉 filed Critical 久雄 泉
Priority to CN95195538A priority patent/CN1160441A/en
Priority to CA 2201733 priority patent/CA2201733C/en
Priority to BR9509220A priority patent/BR9509220A/en
Priority to PCT/JP1995/002018 priority patent/WO1996011364A1/en
Priority to AU35788/95A priority patent/AU707630B2/en
Priority to US08/809,705 priority patent/US6057504A/en
Priority to EP95932965A priority patent/EP0785400A4/en
Priority to KR1019970702248A priority patent/KR100252687B1/en
Publication of JPH08110100A publication Critical patent/JPH08110100A/en
Application granted granted Critical
Publication of JP3610499B2 publication Critical patent/JP3610499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、太陽光を利用するソーラー発電を行う時、うすい太陽光を集光式のレンズで、集光し、全波長の領域を分解し可視光波長での発電と、熱利用を計れる長波長領域での赤外線を受光素子である可視光反射式長波長選択透過形集熱管で、高温域の熱媒体加熱を行なう等の光と熱の分離を計る事で熱媒体の高温化を計り低沸点溶剤での熱交換でタービンによる高圧蒸気発電を行う直接太陽電池発電とタービン発電による発電との併用で、より一層高効率の発電と冷却水の温水化で温水を得る安価で能率的な装置を提供せんとするものである。
【0002】
【従来の技術】
従来、ソーラー発電を行う場合、太陽電池の単独でのものと、研究的なもので、集光式太陽電池とその裏面でのジャケットによる低レベルの温水による熱吸収が計られているが、太陽電池の効率を維持するために温水レベルが低く、温水の利用法が非常に限られたものになると共にフレネルレンズと集光式太陽電池との、組合せパネルで追尾で行う為、曇日の場合発電が行えない為に、発電量が、太陽電池単独式に比較して低い欠点を持っていた。
【0003】
又単板式で太陽電池が長波長透過式のものを使用し、裏面のジャケットにより集熱を行う場合も、表面の太陽電池が高温域になると電力発生効率が大幅に低下する為と集光式でない為に温水温度が低レベルにある欠点をもっていた。
【0004】
【発明が解決しようとする課題】
本発明は、上記の課題を解決する為になされたもので、集光式レンズで集光する事で、うすい太陽光を集め可視光及び長波長の赤外線を分離して機能させることを計ったもので、可視光反射を行う為に、光のあたる部分を凹レンズ状にしたガラスの集熱管内の内面をシリコン多層蒸着等を行う事で可視光を外面で反射し、長波長光を選択透過して内部の熱媒体を高温加熱し、この高温を利用してタービン発電を行い、発電量の増加を計る事を可能とした多目的熱光分離形集光発電装置。
【0005】
【問題点を解決する為の手段】
上記の目的を達成するために、本発明は、太陽光追尾形の場合は、集光レンズで、固定形の場合は、馬蹄形の多層集積レンズで集光し、可視光反射式長波長透過形集熱管で熱媒体を加熱し、この高レベル熱媒体加熱により低沸点溶剤の過飽和蒸気でのタービン発電と反射光による集光式太陽電池による発電とを行う事を可能としている。
【0006】
【作用】
従って、太陽光追尾式の集光レンズの場合も、固定式の馬蹄形の多層集積レンズによる集光の場合も、可視光を光軸に対して斜めにし反射して、斜め上に設置した光軸に直角の方向の両面発電形集光式太陽電池の裏面で集光発電し、その表面でも太陽光をそのまま発電できる様にしたものである。
【0007】
又集熱管による高レベル熱媒体加熱を利用したタービン発電と、その冷却に使用する熱交換低レベル温水及び直接熱媒体で100度に近い高温の温水を得て利用範囲を広げることで、多目的利用を計ることを可能としている。
【0008】
【実施例】
以下に本発明の一実施例を図面と共に説明する。
【0009】
図1は、本装置の一部破断側面図を、図2は、その一部破断平面図を示し、図3は、パネル部A−A断面図を示し、図4は、別例の固定形のパネル部一部破断平面図を、図5は、別例固定形のパネル部B−B断面図を示す。
【0010】
図1に示すように、本装置は、上方部に設置するパネル部と、これを支持するステンレス柱で形成する台部とから成り立っている。
【0011】
図1に示すように本装置は、4本以上の、ステンレス柱53で地表に設けた空間部の地表に近い所を温室として一定の高さまで利用する様に多段の棚式温室46を数段設け、最上部に太陽追尾形のパネル1がパネル中央芯部に固着した上回転支軸5及び下回転支軸4の内部に熱媒体排出管9及び注液管41を通した状態で、パネル1が自由に回転出来る様に、パネル支持台12に上軸支持ベアリング10、下軸支持ベアリング35で、支持され、これをステンレス柱53により形成した台上に設けた支点ジョイント38で下方部の1点を支持し、上方部を、角度ジョイント部18を介してデルタ形ジャッキ22を、角度変更用ギヤトドモーター21により上下に角度変更出来るようになっている。
【0012】
箱形になったパネル1の内部は、表面にフレネルレンズ3を形成したアクリル板が取りつけられ、各レンズの集光部には、長波長透過式集熱管33が、図2に示すように縦方向に各レンズ毎設けられ、これを注入側は注入マニホールド36、排出側は、排出マニホールド20で結合して、それぞれ支持軸の中空部を通りカップジョイント8及びカップジョイント34で、外部に導き出されている。
【0013】
図1に示すように上回転支軸5には回転用スプロケット6が固着されており、パネル支持台12に固着した回転用ギヤードモーター11により回転出来るようになっている。
【0014】
図3に示すように、フレネルレンズ3の集光軸であるフレネルレンズ集光光軸51の焦点部分に設けた長波長透過式集熱管33は、その上面部が逆V字形をした、2面を持つ凹レンズ形をしたガラスでその内側に受光素子を形成するために、反射形の多層のシリコン蒸着膜が接着されている可視光線選択式反射鏡部29により、可視光線は斜め上方に半分ずつ反射されて可視光線反射光軸50として、フレネルレンズ3の横に設けられたV字形を形成したV形表裏発電集光電池2により裏面で発電出来ると共にV字形上面の表面部でも集光しない状態で発電できる構造となっている。
【0015】
可視光線選択式反射鏡部37の裏面管部は、ガラス又は金属で形成され一体に結合されており、内部には、微粒子状の活性炭を溶剤中に分散させた黒色不凍液である熱媒体49が透過しながら加熱される構造となっている。
【0016】
パネル1の横、下面には、断熱材48がしきつめられており、底部には、集熱管部に反射光が与えられるようになった底部アルミ反射鏡板52が設けられ、光の有効利用が計られている。
【0017】
図1に示すように、パネル支持台12のすぐ下には、低沸点溶剤を密閉式容器で完全密閉し循環出来る発電装置である密閉式低温加熱タービン39が蒸発槽16及び冷却槽17から形成されており、蒸発槽16には、熱媒体排出管9より内部のラジエターで、低沸点溶剤を過飽和蒸気とし、冷却槽との間の絞り弁15の出口部羽根車13で発電機14を回転し発電出来るようにすると共に、下方に設けた断熱材で保温された熱媒体蓄熱槽24に排出される。
【0018】
冷却槽17には、下方に設けた充分な容量を持った温水蓄熱槽45より、冷却水循環ポンプ43により冷却水44が内部の蒸気を沸点以下に冷却しながら温水蓄熱槽45の温水収容部40に戻る様に循環し、冷却槽17の底部にたまる低沸点溶剤は、高圧ポンプ37により蒸発槽16に戻される事により低沸点溶剤は循環使用される。
【0019】
温水蓄熱槽45には、一部下方が開放された仕切り板23が設けられ、上方より市水が流入出来るように水道水給水管30の出口部にフロート弁25で注入量をコントロールされており、温水収容部40より温水給湯管31を介して、家庭内の各所に給湯されると共に、この下方に設けられている棚式温室46の各段下部に設けた液肥貯留槽47の内部の液肥を液肥加温管32により加温出来る構造となっている。
【0020】
熱媒体蓄熱槽24の底部より貯留された熱媒体を熱媒体循環ポンプ42により注液管41を介してパネル内の長波長透過式集熱管33に循環する。
【0021】
図4は、図1の別例を示し、図5は、そのB−B断面図を示しており、パネル1がステンレス柱1の台上で、太陽に向かって40度程度の傾斜をつけて固定されたものとなり、縦方向に馬蹄形で曲率の大きい断面を持ち、その内部に順次曲率が、一層大きくなる縦長の馬蹄形多層集積レンズ60がパネルガラス板66の上面に設置されており、各レンズ間の下面にはV形表裏発電集光大電池2が互いちがいに並列に設置されている。
【0022】
図5に示すように、馬蹄形多層集積レンズ60で集光された馬蹄形集積レンズ集光光軸61で集光された太陽光は、下方に設けた長波長選択形湾曲反射鏡64により、その裏面に蒸着したシリコン等により可視光を集光して可視光集光軸65として、V形表裏発電集光太陽電池2の裏面より照射して起電力を得ると共に電池の表面では、直接太陽光を受けて起電力を得る構造となっている。
【0023】
長波長選択形湾曲反射鏡64には、ガラス管等で形成された長波長透過式集熱管33が密着一体化されており、その内部を熱媒体49が、赤外線の照射を受けて高レベルの加温を受けて流れており、その外周部には、真空空間63を介してガラス管62が設置されており、内部の熱を逃がさない工夫がほどこされている。
【0024】
パネル1の横や底部には、ガラスウール等の断熱材48が設けられ、底部には、底部アルミ反射鏡板52を設ける事で一層の集光力を得ている。
【0025】
このような構造でああるから、この装置を使用せんとする時は、パネル1を太陽の動きにあわせて追尾させて、フレネルレンズ3で集光した集光倍率の非常に高い太陽光を、可視光選択式反射鏡部37で可視光と長波長光である赤外線に分離し、可視光は、V形表裏発電集光太陽電池2の裏面で起電し、表面からも太陽光で起電する。
【0026】
長波長光は、長波長透過式集熱管33で内部の熱媒体49を高レベルに加熱し、この熱媒体49により、密閉式低温加熱タービン39の内部の低沸点溶剤を過飽和蒸気とし、熱媒体49は、下方に設けた熱媒体蓄熱槽24に貯留され冷却のサイクルの中で発電機14で起電力を得ると共に低沸点溶剤は、循環使用する全密閉完全リサイクル式となっている。
【0027】
熱媒体蓄熱槽24からは、熱媒体循環ポンプで、熱媒体49は、循環使用されると共に、冷却槽17で発生する温水は、温水蓄熱槽45に貯留され、温水給湯管31を通して家庭用の給湯として使用し、その一部は、下方に設けた棚式温室46の各棚に設けた液肥貯留槽47の加温に使用されそこで育てられる農産物の野菜の成長を助ける働きをする。
【0028】
図4及び図5に示す別例では、レンズが固定式の為、集光倍率は低いが設備費の低下を見込める。
【0029】
このように、太陽光を追尾による高倍率の集光又は固定パネルによる低倍率では有るが設備費の安いそれぞれの特徴をもった装置で、熱と可視光の分離により効率的な発電を行うと共に、冷却水の温水化による低レベル温水の利用及び必要に応じて高レベルの熱媒体温度を使用した熱湯発生を可能とし、下方での温室での加温にも熱を使用することで、ここで育てる野菜の育成を早めて生産物を多く出来る等の特徴を持った多目的熱光分離形集光発電装置である。
【0030】
【発明の効果】
以上に説明したように、本発明の構成は、下方に棚式温室を設け、その上部に温水貯留槽、熱媒体蓄熱槽を設ける事で、パネルでの集光レンズによる熱光分離による熱の利用を高め、高レベルの熱媒体加熱で、発電力を得ると共に、分離した可視光も集光太陽電池で効率的に起電力を得、低レベル温水、高レベル熱湯の利用が計れると共に、多段温室とその加温により農作物の育成を計れることで多目的により設備費の焼却が早く行える事を特徴とした多目的熱光分離形集光発電装置を提供することができる。
【0031】
【図面の簡単な説明】
【図1】本発明の装置本体の一部破断側面図。
【図2】本発明のパネル部一部破断平面図。
【図3】本発明のパネル部A−A断面図。
【図4】本発明の別例固定形のパネル部一部破断平面図。
【図5】本発明の別例固定形のパネル部B−B断面図。
【0032】
【符号の説明】
1 パネル
2 V形表裏発電集光太陽電池
3 フレネルレンズ
4 下回転支持軸
5 上回転支持軸
6 回転様スプロケット
8 カップ状ジョイント
9 熱媒体排出管
10 上軸支持ベアリング
11 回転用ギヤードモーター
12 パネル支持台
13 羽根車
14 発電機
15 絞り弁
16 蒸発槽
17 冷却槽
18 角度ジョイント部
20 排出マニホールド
21 角度変更様ギヤードモーター
22 デルタ形ジャッキ
23 仕切り板
24 熱媒体蓄熱槽
25 フロート弁
29 可視光選択式反射鏡部
30 水道市給水管
31 温水給湯管
32 液肥料加温管
33 長波長透過式集熱管
34 カップ状ジョイント
35 下軸支持ベアリング
36 注入マニホールド
37 高圧ポンプ
38 支点ジョイント
39 密閉式低温加熱タービン
40 温水収容部
41 注液管
42 液媒体循環ポンプ
43 冷却水循環ポンプ
44 冷却水
45 温水蓄熱槽
46 棚式温室
47 液肥貯留槽
48 断熱材
49 熱媒体
50 可視光線反射光軸
51 フレネルレンズ集光光軸
52 底部アルミ反射鏡板
60 馬蹄形多層集積レンズ
61 馬蹄形集積レンズ集光光軸
62 ガラス管
63 真空空間
64 長波長選択形湾曲反射鏡
65 可視光集光軸
66 パネルガラス板
[0001]
[Industrial application fields]
The present invention, when performing solar power generation using sunlight, condenses light sunlight with a condensing lens, decomposes all wavelength regions, generates power at visible light wavelengths, and uses heat. A visible light reflection type long-wavelength selective transmission type heat collecting tube that receives infrared rays in the wavelength region. By measuring the separation of light and heat, such as heating the heat medium in a high temperature range, the temperature of the heat medium is increased. A low-cost, efficient system that uses hot solar power generation with a turbine by heat exchange with a boiling solvent and combined with direct solar battery power generation and turbine power generation to obtain hot water through more efficient power generation and warming of cooling water Is intended to provide.
[0002]
[Prior art]
Conventionally, when solar power generation is performed, the solar cell alone and the researcher, the heat absorption by the low level warm water by the concentrating solar cell and the jacket on the back surface is measured. In case of cloudy days, the hot water level is low to maintain the efficiency of the battery, the usage of hot water is very limited, and the combination panel of Fresnel lens and concentrating solar cell is used for tracking. Since power generation could not be performed, the power generation amount had a disadvantage compared to the solar cell alone type.
[0003]
Also, when using a single-plate solar cell with a long-wavelength transmission type and collecting heat with the jacket on the back side, if the solar cell on the front surface is in a high temperature range, the power generation efficiency will be significantly reduced. For this reason, the hot water temperature is at a low level.
[0004]
[Problems to be solved by the invention]
The present invention was made in order to solve the above-mentioned problem, and by collecting light with a condensing lens, it collected light sunlight and separated visible light and long-wave infrared rays to function. In order to reflect visible light, the inner surface of the glass heat collection tube with a concave lens shape is exposed to light by reflecting the visible light on the outer surface and selectively transmitting long-wavelength light. Then, the multi-purpose heat and light separation type condensing power generation device that can heat the internal heat medium at a high temperature, perform turbine power generation using this high temperature, and measure the increase in power generation amount.
[0005]
[Means for solving problems]
In order to achieve the above object, the present invention collects light with a condensing lens in the case of the solar tracking type, and with a horseshoe-shaped multi-layer integrated lens in the case of the fixed type, and reflects the visible light reflection type long wavelength transmission type. The heat medium is heated by a heat collecting tube, and by this high-level heat medium heating, it is possible to perform turbine power generation with supersaturated steam of a low boiling point solvent and power generation by a concentrating solar cell using reflected light.
[0006]
[Action]
Therefore, both in the case of a sunlight tracking type condensing lens and in the case of condensing by a fixed horseshoe-shaped multi-layer integrated lens, the optical axis installed obliquely above is reflected obliquely with respect to the optical axis. Concentrated power is generated on the back surface of a double-sided power generation type concentrating solar cell in a direction perpendicular to the solar cell so that sunlight can be directly generated on the front surface.
[0007]
In addition, turbine power generation using high-level heat medium heating by heat collecting tubes, heat exchange low-level hot water used for cooling, and high-temperature hot water close to 100 degrees with direct heat medium to expand the range of use, and multipurpose use It is possible to measure.
[0008]
【Example】
An embodiment of the present invention will be described below with reference to the drawings.
[0009]
1 is a partially broken side view of the apparatus, FIG. 2 is a partially broken plan view thereof, FIG. 3 is a cross-sectional view taken along the line AA of FIG. 4, and FIG. FIG. 5 is a sectional view of a panel portion BB of another fixed type.
[0010]
As shown in FIG. 1, the present apparatus is composed of a panel portion installed at an upper portion and a base portion formed of a stainless steel column that supports the panel portion.
[0011]
As shown in FIG. 1, this apparatus has four or more multi-tiered greenhouses 46 that use a stainless steel column 53 near the surface of the space provided on the surface as a greenhouse. The solar tracking type panel 1 is provided on the uppermost part, and the heat medium discharge pipe 9 and the liquid injection pipe 41 are passed through the upper rotating support shaft 5 and the lower rotating support shaft 4 fixed to the center core of the panel. 1 is supported on the panel support 12 by the upper shaft support bearing 10 and the lower shaft support bearing 35 so that it can freely rotate, and this is supported by the fulcrum joint 38 provided on the table formed by the stainless steel column 53. One point is supported, and the upper portion of the delta jack 22 can be vertically changed by the angle changing geared motor 21 via the angle joint portion 18.
[0012]
An acrylic plate having a Fresnel lens 3 formed on the surface is attached to the inside of the box-shaped panel 1, and a long-wavelength transmission type heat collecting tube 33 is vertically disposed in the condensing portion of each lens as shown in FIG. Each lens is provided in the direction, which is connected to the injection manifold 36 on the injection side and the discharge manifold 20 on the discharge side, and is guided to the outside by the cup joint 8 and the cup joint 34 through the hollow portion of the support shaft. ing.
[0013]
As shown in FIG. 1, a rotating sprocket 6 is fixed to the upper rotating spindle 5 and can be rotated by a rotating geared motor 11 fixed to a panel support 12.
[0014]
As shown in FIG. 3, the long wavelength transmission type heat collecting tube 33 provided at the focal point of the Fresnel lens condensing optical axis 51 which is the condensing axis of the Fresnel lens 3 has two upper surfaces each having an inverted V shape. In order to form a light receiving element with a concave lens-shaped glass with a visible light selective reflecting mirror part 29 to which a reflective multilayer silicon deposition film is bonded, visible light is halved obliquely upward The V-shaped front and back power generating and collecting battery 2 having a V-shape provided on the side of the Fresnel lens 3 as a visible light reflecting optical axis 50 is reflected so that power can be generated on the back surface and is not condensed on the surface portion of the V-shaped upper surface. It has a structure that can generate electricity.
[0015]
The back surface tube portion of the visible light selective reflection mirror portion 37 is formed of glass or metal and is integrally joined. Inside, a heat medium 49 which is a black antifreeze liquid in which fine activated carbon particles are dispersed in a solvent. It is structured to be heated while transmitting.
[0016]
A heat insulating material 48 is tightly arranged on the side and the lower surface of the panel 1, and a bottom aluminum reflecting mirror plate 52 is provided at the bottom so that reflected light is given to the heat collecting tube portion. It has been.
[0017]
As shown in FIG. 1, immediately below the panel support 12, a sealed low-temperature heating turbine 39, which is a power generation device capable of completely sealing and circulating a low boiling point solvent in a sealed container, is formed from the evaporation tank 16 and the cooling tank 17. In the evaporation tank 16, a low-boiling solvent is made into supersaturated steam by a radiator inside the heat medium discharge pipe 9, and a generator 14 is rotated by an outlet impeller 13 of a throttle valve 15 between the cooling tank and the evaporator 14. Then, the electric power can be generated and discharged to the heat medium heat storage tank 24 which is kept warm by a heat insulating material provided below.
[0018]
In the cooling tank 17, the hot water storage tank 40 of the hot water storage tank 45 is cooled by the cooling water circulation pump 43 while cooling the internal water below the boiling point by the cooling water circulation pump 43 from the hot water storage tank 45 provided below. The low boiling point solvent that circulates back to the bottom and accumulates at the bottom of the cooling tank 17 is returned to the evaporation tank 16 by the high pressure pump 37, whereby the low boiling point solvent is circulated.
[0019]
The hot water heat storage tank 45 is provided with a partition plate 23 that is partially opened downward, and the amount of injection is controlled by a float valve 25 at the outlet of the tap water supply pipe 30 so that city water can flow from above. In addition, hot water is supplied from the hot water storage section 40 to various places in the home via the hot water hot water supply pipe 31, and the liquid fertilizer inside the liquid fertilizer storage tank 47 provided at the lower part of each shelf-type greenhouse 46 provided below the hot water storage pipe 40. The structure can be heated by the liquid fertilizer heating tube 32.
[0020]
The heat medium stored from the bottom of the heat medium heat storage tank 24 is circulated by the heat medium circulation pump 42 through the liquid injection pipe 41 to the long wavelength transmission type heat collecting pipe 33 in the panel.
[0021]
FIG. 4 shows another example of FIG. 1, and FIG. 5 shows a cross-sectional view taken along the line B-B. The panel 1 is tilted by about 40 degrees toward the sun on the platform of the stainless steel pillar 1. A vertically long horseshoe-shaped multilayered integrated lens 60 having a fixed section and having a horseshoe shape in the vertical direction and a large curvature, and in which the curvature gradually increases further, is installed on the upper surface of the panel glass plate 66. V-shaped front and back power generation concentrating large batteries 2 are installed in parallel on the lower surface between them.
[0022]
As shown in FIG. 5, the sunlight condensed by the horseshoe-shaped integrated lens condensing optical axis 61 collected by the horseshoe-shaped multilayer integrated lens 60 is reflected on the back surface thereof by a long wavelength selective curved reflector 64 provided below. Visible light is condensed with silicon or the like deposited on the surface of the V-shaped front / back power generation concentrating solar cell 2 as the visible light concentrating axis 65 to obtain an electromotive force, and at the surface of the cell, direct sunlight is directly emitted. It has a structure for receiving electromotive force.
[0023]
A long-wavelength transmission type heat collecting tube 33 formed of a glass tube or the like is closely integrated with the long-wavelength selective curved reflecting mirror 64, and a heat medium 49 is irradiated with infrared rays in the inside thereof to receive a high level. The glass tube 62 is installed in the outer peripheral part via the vacuum space 63, and the device which does not escape the internal heat is given.
[0024]
A heat insulating material 48 such as glass wool is provided on the side or bottom of the panel 1 and a bottom aluminum reflecting mirror plate 52 is provided on the bottom to obtain a further light collecting power.
[0025]
Because of this structure, when using this device, the panel 1 is tracked according to the movement of the sun, and the sunlight with a very high light collection magnification collected by the Fresnel lens 3 is used. Visible light is separated into visible light and infrared light, which is long-wavelength light, by the visible light selective reflection mirror portion 37. The visible light is generated on the back surface of the V-shaped front / back power generation concentrating solar cell 2 and is also generated from the surface by sunlight. To do.
[0026]
The long-wavelength light heats the internal heat medium 49 to a high level by the long-wavelength transmission type heat collecting tube 33, and the low-boiling solvent inside the hermetic low-temperature heating turbine 39 is converted into supersaturated steam by the heat medium 49. 49 is stored in the heat medium heat storage tank 24 provided below, and an electromotive force is obtained by the generator 14 in the cooling cycle, and the low-boiling point solvent is a fully-sealed and completely recyclable type that is circulated and used.
[0027]
From the heat medium storage tank 24, the heat medium 49 is circulated and used by the heat medium circulation pump, and the hot water generated in the cooling tank 17 is stored in the hot water heat storage tank 45, and is used for home use through the hot water hot water supply pipe 31. A part of the hot water supply is used for heating the liquid fertilizer storage tank 47 provided on each shelf of the shelf-type greenhouse 46 provided below, and serves to help the growth of agricultural vegetables grown there.
[0028]
In the other examples shown in FIGS. 4 and 5, since the lens is fixed, the condensing magnification is low, but the equipment cost can be reduced.
[0029]
In this way, it is a device with each feature of low-cost equipment costs, although it is a high-magnification condensing by tracking sunlight or a low-magnification by a fixed panel, while efficiently generating power by separating heat and visible light The use of low-level hot water by warming the cooling water and the generation of hot water using a high-level heat medium temperature as required, and by using heat for heating in the greenhouse below, It is a multi-purpose heat-and-light separation type concentrating power generation device that has the characteristics that the cultivation of vegetables grown earlier can increase the production.
[0030]
【The invention's effect】
As described above, the configuration of the present invention has a shelf type greenhouse in the lower part, and a hot water storage tank and a heat medium heat storage tank in the upper part, so that the heat generated by the heat and light separation by the condensing lens in the panel can be obtained. Increased use and high-power heating medium to generate electric power, and separated visible light to efficiently generate electromotive force with a concentrating solar cell, making it possible to use low-level hot water and high-level hot water, and multistage It is possible to provide a multi-purpose heat-and-light separation type concentrating power generation device characterized in that facility costs can be incinerated quickly by multi-purpose by measuring the cultivation of crops by the greenhouse and its heating.
[0031]
[Brief description of the drawings]
FIG. 1 is a partially cutaway side view of an apparatus main body of the present invention.
FIG. 2 is a partially cutaway plan view of the panel portion of the present invention.
FIG. 3 is a cross-sectional view of the panel section AA according to the present invention.
FIG. 4 is a partially cutaway plan view of another fixed type panel portion of the present invention.
FIG. 5 is a cross-sectional view of another fixed type panel portion BB of the present invention.
[0032]
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Panel 2 V form front and back power generation condensing solar cell 3 Fresnel lens 4 Lower rotation support shaft 5 Upper rotation support shaft 6 Rotation-like sprocket 8 Cup-shaped joint 9 Heat carrier discharge pipe 10 Upper shaft support bearing 11 Rotating geared motor 12 Panel support Table 13 Impeller 14 Generator 15 Throttle valve 16 Evaporating tank 17 Cooling tank 18 Angle joint section 20 Discharge manifold 21 Angle change-like geared motor 22 Delta jack 23 Partition plate 24 Heat medium heat storage tank 25 Float valve 29 Visible light selective reflection Mirror part 30 Water city water supply pipe 31 Hot water hot water supply pipe 32 Liquid fertilizer heating pipe 33 Long wavelength transmission type heat collection pipe 34 Cup joint 35 Lower shaft support bearing 36 Injection manifold 37 High pressure pump 38 Support point joint 39 Sealed low temperature heating turbine 40 Hot water Container 41 Injection pipe 42 Liquid medium circulation pump 43 Water rejection pump 44 Cooling water 45 Hot water heat storage tank 46 Shelf type greenhouse 47 Liquid fertilizer storage tank 48 Thermal insulation material 49 Heat medium 50 Visible light reflection optical axis 51 Fresnel lens condensing optical axis 52 Bottom aluminum reflector plate 60 Horseshoe-shaped multilayer integrated lens 61 Horseshoe-shaped integration Lens condensing optical axis 62 Glass tube 63 Vacuum space 64 Long wavelength selective curved reflector 65 Visible light condensing axis 66 Panel glass plate

Claims (3)

集光レンズで集光した光の全波長を選択的に可視光は反射し、長波長光は、熱吸収管内の熱媒体に高レベル吸熱させ、反射光では、集光太陽電池で起電する多目的熱光分離形集光発電装置。The visible light selectively reflects all wavelengths of the light collected by the condenser lens, the long-wavelength light is absorbed by the heat medium in the heat absorption tube at a high level, and the reflected light is generated by the concentrating solar cell. Multi-purpose heat and light concentrating power generation device 請求項1に記載された多目的熱光分離形集光発電装置において、固定形で馬蹄形の曲率の大きい断面を持ち、その内部に順次曲率が、一層大きくなる多層レンズでの縦型の集光式レンズにより集光した光を可視光反射式長波長選択透過形集熱管と反射鏡部を凹レンズ式にした集光可視光により集光式太陽電池発電を行う多目的熱光分離形集光発電装置。The multi-purpose thermal light separation type concentrating power generation device according to claim 1, wherein the vertical concentrating type is a multi-layer lens having a fixed and horseshoe-shaped section with a large curvature, and the curvature gradually increases in the inside thereof. A multipurpose thermal light separation type condensing power generation device that performs condensing solar cell power generation using visible light reflecting long-wavelength selective transmission type heat collecting tubes and a condensing visible light having a reflecting mirror part formed as a concave lens. 請求項1に記載された多目的熱光分離形集光発電装置において、集光式レンズにより、長波長選択透過形集熱管で熱媒体の粉粒活性炭を含む溶剤を高温に加熱し、蓄熱槽に蓄熱する事で熱エネルギーとして貯蔵し、必要に応じてこの溶剤で低沸点溶剤を熱交換により、過飽和蒸気とし、冷却部との蒸気圧差でタービン発電を行う多目的熱光分離形集光発電装置。In the multipurpose thermal light separation type condensing power generation device according to claim 1, a solvent containing granular activated carbon of a heat medium is heated to a high temperature with a long wavelength selective transmission type heat collecting tube by a condensing lens, and is stored in a heat storage tank. A multi-purpose thermal light separation type concentrating power generation device that stores heat energy by storing heat, converts a low boiling point solvent to supersaturated steam by heat exchange with this solvent as necessary, and generates turbine power generation with a difference in vapor pressure from the cooling unit.
JP27821994A 1994-10-05 1994-10-05 Multi-purpose thermal light concentrating power generator Expired - Lifetime JP3610499B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP27821994A JP3610499B2 (en) 1994-10-05 1994-10-05 Multi-purpose thermal light concentrating power generator
CA 2201733 CA2201733C (en) 1994-10-05 1995-10-03 Wavelength separating and light condensing type generating and heating apparatus
BR9509220A BR9509220A (en) 1994-10-05 1995-10-03 Solar water collector to generate electricity and heat by separating the sun's rays into long and short waves
PCT/JP1995/002018 WO1996011364A1 (en) 1994-10-05 1995-10-03 Wavelength separating and light condensing type generating and heating apparatus
CN95195538A CN1160441A (en) 1994-10-05 1995-10-03 Wavelength separating and light condensing type generating and heating apparatus
AU35788/95A AU707630B2 (en) 1994-10-05 1995-10-03 Hybrid solar collector for generating electricity and heat by separating solar rays into long wavelength and short wavelength
US08/809,705 US6057504A (en) 1994-10-05 1995-10-03 Hybrid solar collector for generating electricity and heat by separating solar rays into long wavelength and short wavelength
EP95932965A EP0785400A4 (en) 1994-10-05 1995-10-03 Wavelength separating and light condensing type generating and heating apparatus
KR1019970702248A KR100252687B1 (en) 1994-10-05 1995-10-03 Hybrid solar collector for generating electricity and heat by sepatating solar rays into long wavelength and short wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27821994A JP3610499B2 (en) 1994-10-05 1994-10-05 Multi-purpose thermal light concentrating power generator

Publications (2)

Publication Number Publication Date
JPH08110100A JPH08110100A (en) 1996-04-30
JP3610499B2 true JP3610499B2 (en) 2005-01-12

Family

ID=17594275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27821994A Expired - Lifetime JP3610499B2 (en) 1994-10-05 1994-10-05 Multi-purpose thermal light concentrating power generator

Country Status (1)

Country Link
JP (1) JP3610499B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090283133A1 (en) * 2008-05-14 2009-11-19 3M Innovative Properties Company Solar concentrating mirror
CN102333998B (en) 2008-12-30 2015-08-05 3M创新有限公司 Broadband reflector, light collecting type solar power system and use their method
KR100941926B1 (en) * 2009-04-07 2010-02-11 송근용 Photovoltaic-thermal energy congeneration system
DE202009006442U1 (en) * 2009-05-02 2009-07-23 Zimmer, Johann, Dr.-Ing. Solar system for generating electrical and thermal energy
KR101156939B1 (en) * 2009-07-20 2012-06-20 (주) 나인테크 System for generating electricity by solar heat
CA2850759A1 (en) * 2011-10-03 2013-04-11 Lrm Industries International, Inc Solar heat exchange panel
KR101317361B1 (en) * 2011-10-13 2013-10-18 성광기전주식회사 Solar heat generator to use curved surface reflector
CN109341109B (en) * 2018-12-06 2024-03-08 西北农林科技大学 Photo-thermal accumulation system for assisting heat of foundation soil of water delivery channel in winter in cold region

Also Published As

Publication number Publication date
JPH08110100A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
KR100252687B1 (en) Hybrid solar collector for generating electricity and heat by sepatating solar rays into long wavelength and short wavelength
US4217882A (en) Passive solar heat collector
US4505260A (en) Radiant energy device
US4148300A (en) Solar radiation energy concentrator
US4487659A (en) Solar distillation apparatus
US4251291A (en) Thermoelectric generator with latent heat storage
US4921580A (en) Solar water distiller
US4320246A (en) Uniform surface temperature heat pipe and method of using the same
KR101172578B1 (en) Solar collector type of condensing solar light
EP0374179B1 (en) Intermittent solar ammonia absorption cycle refrigerator
JPH05506495A (en) solar roof collector
US4856281A (en) Solar power plant and still
JP3610499B2 (en) Multi-purpose thermal light concentrating power generator
CN113044899B (en) Phase-change heat storage type interface photo-thermal evaporation seawater desalination device and seawater desalination method
US4612914A (en) Portable collapsible solar survival apparatus
BRPI0719235A2 (en) SOLAR THERMAL POWER INSTALLATION.
WO2010067359A2 (en) Closed loop solar energy system with a push-pull electric generator
Singh et al. A review on solar energy collection for thermal applications
JP2017200457A (en) Solar heating facility
JP2753988B2 (en) Solar collector and heat utilization equipment using it
CN115838193A (en) Condensation direct heating spiral falling film evaporation type solar distillation device
WO2009028000A2 (en) Improved robot collector for large lens solar concentrators
Fadhel et al. A Review on ImprovementTechniques of Freshwater Productivity for Solar Distillation Systems
CN2655120Y (en) Multipurpose solar water heater
CN101624223A (en) Solar spotlighting distilled water machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040825

LAPF Cancellation because of no payment of deferring patent or registration fees
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150