JP3610371B2 - (Α- and / or β-formylethyl) phosphine oxide compound, (α- and / or β-formylethyl) phosphonic acid ester compound and production method thereof - Google Patents

(Α- and / or β-formylethyl) phosphine oxide compound, (α- and / or β-formylethyl) phosphonic acid ester compound and production method thereof Download PDF

Info

Publication number
JP3610371B2
JP3610371B2 JP2000068586A JP2000068586A JP3610371B2 JP 3610371 B2 JP3610371 B2 JP 3610371B2 JP 2000068586 A JP2000068586 A JP 2000068586A JP 2000068586 A JP2000068586 A JP 2000068586A JP 3610371 B2 JP3610371 B2 JP 3610371B2
Authority
JP
Japan
Prior art keywords
formylethyl
group
general formula
aliphatic group
following general
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000068586A
Other languages
Japanese (ja)
Other versions
JP2001253890A (en
Inventor
英一郎 水島
立彪 韓
輝幸 林
正人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000068586A priority Critical patent/JP3610371B2/en
Publication of JP2001253890A publication Critical patent/JP2001253890A/en
Application granted granted Critical
Publication of JP3610371B2 publication Critical patent/JP3610371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な(α−及び/又はβ−ホルミルエチル)ホスフィンオキシド化合物又は(α−及び/又はβ−ホルミルエチル)ホスホン酸エステル化合物、及びそれらの製造方法に関するものである。
【0002】
ホルミルホスフィンオキシド化合物は、それを還元することにより容易に第3級ホスフィンに変換され、第3級ホスフィンが各種触媒反応の補助配位子として広く用いられていることから、きわめて有用な化合物であるといえる。さらに、同化合物は難燃剤、アクチニド金属抽出剤としても有用である。また、ホルミルホスホン酸エステル化合物は殺虫作用を有するホスホン酸エステルを製造するための有用な中間体であり、医薬、農薬のような各種化合物の製造原料又は合成中間体として広く利用できる。
【0003】
【従来の技術】
これまでにホルミルホスフィンオキシド化合物及びホルミルホスホン酸エステル化合物の製造方法は、その製造に用いるホスフィニル基又はホスホリル基含有出発物質自体の製造が困難であるため確立されていない。若干のホルミルホスホン酸エステル化合物は公知であるが、それらの製造可能なホルミルホスホン酸エステル化合物の種類は僅かであり、製造方法も一般性に欠ける。
【0004】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、新規且つ多様な、(α−及び/又はβ−ホルミルエチル)ホスフィンオキシド化合物又は(α−及び/又はβ−ホルミルエチル)ホスホン酸エステル化合物を、入手が容易な原料を用い、工業的に有利に提供することをその課題とするものである。
【0005】
【課題を解決するための手段】
本発明者らは、各種有用化合物の原料又は合成中間体として重要なホスフィニル基及び、ホスホリル基を有する新規なホルミル化合物を製造するために鋭意研究を重ねた結果、アルケニルホスフィンオキシド(L. -B. Han, R. Hua, and M. Tanaka, Angew. Chem., Int. Ed., 37, 94, 1998.)又はアルケニルホスホン酸エステル化合物(L. -B. Han and M. Tanaka, J. Am. Chem. Soc., 118, 1571, 1996.)のヒドロホルミル化反応により、新規の(α−及び/又はβ−ホルミルエチル)ホスフィンオキシド化合物又は(α−及び/又はβ−ホルミルエチル)ホスホン酸エステル化合物を容易に製造しうることを見出し、この知見に基づいて本発明をなすに至った。
【0006】
すなわち本発明によれば、触媒の存在下に、下記一般式(5)
【化11】

Figure 0003610371
(式中、R1及びR2は芳香族基又は脂肪族基を示し、R3は水素原子、芳香族基又は脂肪族基を示す)
で表されるアルケニルホスフィンオキシドと、一酸化炭素及び水素を反応させることを特徴とする、下記一般式(1)
【化12】
Figure 0003610371
(式中、R1〜R3は前記と同じ)
で表される(β−ホルミルエチル)ホスフィンオキシド化合物及び/又は下記一般式(2)
【化13】
Figure 0003610371
(式中、R1〜R3は前記と同じ)
で表される(α−ホルミルエチル)ホスフィンオキシド化合物を製造する方法が提供される。
また、本発明によれば、触媒の存在下に、下記一般式(6)
【化14】
Figure 0003610371
(式中、R4及びR5は芳香族基又は脂肪族基を示し、R6 は芳香族基又は脂肪族基を示す)
で表されるアルケニルホスホン酸エステルと、一酸化炭素及び水素を反応させることを特徴とする、下記一般式(3)
【化15】
Figure 0003610371
(式中、R4〜R6は前記と同じ)
で表される(β−ホルミルエチル)ホスホン酸エステル化合物及び/又は下記一般式(4)
【化16】
Figure 0003610371
(式中、R4〜R6は前記と同じ)
で表される(α−ホルミルエチル)ホスホン酸エステル化合物の製造方法が提供される。
さらに、本発明によれば、前記一般式(1)で表される(β−ホルミルエチル)ホスフィンオキシド化合物、前記一般式(2)で表される(α−ホルミルエチル)ホスフィンオキシド化合物及び前記一般式(4)で表される(α−ホルミルエチル)ホスホン酸エステル化合物が提供される。
【0007】
【発明の実施の形態】
本発明において用いるアルケニルホスフィンオキシド化合物は、下記一般式(5)で表される。
【化17】
Figure 0003610371
【0008】
前記式中、R1及びR2は芳香族基又は脂肪族基を示す。芳香族基の炭素数は6〜20、好ましくは6〜15である。この芳香族基には、アリール基及びアリールアルキル基(アラルキル基)が包含される。その具体例としては、フェニル、トリル、キシリル、ナフチル、ベンジル、フェネチル、ナフチルメチル等が挙げられる。脂肪族基の炭素数は1〜20、好ましくは1〜10である。この脂肪族基には、鎖状及び環状の飽和もしくは不飽和のものが包含される。鎖状のものとしては、炭素数1〜12、好ましくは1〜8のアルキル基、例えば、メチル、エチル、プロピル、ブチル、ヘキシル、ヘキセニル、ブテニル等が挙げられる。環状のものとしては、炭素数3〜10、好ましくは3〜8のシクロアルキル基、例えば、シクロヘキシル、シクロオクチル、シクロヘキセニル、シクロプロピル等が挙げられる。
前記式中、R3は水素原子、芳香族基又は脂肪族基を示す。この場合の芳香族基及び脂肪族基としては、前記R1及びR2に関して示したものと同様のものを示すことができる。
前記R1〜R3は、置換基を有していてもよい。この場合、置換基の具体例としては、炭素数1〜6のアルキル基を有するアルコキシ基やアシル基、アシロキシ基の外、ハロゲン(フッ素、塩素、臭素等)、トリメチルシリル基等のシリル基等を挙げることができる。
【0009】
前記一般式(5)で表されるアルケニルホスフィンオキシド化合物の好ましい具体例を示すと、エテニルジフェニルホスフィンオキシド、エテニルジメチルホスフィンオキシド、エテニルジシクロヘキシルホスフィンオキシド、1−(ジフェニルホスフィニル)−1−アリールエテン類、1−(ジメチルホスフィニル)−1−アリールエテン類、1−(ジシクロヘキシルホスフィニル)−1−アリールエテン類、1−(メチルフェニルホスフィニル)−1−アリールエテン類、2−(ジフェニルホスフィニル)−1−オクテン、5−シアノ−2−(ジフェニルホスフィニル)−1−ペンテン、2,8−ビス(ジフェニルホスフィニル)−1,8−ノナジエン、1−(1−(ジフェニルホスフィニル)エテニル)−1−シクロヘキセン等が挙げられるが、これらに限定されるものではない。
【0010】
本発明において用いるアルケニルホスホン酸エステル化合物は、下記一般式(6)で表される。
【化18】
Figure 0003610371
【0011】
前記式中、R4及びR5は、芳香族基又は脂肪族基を示す。この場合、芳香族基及び脂肪族基としては、前記R1及びR2に関して示したものと同様のものを示すことができる。
前記式中、R6 は芳香族基又は脂肪族基を示す。この場合、芳香族基及び脂肪族基としては、前記R1及びR2に関して示したものと同様のものを示すことができる。
前記R4〜R6は、前記した如き各種の置換基を有することができる。
【0012】
前記一般式(6)で表されるアルケニルホスホン酸エステル化合物の好ましい具体例を示すと、1−(ジメトキシホスホリル)−1−アリールエテン類、1−(ジエトキシホスホリル)−1−アリールエテン類、1−(ジイソプロポキシホスホリル)−1−アリールエテン類、1−(ジフェノキシホスホリル)−1−アリールエテン類、2−(ジメトキシホスホリル)−1−オクテン、5−シアノ−2−(ジメトキシホスホリル)−1−ペンテン、2,8−ビス(ジメトキシホスホリル)−1,8−ノナジエン、1−(1−(ジメトキシホスホリル)エテニル)シクロヘキセン、1,3−ビス(1’−(ジメトキシホスホリル)エテニル)ベンゼン、2−(ジメトキシホスホリル)−3,3−ジメチル−1−ブテン、2−(ジエトキシホスホリル)−3,3−ジメチル−1−ブテン、2−(ジイソプロポキシホスホリル)−3,3−ジメチル−1−ブテン、2−(ジフェノキシホスホリル)−3,3−ジメチル−1−ブテン等が挙げられるが、これらに限定されるものではない。
【0013】
本発明の反応において用いる一酸化炭素及び水素は容量の比率には特に制限はないが、一般的には1:4ないし4:1の容量比の範囲から選ばれる。この容量比における一酸化炭素及び水素のガス混合物を、アルケニルホスフィンオキシド化合物又はアルケニルホスホン酸エステル化合物に対して少なくとも化学量論的量使用する。圧力は、通例500kg/cm2ゲージ圧以下の範囲から選ばれ、好ましくは5ないし300kg/cm2ゲージ圧の範囲で実施される。
【0014】
本発明の反応の生起には、遷移金属触媒の使用が必須であり、触媒が存在しない場合には、(α−及び/又はβ−ホルミルエチル)ホスフィンオキシド化合物又は(α−及び/又はβ−ホルミルエチル)ホスホン酸エステル化合物は全く生成しない。特に好ましい金属としては、ロジウムとコバルトが挙げられる。ロジウム触媒としては種々の構造のものを用いることができるが、好適なものは、いわゆる低原子価のロジウム錯体である。例えばロジウムカルボニル、ロジウムジカルボニルアセチルアセトナート等のほか、ホスフィンやホスファイトを配位子とする錯体も好ましい結果をもたらす。また、3級ホスフィンや3級ホスファイトを配位子として含まない錯体と3級ホスフィンや3級ホスファイトを反応系中で混合し、3級ホスフィンや3級ホスファイトを配位子とする低原子価ロジウム錯体を発生させてそのまま触媒として用いる方法も好ましい態様である。その場合の配位子は、一般には3級ホスフィンや3級ホスファイトを配位子として含まない錯体中のロジウム原子に対して、1ないし50当量の範囲から選ばれ、好ましくは1ないし8当量の範囲で選ばれる。これらいずれかの方法で有利な性能を発揮する配位子としては、種々の3級ホスフィンや3級ホスファイトを挙げることができる。好適に用いることができる配位子を例示すると、トリフェニルホスフィン、フェニルジメチルホスフィン、トリ−オルト−トリルホスフィン、トリ−パラ−トリルホスフィン、トリ(1−ナフチル)ホスフィン、1,2−ビス(ジフェニルホスフィノ)エタン、1,3−ビス(ジフェニルホスフィノ)プロパン、1,4−ビス(ジフェニルホスフィノ)ブタン、トリフェニルホスファイト等が挙げられる。これに組み合わせて用いられる、3級ホスフィンや3級ホスファイトを配位子として含まない錯体としては例えばジ−μ−クロロテトラカルボニル二ロジウム、ロジウムジカルボニルアセチルアセトナート、テトラキス(アセテート)二ロジウム、ドデカカルボニル四ロジウム、ヒドリドテトラカルボニルロジウム等が有利であるが、これらに限定されるものではない。コバルト触媒としてはコバルトカルボニル、又は、そのホスフィン錯体を用いるのが好ましい。例えばオクタカルボニルジコバルト、ヒドリドテトラカルボニルコバルト、ヘキサカルボニルビス(トリフェニルホスフィン)ジコバルト等が挙げられるが、これらに限定されるものではない。
【0015】
これらの触媒の使用量はいわゆる触媒量で良く、一般的にはアルケニルホスフィンオキシド化合物又はアルケニルホスホン酸エステル化合物に対して1モル%以下で十分である。反応は溶媒を用いなくても実施できるが、不活性有機溶媒の存在において行うのが適当であり、炭化水素系、芳香族炭化水素系及びエーテル系の溶媒が一般に用いられる。反応温度は、あまりに低温では反応が有利な速度で進行せず、あまりに高温では触媒が分解するので、一般には室温ないし300℃の範囲から選ばれ、好ましくは室温ないし200℃の範囲で実施される。
【0016】
反応混合物からの精製物の分離はクロマトグラフィー、蒸留、再結晶等によって容易に達成される。
【0017】
【実施例】
本発明を実施例によってさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0018】
実施例1
オートクレーブ中に於いて、1−(ジフェニルホスフィニル)−1−フェニルエテン:0.5ミリモル、触媒としてのジ−μ−クロロテトラカルボニル二ロジウムを0.5モル%、配位子としてのトリフェニルホスフィンを4モル%を溶媒としてのトルエン2.5mlに溶解し、室温において100kg/cm2の一酸化炭素と水素容量比1:1のガス混合物を充填した後、120℃で18時間反応させた結果、3−(ジフェニルホスフィニル)−3−フェニルプロパナールが86%の収率で得られ、シリカゲルカラムクロマトグラフィー及び再結晶により70%の収率で単離された。このものは文献未記載の新規化合物であり、そのスペクトルデータは以下のとおりである。
1H NMR (CDCl3):δ9.6 (s, 1H, CHO), 7.9-7.1 (m, 15H, Ar-H), 4.19 (ddd, 1H, JP-H = 10.3, JH-H = 7.6, JH-H = 3.0, CH), 3.36 (m, 1H, CHAHB), 3.0 (ddd, 1H, JP-H = 18.6, JH-H = 10.6, JH-H = 3.0, CHAHB); 31P NMR(CDCl3):δ33.1; HRMS C21H19O2Pとしての計算値: 334.1123; 実測値: 334.1193.
【0019】
実施例2〜3
1−(ジフェニルホスフィニル)−1−フェニルエテンに代えて表1に示す種々のアルケニルホスフィンオキシド化合物以外は実施例1と同様にして反応を行った。反応生成物及び収率を表1にまとめて示した。
【0020】
【表1】
Figure 0003610371
【0021】
実施例2において得られた、3−(ジフェニルホスフィニル)−3−(4−クロロフェニル)プロパナールは文献未記載の新規化合物であり、そのスペクトルデータは以下のとおりである。
1H NMR (CDCl3):δ9.6 (s, 1H, CHO), 7.9-7.1 (m, 14H, Ar-H), 4.17 (ddd, 1H, JP-H = 10.3, JH-H = 7.9, JH-H = 3.0, CH), 3.31 (m, 1H, CHAHB), 2.98 (ddd, 1H, JP-H = 18.6, JH-H = 10.6, JH-H = 3.0, CHAHB); 13C NMR (CDCl3):δ198.5 (JC-P = 13.4), 134.0 (JC-P = 5.3), 133.3 (JC-P = 3.1), 132.3 (JC-P = 3.1), 131.8 (JC-P = 3.1), 131.2 (JC-P = 9.3), 131.1 (JC-P = 3.3), 131.0 (JC-P = 9.3), 130.8 (JC-P = 89.9), 130.7 (JC-P = 85.8), 129.1 (JC-P = 11.4), 128.6 (JC-P = 2.1), 128.4 (JC-P = 12.4), 44.0, 39.2 (JC-P = 69.2); 31P NMR(CDCl3):δ32.9; HRMS C21ClH18O2Pとしての計算値: 368.0733; 実測値: 368.0710.
【0022】
実施例3において得られた、3−(ジフェニルホスフィニル)−3−(4−メチルフェニル)プロパナールは文献未記載の新規化合物であり、その融点、スペクトルデータ及び元素分析値は以下のとおりである。
融点: 181-182 ℃; 1H NMR (CDCl3):δ9.59 (s, 1H, CHO), 7.91-7.15 (m, 12H, Ar-H), 6.83 (d, 2H, JH-H = 8.2, Ar-H), 4.16 (ddd, 1H, JP-H = 10.7, JH-H = 8.2, JH-H = 3.0, CH), 3.31 (m, 1H, CHAHB), 2.96 (ddd, 1H, JP-H = 18.3, JH-H = 10.7, JH-H = 3.0, CHAHB), 2.24 (s, 3H, CH3); 13C NMR (CDCl3):δ199.1 (JC-P = 13.5), 137.1 (JC-P = 3.1), 132.1 (JC-P = 3.0), 132.0 (JC-P = 6.0), 131.5 (JC-P = 3.1), 131.4 (JC-P = 95.0), 131.3 (JC-P = 8.3), 131.2 (JC-P = 9.3), 131.2 (JC-P = 100.2), 129.6 (JC-P = 5.1), 129.2 (JC-P = 2.0), 128.9 (JC-P = 11.4), 128.2 (JC-P = 10.4), 44.0, 39.7 (JC-P = 68.2), 31.0; 31P NMR (CDCl3):δ33.1; HRMS C22H21O2Pとしての計算値: 348.1279; 実測値: 348.1320. 元素分析値 C22H21O2Pとしての計算値: C, 75.85; H, 6.08. 実測値: C, 75.74; H, 6.19.
【0023】
実施例4
オートクレーブ中に於いて、1−(ジフェニルホスフィニル)−1−フェニルエテン:0.5ミリモル、触媒としてのロジウムジカルボニルアセチルアセトナートを1モル%、配位子としてのトリフェニルホスフィンを4モル%を溶媒としてのトルエン2.5mlに溶解し、室温において100kg/cm2の一酸化炭素と水素容量比1:1のガス混合物を充填した後、120℃で18時間反応させた結果、3−(ジフェニルホスフィニル)−3−フェニルプロパナールが92%の収率で得られた。
【0024】
実施例5〜9
1−(ジフェニルホスフィニル)−1−フェニルエテンに代えて表1に示す種々のアルケニルホスフィンオキシド化合物を用いた以外は実施例4と同様にして反応を行った。反応生成物及び収率を表2にまとめて示した。
【0025】
【表2】
Figure 0003610371
【0026】
実施例7において得られた、3−(ジフェニルホスフィニル)−3−(4−メトキシフェニル)プロパナールは文献未記載の新規化合物であり、その融点、スペクトルデータ及び元素分析値は以下の通りである。
融点 182-183℃; 1H NMR (CDCl3):δ9.59 (s, 1H, CHO), 7.9-7.2 (m, 12H, Ar-H), 6.7 (d, 2H, JH-H = 8.2, Ar-H), 4.14 (ddd, 1H, JP-H = 11.0, JH-H = 8.5, JH-H = 3.0, CH), 3.7 (s, 3H, OCH3), 3.3 (m, 1H, CHAHB), 2.9 (ddd, 1H, JP-H = 18.2, JH-H = 10.3, JH-H = 3.0, CHAHB); 13C NMR (CDCl3):δ199.2 (JC-P = 14.4), 158.8 (JC-P = 3.1), 132.1 (JC-P = 3.1), 131.6 (JC-P = 3.0), 131.3 (JC-P = 8.3), 131.3 (JC-P = 93.9), 131.2 (JC-P = 100.3), 131.1 (JC-P = 8.3), 130.8 (JC-P = 5.1), 128.9 (JC-P = 11.3), 128.2 (JC-P = 12.3), 127.1 (JC-P = 6.1), 114.0 (JC-P = 2.1), 55.2, 44.0, 39.2 (JC-P = 69.2); 31P NMR (CDCl3):δ33.0; HRMS C22H21O3Pとしての計算値: 364.1228; 実測値: 364.1260. 元素分析値 C22H21O3Pとしての計算値: C, 72.52; H, 5.81. 実測値: C, 72.44; H, 5.82.
【0027】
実施例8において得られた、3−(ジフェニルホスフィニル)−3−(2−メトキシフェニル)プロパナールは文献未記載の新規化合物であり、そのスペクトルデータは以下の通りである。
1H NMR (CDCl3):δ9.5 (s, 1H, CHO), 8.0-7.1 (m, 12H, Ar-H), 6.9 (t, 1H, JH-H = 7.7, Ar-H), 6.6 (d, 1H, JH-H = 7.9, Ar-H), 4.8 (ddd, 1H, JP-H = 10.7, JH-H = 8.8, JH-H = 3.6, CH), 3.5 (s, 3H, OCH3), 3.3 (m, 1H, CHAHB), 2.9 (ddd, 1H, JP-H = 18.0, JH-H = 9.4, JH-H = 3.6, CHAHB); 13C NMR (CDCl3):δ199.5 (JC-P = 14.4), 156.4 (JC-P = 6.3), 132.1 (JC-P = 2.0), 131.5 (JC-P = 100.2), 131.4 (JC-P = 100.2), 131.4 (JC-P = 3.1), 131.3 (JC-P = 9.3), 130.9 (JC-P = 9.3), 129.4 (JC-P = 4.1), 128.9 (JC-P = 11.4), 128.5 (JC-P = 2.0), 127.7 (JC-P = 11.4), 123.3 (JC-P = 6.3), 120.9 (JC-P = 2.1), 110.2, 55.2, 43.0, 31.4 (JC-P = 69.3); 31P NMR (CDCl3):δ33.3; HRMS C22H21O3Pとしての計算値: 364.1228; 実測値: 364.1256.
【0028】
実施例9において得られた、3−(ジフェニルホスフィニル)−3−(1−シクロヘキセニル)プロパナールは文献未記載の新規化合物であり、そのスペクトルデータは以下の通りである。
1H NMR (CDCl3):δ9.7 (s, 1H, CHO), 7.9-7.4 (m, 10H, Ar-H), 5.7 (m, 1H, CH), 3.4 (ddd, 1H, JP-H = 11.3, JH-H = 7.8, JH-H = 3.0, CH), 3.1 (m, 1H, CHAHB), 2.7 (ddd, 1H, JP-H = 18.3, JH-H = 9.8, JH-H = 3.0, CHAHB), 1.9 (m, 4H, CH2), 1.5 (m, 4H, CH2); 31P NMR (CDCl3):δ32.4; HRMS C21H23O2Pとしての計算値: 338.1436; 実測値: 338.1432.
【0029】
実施例10
オートクレーブ中に於いて、エチニルジフェニルホスフィンオキシド:0.5ミリモル、触媒としてのジ−μ−クロロテトラカルボニル二ロジウムを0.5モル%、配位子としての1,2−ビス(ジフェニルホスフィノ)エタンを4モル%を溶媒としてのトルエン2.5mlに溶解し、室温において100kg/cm2の一酸化炭素と水素容量比1:1のガス混合物を充填した後、120℃で18時間反応させた結果、2−(ジフェニルホスフィニル)プロパナールが84%の収率で得られた。このものは文献未記載の新規化合物であり、その融点、スペクトルデータ及び元素分析値は以下のとおりである。
【0030】
融点 142-143 ℃; 1H NMR (CDCl3):δ9.69 (d, 1H, JH-H =2.4, CHO), 7.78-7.48 (m, 10H, Ar-H), 3.6 (dqd, 1H, JP-H = 16.0, JH-H = 7.0, JH-H = 2.4, CH), 1.39 (dd, 3H, JH-P = 15.5, JH-H = 7.0, CH3); 13C NMR (CDCl3):δ198.2, 132.6 (JC-P = 3.0), 132.5 (JC-P = 2.0), 131.3 (JC-P = 9.3), 131.2 (JC-P = 9.3), 130.8 (JC-P = 99), 130.4 (JC-P = 99.1), 129.0 (JC-P = 5.1), 128.9 (JC-P = 5.3), 50.0 (JC-P = 58.9), 8.0 (JC-P = 3.1); 31P NMR (CDCl3):δ30.4; HRMS C5H11O4Pとしての計算値: 166.0395; 実測値: 166.0401. 元素分析値 C5H11O4P: C, 69.76; H, 5.85. 実測値: C, 69.66; H, 5.83.
【0031】
実施例11
反応温度を60℃で48時間反応させたほかは、実施例10と同様にして反応を行った結果、2−(ジフェニルホスフィニル)プロパナールが59%の収率で得られた。
【0032】
実施例12
配位子としての1,2−ビス(ジフェニルホスフィノ)エタンを使用せずに、反応温度を60℃で48時間反応させたほかは、実施例10と同様にして反応を行った結果、2−(ジフェニルホスフィニル)プロパナールが58%の収率で得られた。
【0033】
実施例13
オートクレーブ中に於いて、エチニルジフェニルホスフィンオキシド:0.5ミリモル、触媒としてのロジウムジカルボニルアセチルアセトナートを1モル%、配位子としての1,2−ビス(ジフェニルホスフィノ)エタンを4モル%を溶媒としてのトルエン2.5mlに溶解し、室温において100kg/cm2の一酸化炭素と水素容量比1:1のガス混合物を充填した後、120℃で18時間反応させた結果、2−(ジフェニルホスフィニル)プロパナールが90%の収率で得られた。
【0034】
実施例14
オートクレーブ中に於いて、1−(ジメトキシホスホリル)−1−フェニルエテン:0.5ミリモル、触媒としてのジ−μ−クロロテトラカルボニル二ロジウムを0.5モル%、配位子としてのトリフェニルホスフィンを4モル%を、溶媒としてのトルエン2.5mlに溶解し、室温において100kg/cm2の一酸化炭素と水素容量比1:1のガス混合物を充填した後、150℃で18時間反応させた結果、3−(ジメトキシホスホリル)−3−フェニルプロパナールが89%の収率で得られた。このものは文献未記載の新規化合物であり、その沸点、スペクトルデータ及び元素分析値は以下のとおりである。
【0035】
沸点 82 ℃ / 0.23 mmHg; 1H NMR (CDCl3):δ9.64 (s, 1H, CHO), 7.22-7.34 (m, 5H, Ar-H), 3.76 (ddd, 1H, JP-H = 22.5, JH-H = 9.2, JH-H = 5.2, CH), 3.66 (d, 3H, JP-H = 11.0, OCH3), 3.47 (d, 3H, JP-H = 10.7, OCH3), 3.06-3.20 (m, 2H, CH2); 13C NMR (CDCl3):δ198.6 (JC-P = 15.5), 134.9 (JC-P = 7.2), 129.1 (JC-P = 6.2), 128.8 (JC-P = 3.1), 127.7 (JC-P = 3.1), 53.7 (JC-P = 7.2), 52.9 (JC-P = 7.2), 43.9 (JC-P = 2.1), 37.4 (JC-P = 141.7); 31P NMR (CDCl3):δ29.7; HRMS C11H15O4Pとしての計算値: 242.0707; 実測値: 242.0732. 元素分析値 C11H15O4Pとしての計算値: C, 54.55; H, 6.24. 実測値: C, 54.28; H, 6.37.
【0036】
実施例15〜16
実施例15:配位子としてのトリフェニルホスフィンを2モル%、及び、実施例16:配位子としてのトリフェニルホスフィンを8モル%使用したほかは、実施例14と同様にして反応を行った結果、3−(ジメトキシホスホリル)−3−フェニルプロパナールが、実施例15:69%、及び、実施例16:73%の収率で得られた。
【0037】
実施例17
配位子としてのトリフェニルホスフィンを使用せずに、反応温度を150℃で2時間反応させたほかは、実施例14と同様にして反応を行った結果、3−(ジメトキシホスホリル)−3−フェニルプロパナールが42%の収率で得られた。
【0038】
実施例18〜20
実施例18:配位子としての1,2−ビス(ジフェニルホスフィノ)エタンを4モル%、実施例19:配位子としての1,3−ビス(ジフェニルホスフィノ)プロパンを4モル%、及び、実施例20:配位子としての1,4−ビス(ジフェニルホスフィノ)ブタンを4モル%使用したほかは、実施例14と同様にして反応を行った結果、3−(ジメトキシホスホリル)−3−フェニルプロパナールが、実施例18:44%、実施例19:41%、及び、実施例20:62%の収率で得られた。
【0039】
実施例21
オートクレーブ中に於いて、2−(ジメトキシホスホリル)−3,3−ジメチル−1−ブテン:0.5ミリモル、触媒としてのロジウムジカルボニルアセチルアセトナートを1モル%、配位子としてのトリフェニルホスフィンを4モル%を溶媒としてのトルエン2.5mlに溶解し、室温において100kg/cm2の一酸化炭素と水素容量比1:1のガス混合物を充填した後、120℃で18時間反応させた結果、3−(ジメトキシホスホリル)−4,4−ジメチルペンタナールが62%の収率で得られた。このものは文献未記載の新規化合物であり、そのスペクトルデータは以下のとおりである。
【0040】
1H NMR (CDCl3):δ9.75 (s, 1H, CHO), 3.73 (d, 3H, JP-H = 10.6, OCH3), 3.72 (d, 3H, JP-H = 10.6, OCH3), 2.71-2.62 (m, 1H, CH), 2.56-2.39 (m, 2H, CH2), 1.07 (d, 9H, JP-H = 2.7, C(CH3)3); 31P NMR (CDCl3):δ34.0.
【0041】
実施例22
オートクレーブ中に於いて、2−(ジメトキシホスホリル)−1−オクテン:0.5ミリモル、触媒としてのジ−μ−クロロテトラカルボニル二ロジウムを0.5モル%、配位子としての1,3−ビス(ジフェニルホスフィノ)プロパンを4モル%を溶媒としての1,4−ジオキサン2.5mlに溶解し、室温において100kg/cm2の一酸化炭素と水素容量比1:1のガス混合物を充填した後、150℃で18時間反応させた結果、3−(ジメトキシホスホリル)−ノナナールが57%の収率で得られた。このものは文献未記載の新規化合物であり、そのスペクトルデータは以下のとおりである。
【0042】
1H NMR (CDCl3):δ9.7 (s, 1H, CHO), 3.7 (d, 6H, JP-H = 10.6, (OCH3)2), 2.8 (m, 1H, CH), 2.5 (m, 2H, CH2), 1.73 (m, 2H, CH2), 1.23-1.38 (m, 8H, -(CH2)4-), 0.83 (t, 3H, JP-H = 6.8, CH3); 13C NMR (CDCl3):δ199.7 (JC-P = 10.3), 52.7 (JC-P = 6.1), 52.6 (JC-P = 7.3), 42.8 (JC-P = 3.1), 32.0 (JC-P = 143.6), 31.6, 29.2, 28.9 (JC-P = 4.1), 27.5 (JC-P = 10.3), 22.6, 14.1; 31P NMR (CDCl3):δ35.1.
【0043】
実施例23
触媒としてのロジウムジカルボニルアセチルアセトナートを1モル%を使用したほかは実施例22と同様にして反応を行った結果、3−(ジメトキシホスホリル)−ノナナールが63%の収率で得られた。
【0044】
実施例24
オートクレーブ中に於いて、1−(ジメトキシホスホリル)−1−フェニルエテン:0.5ミリモル、触媒としてのオクタカルボニルジコバルトを2.5モル%、溶媒としてのトルエン2mlに溶解し、室温において120kg/cm2の一酸化炭素と水素容量比1:1のガス混合物を充填した後、200℃で65.5時間反応させた結果、3−(ジメトキシホスホリル)−3−フェニルプロパナールが10%の収率で得られた。
【0045】
【発明の効果】
本発明により、医薬・農薬などファインケミカルズや難燃剤、アクチニド金属抽出剤などの合成に有用な(α−及び/又はβ−ホルミルエチル)ホスフィンオキシド化合物又は、(α−及び/又はβ−ホルミルエチル)ホスホン酸エステル化合物を簡単なプロセスで、かつ効率的に合成することができ、その分離精製も容易である。従って本発明の工業的意義は多大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel (α- and / or β-formylethyl) phosphine oxide compound or (α- and / or β-formylethyl) phosphonic acid ester compound, and a method for producing them.
[0002]
Formylphosphine oxide compounds are very useful compounds because they are easily converted to tertiary phosphines by reducing them, and tertiary phosphines are widely used as auxiliary ligands for various catalytic reactions. It can be said. Further, the compound is useful as a flame retardant and an actinide metal extractant. Formylphosphonic acid ester compounds are useful intermediates for producing phosphonic acid esters having insecticidal action, and can be widely used as production raw materials or synthetic intermediates for various compounds such as pharmaceuticals and agricultural chemicals.
[0003]
[Prior art]
So far, methods for producing formylphosphine oxide compounds and formylphosphonic acid ester compounds have not been established since it is difficult to produce a phosphinyl group-containing phosphoryl group-containing starting material itself. Although some formylphosphonic acid ester compounds are known, there are only a few types of formylphosphonic acid ester compounds that can be produced, and the production method lacks generality.
[0004]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a novel and diverse (α- and / or β-formylethyl) phosphine oxide compound or (α- and / or β-formylethyl) phosphonic acid ester compound. It is an object to provide an industrially advantageous use of an easily available raw material.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to produce a novel formyl compound having a phosphinyl group and a phosphoryl group that are important as raw materials or synthetic intermediates for various useful compounds, the present inventors have obtained alkenylphosphine oxide (L.-B Han, R. Hua, and M. Tanaka, Angew. Chem., Int. Ed., 37, 94, 1998.) or alkenylphosphonic acid ester compounds (L.-B. Han and M. Tanaka, J. Am Chem. Soc., 118, 1571, 1996.) to form novel (α- and / or β-formylethyl) phosphine oxide compounds or (α- and / or β-formylethyl) phosphonic acid esters. It has been found that a compound can be easily produced, and the present invention has been made based on this finding.
[0006]
That is, according to the present invention, in the presence of a catalyst, the following general formula (5)
Embedded image
Figure 0003610371
(Wherein R 1 and R 2 represent an aromatic group or an aliphatic group, and R 3 represents a hydrogen atom, an aromatic group or an aliphatic group)
The following general formula (1), characterized in that carbon monoxide and hydrogen are reacted:
Embedded image
Figure 0003610371
(Wherein R 1 to R 3 are the same as above)
(Β-formylethyl) phosphine oxide compound represented by the following general formula (2)
Embedded image
Figure 0003610371
(Wherein R 1 to R 3 are the same as above)
(Α-formylethyl) phosphine oxide compound represented by the formula:
Further, according to the present invention, in the presence of a catalyst, the following general formula (6)
Embedded image
Figure 0003610371
(Wherein, R 4 and R 5 represents an aromatic group or aliphatic group, R 6 represents a fang aromatic or aliphatic group)
The following general formula (3), wherein carbon monoxide and hydrogen are reacted:
Embedded image
Figure 0003610371
(Wherein R 4 to R 6 are the same as above)
(Β-formylethyl) phosphonic acid ester compound represented by: and / or the following general formula (4)
Embedded image
Figure 0003610371
(Wherein R 4 to R 6 are the same as above)
(Α-formylethyl) phosphonic acid ester compound represented by the formula:
Furthermore, according to the present invention, the above formula (1) (beta-formylethyl) phosphine oxide compound, represented by the above general formula (2) (alpha-formylethyl) phosphine oxide compound Mono及 beauty An (α-formylethyl) phosphonic acid ester compound represented by the general formula (4) is provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The alkenyl phosphine oxide compound used in the present invention is represented by the following general formula (5).
Embedded image
Figure 0003610371
[0008]
In the above formula, R 1 and R 2 represent an aromatic group or an aliphatic group. The carbon number of the aromatic group is 6-20, preferably 6-15. This aromatic group includes an aryl group and an arylalkyl group (aralkyl group). Specific examples thereof include phenyl, tolyl, xylyl, naphthyl, benzyl, phenethyl, naphthylmethyl and the like. The aliphatic group has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. This aliphatic group includes linear and cyclic saturated or unsaturated groups. Examples of the chain include alkyl groups having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, such as methyl, ethyl, propyl, butyl, hexyl, hexenyl, butenyl and the like. Examples of the cyclic group include cycloalkyl groups having 3 to 10 carbon atoms, preferably 3 to 8 carbon atoms, such as cyclohexyl, cyclooctyl, cyclohexenyl, cyclopropyl and the like.
In the above formula, R 3 represents a hydrogen atom, an aromatic group or an aliphatic group. In this case, the aromatic group and the aliphatic group can be the same as those shown for R 1 and R 2 .
R 1 to R 3 may have a substituent. In this case, specific examples of the substituent include an alkoxy group having 1 to 6 carbon atoms, an acyl group, an acyloxy group, a halogen (fluorine, chlorine, bromine, etc.), a silyl group such as a trimethylsilyl group, and the like. Can be mentioned.
[0009]
Preferred specific examples of the alkenylphosphine oxide compound represented by the general formula (5) are ethenyl diphenylphosphine oxide, ethenyldimethylphosphine oxide, ethenyl dicyclohexylphosphine oxide, 1- (diphenylphosphinyl) -1 -Arylethenes, 1- (dimethylphosphinyl) -1-arylethenes, 1- (dicyclohexylphosphinyl) -1-arylethenes, 1- (methylphenylphosphinyl) -1-arylethenes 2- (diphenylphosphinyl) -1-octene, 5-cyano-2- (diphenylphosphinyl) -1-pentene, 2,8-bis (diphenylphosphinyl) -1,8-nonadiene, -(1- (diphenylphosphinyl) ethenyl) -1-cyclohexene and the like It is, but not limited thereto.
[0010]
The alkenylphosphonic acid ester compound used in the present invention is represented by the following general formula (6).
Embedded image
Figure 0003610371
[0011]
In the above formula, R 4 and R 5 represent an aromatic group or an aliphatic group. In this case, examples of the aromatic group and the aliphatic group are the same as those shown for R 1 and R 2 .
In the formula, R 6 represents a fang aromatic or aliphatic group. In this case, examples of the aromatic group and the aliphatic group are the same as those shown for R 1 and R 2 .
R 4 to R 6 may have various substituents as described above.
[0012]
When showing a preferred embodiment of the alkenyl phosphonic acid ester compound represented by the general formula (6), 1 - (dimethoxyphosphoryl) -1- Arirueten compound, 1- (diethoxyphosphoryl) -1-Arirueten acids, 1- (diisopropoxyphosphoryl) -1-arylethenes, 1- (diphenoxyphosphoryl) -1-arylethenes, 2- (dimethoxyphosphoryl) -1-octene, 5-cyano-2- (dimethoxyphosphoryl) -1-pentene, 2,8-bis (dimethoxyphosphoryl) -1,8-nonadiene, 1- (1- (dimethoxyphosphoryl) ethenyl) cyclohexene, 1,3-bis (1 ′-(dimethoxyphosphoryl) ethenyl) benzene 2- (dimethoxyphosphoryl) -3,3-dimethyl-1-butene, 2- (diethoxyphospho) ) -3,3-dimethyl-1-butene, 2- (diisopropoxyphosphoryl) -3,3-dimethyl-1-butene, 2- (diphenoxyphosphoryl) -3,3-dimethyl-1-butene, etc. However, it is not limited to these.
[0013]
Carbon monoxide and hydrogen used in the reaction of the present invention are not particularly limited in volume ratio, but are generally selected from a volume ratio range of 1: 4 to 4: 1. A gas mixture of carbon monoxide and hydrogen in this volume ratio is used at least in a stoichiometric amount with respect to the alkenyl phosphine oxide compound or alkenyl phosphonate compound. The pressure is usually selected from the range of 500 kg / cm 2 gauge pressure or less, preferably 5 to 300 kg / cm 2 gauge pressure.
[0014]
The occurrence of the reaction of the present invention requires the use of a transition metal catalyst. When no catalyst is present, the (α- and / or β-formylethyl) phosphine oxide compound or (α- and / or β- No formylethyl) phosphonate compound is formed. Particularly preferred metals include rhodium and cobalt. As the rhodium catalyst, those having various structures can be used, but a preferable one is a so-called low-valent rhodium complex. For example, in addition to rhodium carbonyl, rhodium dicarbonyl acetylacetonate, etc., complexes having phosphine or phosphite as a ligand also give favorable results. Moreover, the complex which does not contain tertiary phosphine or tertiary phosphite as a ligand and tertiary phosphine or tertiary phosphite are mixed in the reaction system, and the low phosphine containing tertiary phosphine or tertiary phosphite as a ligand is used. A method in which a valent rhodium complex is generated and used as it is as a catalyst is also a preferred embodiment. In this case, the ligand is generally selected from the range of 1 to 50 equivalents, preferably 1 to 8 equivalents, relative to the rhodium atom in the complex not containing tertiary phosphine or tertiary phosphite as a ligand. Is selected within the range. Examples of ligands that exhibit advantageous performance by any of these methods include various tertiary phosphines and tertiary phosphites. Examples of ligands that can be suitably used include triphenylphosphine, phenyldimethylphosphine, tri-ortho-tolylphosphine, tri-para-tolylphosphine, tri (1-naphthyl) phosphine, 1,2-bis (diphenyl). Phosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, triphenyl phosphite and the like. Examples of the complex not containing tertiary phosphine or tertiary phosphite used as a ligand include di-μ-chlorotetracarbonyl dirhodium, rhodium dicarbonyl acetylacetonate, tetrakis (acetate) dirhodium, Dodecacarbonyltetrarhodium, hydridotetracarbonylrhodium and the like are advantageous, but are not limited thereto. As the cobalt catalyst, it is preferable to use cobalt carbonyl or a phosphine complex thereof. Examples include octacarbonyl dicobalt, hydridotetracarbonylcobalt, hexacarbonylbis (triphenylphosphine) dicobalt, but are not limited thereto.
[0015]
The amount of these catalysts used may be a so-called catalytic amount, and generally 1 mol% or less is sufficient with respect to the alkenylphosphine oxide compound or alkenylphosphonic acid ester compound. Although the reaction can be carried out without using a solvent, it is suitably carried out in the presence of an inert organic solvent, and hydrocarbon-based, aromatic hydrocarbon-based and ether-based solvents are generally used. The reaction temperature is generally selected from the range of room temperature to 300 ° C., preferably from room temperature to 200 ° C., because the reaction does not proceed at an advantageous rate at too low temperature and the catalyst decomposes at too high temperature. .
[0016]
Separation of the purified product from the reaction mixture is easily achieved by chromatography, distillation, recrystallization and the like.
[0017]
【Example】
Examples The present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0018]
Example 1
In the autoclave, 1- (diphenylphosphinyl) -1-phenylethene: 0.5 mmol, 0.5 mol% of di-μ-chlorotetracarbonyldirhodium as a catalyst, trimethyl as a ligand 4 mol% of phenylphosphine is dissolved in 2.5 ml of toluene as a solvent, charged with 100 kg / cm 2 of carbon monoxide and a 1: 1 hydrogen volume ratio gas mixture at room temperature, and then reacted at 120 ° C. for 18 hours. As a result, 3- (diphenylphosphinyl) -3-phenylpropanal was obtained in a yield of 86%, and was isolated in a yield of 70% by silica gel column chromatography and recrystallization. This is a novel compound not described in the literature, and its spectrum data is as follows.
1 H NMR (CDCl 3 ): δ9.6 (s, 1H, CHO), 7.9-7.1 (m, 15H, Ar-H), 4.19 (ddd, 1H, J PH = 10.3, J HH = 7.6, J HH = 3.0, CH), 3.36 (m, 1H, CH A H B ), 3.0 (ddd, 1H, J PH = 18.6, J HH = 10.6, J HH = 3.0, CH A H B ); 31 P NMR (CDCl 3 ): δ33.1; Calculated as HRMS C 21 H 19 O 2 P: 334.1123; Found: 334.1193.
[0019]
Examples 2-3
The reaction was performed in the same manner as in Example 1 except that various alkenylphosphine oxide compounds shown in Table 1 were used instead of 1- (diphenylphosphinyl) -1-phenylethene. The reaction products and yields are summarized in Table 1.
[0020]
[Table 1]
Figure 0003610371
[0021]
3- (Diphenylphosphinyl) -3- (4-chlorophenyl) propanal obtained in Example 2 is a novel compound not described in any literature, and its spectral data are as follows.
1 H NMR (CDCl 3 ): δ9.6 (s, 1H, CHO), 7.9-7.1 (m, 14H, Ar-H), 4.17 (ddd, 1H, J PH = 10.3, J HH = 7.9, J HH = 3.0, CH), 3.31 (m, 1H, CH A H B ), 2.98 (ddd, 1H, J PH = 18.6, J HH = 10.6, J HH = 3.0, CH A H B ); 13 C NMR (CDCl 3 ): δ198.5 (J CP = 13.4), 134.0 (J CP = 5.3), 133.3 (J CP = 3.1), 132.3 (J CP = 3.1), 131.8 (J CP = 3.1), 131.2 (J CP = 9.3), 131.1 (J CP = 3.3), 131.0 (J CP = 9.3), 130.8 (J CP = 89.9), 130.7 (J CP = 85.8), 129.1 (J CP = 11.4), 128.6 (J CP = 2.1) , 128.4 (J CP = 12.4), 44.0, 39.2 (J CP = 69.2); 31 P NMR (CDCl 3 ): δ 32.9; Calculated as HRMS C 21 ClH 18 O 2 P: 368.0733; Found: 368.0710 .
[0022]
3- (Diphenylphosphinyl) -3- (4-methylphenyl) propanal obtained in Example 3 is a novel compound not described in any literature, and its melting point, spectral data and elemental analysis values are as follows. It is.
Melting point: 181-182 ° C; 1 H NMR (CDCl 3 ): δ9.59 (s, 1H, CHO), 7.91-7.15 (m, 12H, Ar-H), 6.83 (d, 2H, J HH = 8.2, Ar-H), 4.16 (ddd, 1H, J PH = 10.7, J HH = 8.2, J HH = 3.0, CH), 3.31 (m, 1H, CH A H B ), 2.96 (ddd, 1H, J PH = 18.3, J HH = 10.7, J HH = 3.0, CH A H B ), 2.24 (s, 3H, CH 3 ); 13 C NMR (CDCl 3 ): δ199.1 (J CP = 13.5), 137.1 (J CP = 3.1), 132.1 (J CP = 3.0), 132.0 (J CP = 6.0), 131.5 (J CP = 3.1), 131.4 (J CP = 95.0), 131.3 (J CP = 8.3), 131.2 (J CP = 9.3 ), 131.2 (J CP = 100.2), 129.6 (J CP = 5.1), 129.2 (J CP = 2.0), 128.9 (J CP = 11.4), 128.2 (J CP = 10.4), 44.0, 39.7 (J CP = 68.2 ), 31.0; 31 P NMR (CDCl 3 ): δ33.1; Calculated as HRMS C 22 H 21 O 2 P: 348.1279; Found: 348.1320. Calculated as elemental analysis C 22 H 21 O 2 P : C, 75.85; H, 6.08. Found: C, 75.74; H, 6.19.
[0023]
Example 4
In the autoclave, 1- (diphenylphosphinyl) -1-phenylethene: 0.5 mmol, 1 mol% rhodium dicarbonylacetylacetonate as catalyst, 4 mol of triphenylphosphine as ligand % Was dissolved in 2.5 ml of toluene as a solvent, charged with 100 kg / cm 2 of carbon monoxide and a gas mixture having a hydrogen volume ratio of 1: 1 at room temperature, and then reacted at 120 ° C. for 18 hours. (Diphenylphosphinyl) -3-phenylpropanal was obtained in 92% yield.
[0024]
Examples 5-9
The reaction was conducted in the same manner as in Example 4 except that various alkenylphosphine oxide compounds shown in Table 1 were used instead of 1- (diphenylphosphinyl) -1-phenylethene. The reaction products and yields are summarized in Table 2.
[0025]
[Table 2]
Figure 0003610371
[0026]
3- (Diphenylphosphinyl) -3- (4-methoxyphenyl) propanal obtained in Example 7 is a novel compound not described in literature, and its melting point, spectral data and elemental analysis values are as follows. It is.
Melting point 182-183 ° C; 1 H NMR (CDCl 3 ): δ9.59 (s, 1H, CHO), 7.9-7.2 (m, 12H, Ar-H), 6.7 (d, 2H, J HH = 8.2, Ar -H), 4.14 (ddd, 1H, J PH = 11.0, J HH = 8.5, J HH = 3.0, CH), 3.7 (s, 3H, OCH 3 ), 3.3 (m, 1H, CH A H B ), 2.9 (ddd, 1H, J PH = 18.2, J HH = 10.3, J HH = 3.0, CH A H B ); 13 C NMR (CDCl 3 ): δ199.2 (J CP = 14.4), 158.8 (J CP = 3.1), 132.1 (J CP = 3.1), 131.6 (J CP = 3.0), 131.3 (J CP = 8.3), 131.3 (J CP = 93.9), 131.2 (J CP = 100.3), 131.1 (J CP = 8.3) , 130.8 (J CP = 5.1), 128.9 (J CP = 11.3), 128.2 (J CP = 12.3), 127.1 (J CP = 6.1), 114.0 (J CP = 2.1), 55.2, 44.0, 39.2 (J CP = 69.2); 31 P NMR (CDCl 3 ): δ33.0; Calculated as HRMS C 22 H 21 O 3 P: 364.1228; Found: 364.1260. Calculated as Elemental Analysis C 22 H 21 O 3 P: C, 72.52; H, 5.81. Found: C, 72.44; H, 5.82.
[0027]
3- (Diphenylphosphinyl) -3- (2-methoxyphenyl) propanal obtained in Example 8 is a novel compound not described in any literature, and its spectral data is as follows.
1 H NMR (CDCl 3 ): δ9.5 (s, 1H, CHO), 8.0-7.1 (m, 12H, Ar-H), 6.9 (t, 1H, J HH = 7.7, Ar-H), 6.6 ( d, 1H, J HH = 7.9, Ar-H), 4.8 (ddd, 1H, J PH = 10.7, J HH = 8.8, J HH = 3.6, CH), 3.5 (s, 3H, OCH 3 ), 3.3 ( m, 1H, CH A H B ), 2.9 (ddd, 1H, J PH = 18.0, J HH = 9.4, JH-H = 3.6, CH A H B ); 13 C NMR (CDCl 3 ): δ199.5 ( J CP = 14.4), 156.4 (J CP = 6.3), 132.1 (J CP = 2.0), 131.5 (J CP = 100.2), 131.4 (J CP = 100.2), 131.4 (J CP = 3.1), 131.3 (J CP = 9.3), 130.9 (J CP = 9.3), 129.4 (J CP = 4.1), 128.9 (J CP = 11.4), 128.5 (J CP = 2.0), 127.7 (J CP = 11.4), 123.3 (J CP = 6.3 ), 120.9 (J CP = 2.1), 110.2, 55.2, 43.0, 31.4 (J CP = 69.3); 31 P NMR (CDCl 3 ): δ33.3; Calculated as HRMS C 22 H 21 O 3 P: 364.1228 ; Actual value: 364.1256.
[0028]
3- (Diphenylphosphinyl) -3- (1-cyclohexenyl) propanal obtained in Example 9 is a novel compound not described in any literature, and its spectral data are as follows.
1 H NMR (CDCl 3 ): δ9.7 (s, 1H, CHO), 7.9-7.4 (m, 10H, Ar-H), 5.7 (m, 1H, CH), 3.4 (ddd, 1H, J PH = 11.3, J HH = 7.8, J HH = 3.0, CH), 3.1 (m, 1H, CH A H B ), 2.7 (ddd, 1H, J PH = 18.3, J HH = 9.8, J HH = 3.0, CH A H B ), 1.9 (m, 4H, CH 2 ), 1.5 (m, 4H, CH 2 ); 31 P NMR (CDCl 3 ): δ32.4; Calculated as HRMS C 21 H 23 O 2 P: 338.1436 ; Actual value: 338.1432.
[0029]
Example 10
In an autoclave, ethynyldiphenylphosphine oxide: 0.5 mmol, 0.5 mol% of di-μ-chlorotetracarbonyldirhodium as a catalyst, 1,2-bis (diphenylphosphino) as a ligand Ethane was dissolved in 2.5 ml of toluene as a solvent, charged with 100 kg / cm 2 of carbon monoxide and a 1: 1 hydrogen volume ratio gas mixture at room temperature, and then reacted at 120 ° C. for 18 hours. As a result, 2- (diphenylphosphinyl) propanal was obtained in a yield of 84%. This is a novel compound not described in the literature, and its melting point, spectrum data and elemental analysis values are as follows.
[0030]
Melting point 142-143 ° C; 1 H NMR (CDCl 3 ): δ9.69 (d, 1H, J HH = 2.4, CHO), 7.78-7.48 (m, 10H, Ar-H), 3.6 (dqd, 1H, J PH = 16.0, J HH = 7.0, J HH = 2.4, CH), 1.39 (dd, 3H, J HP = 15.5, J HH = 7.0, CH 3 ); 13 C NMR (CDCl 3 ): δ198.2, 132.6 (J CP = 3.0), 132.5 (J CP = 2.0), 131.3 (J CP = 9.3), 131.2 (J CP = 9.3), 130.8 (J CP = 99), 130.4 (J CP = 99.1), 129.0 (J CP = 5.1), 128.9 (J CP = 5.3), 50.0 (J CP = 58.9), 8.0 (J CP = 3.1); 31 P NMR (CDCl 3 ): δ30.4; HRMS C 5 H 11 O 4 P Calculated value: 166.0395; Found: 166.0401. Elemental analysis C 5 H 11 O 4 P: C, 69.76; H, 5.85. Found: C, 69.66; H, 5.83.
[0031]
Example 11
The reaction was conducted in the same manner as in Example 10 except that the reaction temperature was 48 ° C. for 48 hours. As a result, 2- (diphenylphosphinyl) propanal was obtained in a yield of 59%.
[0032]
Example 12
As a result of carrying out the reaction in the same manner as in Example 10 except that the reaction temperature was 60 ° C. for 48 hours without using 1,2-bis (diphenylphosphino) ethane as a ligand. -(Diphenylphosphinyl) propanal was obtained in 58% yield.
[0033]
Example 13
In an autoclave, ethynyl diphenylphosphine oxide: 0.5 mmol, rhodium dicarbonylacetylacetonate as a catalyst, 1 mol%, 1,2-bis (diphenylphosphino) ethane as a ligand, 4 mol% Was dissolved in 2.5 ml of toluene as a solvent, charged with 100 kg / cm 2 of carbon monoxide and a gas mixture with a hydrogen volume ratio of 1: 1 at room temperature, and then reacted at 120 ° C. for 18 hours. As a result, 2- ( Diphenylphosphinyl) propanal was obtained in 90% yield.
[0034]
Example 14
In an autoclave, 1- (dimethoxyphosphoryl) -1-phenylethene: 0.5 mmol, 0.5 mol% of di-μ-chlorotetracarbonyldirhodium as a catalyst, triphenylphosphine as a ligand 4 mol% was dissolved in 2.5 ml of toluene as a solvent, charged with 100 kg / cm 2 of carbon monoxide and a 1: 1 hydrogen volume ratio gas mixture at room temperature, and then reacted at 150 ° C. for 18 hours. As a result, 3- (dimethoxyphosphoryl) -3-phenylpropanal was obtained with a yield of 89%. This is a novel compound not described in any literature, and its boiling point, spectral data and elemental analysis values are as follows.
[0035]
Boiling point 82 ° C / 0.23 mmHg; 1 H NMR (CDCl 3 ): δ9.64 (s, 1H, CHO), 7.22-7.34 (m, 5H, Ar-H), 3.76 (ddd, 1H, J PH = 22.5, J HH = 9.2, J HH = 5.2, CH), 3.66 (d, 3H, J PH = 11.0, OCH 3 ), 3.47 (d, 3H, J PH = 10.7, OCH 3 ), 3.06-3.20 (m, 2H , CH 2 ); 13 C NMR (CDCl 3 ): δ198.6 (J CP = 15.5), 134.9 (J CP = 7.2), 129.1 (J CP = 6.2), 128.8 (J CP = 3.1), 127.7 (J CP = 3.1), 53.7 (J CP = 7.2), 52.9 (J CP = 7.2), 43.9 (J CP = 2.1), 37.4 (J CP = 141.7); 31 P NMR (CDCl 3 ): δ29.7; HRMS Calculated as C 11 H 15 O 4 P: 242.0707; Found: 242.0732. Elemental Analysis Calculated as C 11 H 15 O 4 P: C, 54.55; H, 6.24. Found: C, 54.28; H , 6.37.
[0036]
Examples 15-16
Example 15: The reaction was carried out in the same manner as in Example 14 except that 2 mol% of triphenylphosphine as a ligand was used, and Example 16: 8 mol% of triphenylphosphine as a ligand was used. As a result, 3- (dimethoxyphosphoryl) -3-phenylpropanal was obtained in yields of Example 15: 69% and Example 16: 73%.
[0037]
Example 17
As a result of carrying out the reaction in the same manner as in Example 14 except that the reaction temperature was 150 ° C. for 2 hours without using triphenylphosphine as a ligand, 3- (dimethoxyphosphoryl) -3- Phenylpropanal was obtained in a yield of 42%.
[0038]
Examples 18-20
Example 18: 4 mol% 1,2-bis (diphenylphosphino) ethane as ligand, Example 19: 4 mol% 1,3-bis (diphenylphosphino) propane as ligand, And Example 20: The reaction was conducted in the same manner as in Example 14 except that 4 mol% of 1,4-bis (diphenylphosphino) butane as a ligand was used. As a result, 3- (dimethoxyphosphoryl) was obtained. -3-Phenylpropanal was obtained in yields of Example 18: 44%, Example 19: 41%, and Example 20: 62%.
[0039]
Example 21
In an autoclave, 2- (dimethoxyphosphoryl) -3,3-dimethyl-1-butene: 0.5 mmol, rhodium dicarbonylacetylacetonate as a catalyst, 1 mol%, triphenylphosphine as a ligand Is obtained by dissolving 4 mol% in 2.5 ml of toluene as a solvent, filling a gas mixture of 100 kg / cm 2 of carbon monoxide and a hydrogen capacity ratio of 1: 1 at room temperature, and then reacting at 120 ° C. for 18 hours. 3- (dimethoxyphosphoryl) -4,4-dimethylpentanal was obtained in a yield of 62%. This is a novel compound not described in the literature, and its spectrum data is as follows.
[0040]
1 H NMR (CDCl 3 ): δ9.75 (s, 1H, CHO), 3.73 (d, 3H, J PH = 10.6, OCH 3 ), 3.72 (d, 3H, J PH = 10.6, OCH 3 ), 2.71 -2.62 (m, 1H, CH), 2.56-2.39 (m, 2H, CH 2 ), 1.07 (d, 9H, J PH = 2.7, C (CH 3 ) 3 ); 31 P NMR (CDCl 3 ): δ34 .0.
[0041]
Example 22
In the autoclave, 2- (dimethoxyphosphoryl) -1-octene: 0.5 mmol, 0.5 mol% of di-μ-chlorotetracarbonyldirhodium as catalyst, 1,3- 4 mol% of bis (diphenylphosphino) propane was dissolved in 2.5 ml of 1,4-dioxane as a solvent and charged with a gas mixture of 100 kg / cm 2 of carbon monoxide and a hydrogen volume ratio of 1: 1 at room temperature. Then, as a result of reacting at 150 ° C. for 18 hours, 3- (dimethoxyphosphoryl) -nonanal was obtained in a yield of 57%. This is a novel compound not described in the literature, and its spectrum data is as follows.
[0042]
1 H NMR (CDCl 3 ): δ9.7 (s, 1H, CHO), 3.7 (d, 6H, J PH = 10.6, (OCH 3 ) 2 ), 2.8 (m, 1H, CH), 2.5 (m, 2H, CH 2), 1.73 ( m, 2H, CH 2), 1.23-1.38 (m, 8H, - (CH 2) 4 -), 0.83 (t, 3H, J PH = 6.8, CH 3); 13 C NMR (CDCl 3 ): δ199.7 (J CP = 10.3), 52.7 (J CP = 6.1), 52.6 (J CP = 7.3), 42.8 (J CP = 3.1), 32.0 (J CP = 143.6), 31.6, 29.2, 28.9 (J CP = 4.1), 27.5 (J CP = 10.3), 22.6, 14.1; 31 P NMR (CDCl 3 ): δ35.1.
[0043]
Example 23
The reaction was conducted in the same manner as in Example 22 except that 1 mol% of rhodium dicarbonylacetylacetonate as a catalyst was used. As a result, 3- (dimethoxyphosphoryl) -nonanal was obtained in a yield of 63%.
[0044]
Example 24
In an autoclave, 1- (dimethoxyphosphoryl) -1-phenylethene: 0.5 mmol, octacarbonyl dicobalt as a catalyst was dissolved in 2.5 mol%, and toluene as a solvent was dissolved in 2 ml of toluene. After charging a gas mixture of cm 2 of carbon monoxide and a hydrogen volume ratio of 1: 1, the mixture was reacted at 200 ° C. for 65.5 hours. As a result, 10% yield of 3- (dimethoxyphosphoryl) -3-phenylpropanal was obtained. Obtained at a rate.
[0045]
【The invention's effect】
According to the present invention, (α- and / or β-formylethyl) phosphine oxide compounds or (α-and / or β-formylethyl) useful for the synthesis of fine chemicals such as pharmaceuticals and agricultural chemicals, flame retardants, actinide metal extractants, etc. Phosphonate compounds can be synthesized efficiently by a simple process, and their separation and purification are easy. Therefore, the industrial significance of the present invention is great.

Claims (6)

下記一般式(1)
Figure 0003610371
(式中、R1及びR2は芳香族基又は脂肪族基を示し、R3は水素原子、芳香族基又は脂肪族基を示す)
で表される(β−ホルミルエチル)ホスフィンオキシド化合物。
The following general formula (1)
Figure 0003610371
(Wherein R 1 and R 2 represent an aromatic group or an aliphatic group, and R 3 represents a hydrogen atom, an aromatic group or an aliphatic group)
(Β-formylethyl) phosphine oxide compound represented by the formula:
下記一般式(2)
Figure 0003610371
(式中、R1及びR2は芳香族基又は脂肪族基を示し、R3は水素原子、芳香族基又は脂肪族基を示す)
で表される(α−ホルミルエチル)ホスフィンオキシド化合物。
The following general formula (2)
Figure 0003610371
(Wherein R 1 and R 2 represent an aromatic group or an aliphatic group, and R 3 represents a hydrogen atom, an aromatic group or an aliphatic group)
(Α-formylethyl) phosphine oxide compound represented by the formula:
下記一般式(4)
Figure 0003610371
(式中、R4及びR5は芳香族基又は脂肪族基を示し、R6 は芳香族基又は脂肪族基を示す)
で表される(α−ホルミルエチル)ホスホン酸エステル化合物。
The following general formula (4)
Figure 0003610371
(Wherein, R 4 and R 5 represents an aromatic group or aliphatic group, R 6 represents a fang aromatic or aliphatic group)
(Α-formylethyl) phosphonic acid ester compound represented by the formula:
遷移金属触媒の存在下に、下記一般式(5)
Figure 0003610371
(式中、R1及びR2は芳香族基又は脂肪族基を示し、R3は水素原子、芳香族基又は脂肪族基を示す)
で表されるアルケニルホスフィンオキシドと、一酸化炭素及び水素を反応させることを特徴とする、下記一般式(1)
Figure 0003610371
(式中、R1〜R3は前記と同じ)
で表される(β−ホルミルエチル)ホスフィンオキシド化合物及び/又は下記一般式(2)
Figure 0003610371
(式中、R1〜R3は前記と同じ)
で表される(α−ホルミルエチル)ホスフィンオキシド化合物の製造方法。
In the presence of a transition metal catalyst, the following general formula (5)
Figure 0003610371
(Wherein R 1 and R 2 represent an aromatic group or an aliphatic group, and R 3 represents a hydrogen atom, an aromatic group or an aliphatic group)
The following general formula (1), characterized in that carbon monoxide and hydrogen are reacted:
Figure 0003610371
(Wherein R 1 to R 3 are the same as above)
(Β-formylethyl) phosphine oxide compound represented by the following formula (2)
Figure 0003610371
(Wherein R 1 to R 3 are the same as above)
The manufacturing method of the ((alpha) -formyl ethyl) phosphine oxide compound represented by these.
遷移金属触媒の存在下に、下記一般式(6)
Figure 0003610371
(式中、R4及びR5は芳香族基又は脂肪族基を示し、R6 は芳香族基又は脂肪族基を示す)
で表されるアルケニルホスホン酸エステルと、一酸化炭素及び水素を反応させることを特徴とする、下記一般式(3)
Figure 0003610371
(式中、R4〜R6は前記と同じ)
で表される(β−ホルミルエチル)ホスホン酸エステル化合物及び/又は下記一般式(4)
Figure 0003610371
(式中、R4〜R6は前記と同じ)
で表される(α−ホルミルエチル)ホスホン酸エステル化合物の製造方法。
In the presence of a transition metal catalyst, the following general formula (6)
Figure 0003610371
(Wherein, R 4 and R 5 represents an aromatic group or aliphatic group, R 6 represents a fang aromatic or aliphatic group)
The following general formula (3), wherein carbon monoxide and hydrogen are reacted:
Figure 0003610371
(Wherein R 4 to R 6 are the same as above)
(Β-formylethyl) phosphonic acid ester compound represented by: and / or the following general formula (4)
Figure 0003610371
(Wherein R 4 to R 6 are the same as above)
The manufacturing method of the ((alpha) -formyl ethyl) phosphonate ester compound represented by these.
遷移金属がロジウム又はコバルトである請求項5又は6に記載の方法。The method according to claim 5 or 6, wherein the transition metal is rhodium or cobalt.
JP2000068586A 2000-03-13 2000-03-13 (Α- and / or β-formylethyl) phosphine oxide compound, (α- and / or β-formylethyl) phosphonic acid ester compound and production method thereof Expired - Lifetime JP3610371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068586A JP3610371B2 (en) 2000-03-13 2000-03-13 (Α- and / or β-formylethyl) phosphine oxide compound, (α- and / or β-formylethyl) phosphonic acid ester compound and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068586A JP3610371B2 (en) 2000-03-13 2000-03-13 (Α- and / or β-formylethyl) phosphine oxide compound, (α- and / or β-formylethyl) phosphonic acid ester compound and production method thereof

Publications (2)

Publication Number Publication Date
JP2001253890A JP2001253890A (en) 2001-09-18
JP3610371B2 true JP3610371B2 (en) 2005-01-12

Family

ID=18587620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068586A Expired - Lifetime JP3610371B2 (en) 2000-03-13 2000-03-13 (Α- and / or β-formylethyl) phosphine oxide compound, (α- and / or β-formylethyl) phosphonic acid ester compound and production method thereof

Country Status (1)

Country Link
JP (1) JP3610371B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2750711A2 (en) * 2011-08-31 2014-07-09 Mallinckrodt LLC Remote assembly of targeted nanoparticles using h-phosphonate-ene/-yne hydrophosphonylation reactions
CN114195999B (en) * 2021-12-31 2023-08-01 深圳市鑫元素新材料科技有限公司 Preparation method of polylactone

Also Published As

Publication number Publication date
JP2001253890A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
EP1369422B1 (en) Process for preparation of alkenylphosphine oxides or alkenylphosphinic acid esters
US20050038272A1 (en) Process for preparing diphosphines
JP6788253B2 (en) Method for producing alkenyl phosphorus compound
JPH06263776A (en) Phosphine compound and transition metal-phosphine complex containing the compound as ligand
Kazankova et al. Synthesis of alkyl (diphenyl) phosphines by hydrophosphination of vinylarenes catalyzed by transition metal complexes
JP3610371B2 (en) (Α- and / or β-formylethyl) phosphine oxide compound, (α- and / or β-formylethyl) phosphonic acid ester compound and production method thereof
JP4280307B2 (en) Method for producing vinylphosphonic acid compound
JP3662501B2 (en) Process for producing alkenylphosphine oxides
JP2794089B2 (en) Method for producing alkenylphosphine oxide compound
JP2004043492A (en) Method for producing alkenyl phosphorus compound
JP3877151B2 (en) Process for producing alkenylphosphinic acid esters
US6479687B2 (en) Preparation of vinylphosphonic acid compounds
JP2002518507A (en) Method for producing vinylphosphonic acid compound
JP2004075688A (en) Method for producing alkenylphosphonic ester
JP3699989B2 (en) Phosphinyl group-containing N-substituted amino acid derivative and method for producing the same
JP2001316395A (en) Alkenylphosphonic esters and method for producing the same
JP2775855B2 (en) Method for producing aldehyde
JP3777397B2 (en) Optically active alkenylphosphinic acid esters and process for producing the same
JP2849712B2 (en) Method for producing alkenylphosphine oxide compound
JP3572352B2 (en) Allylphosphonate compound and method for producing the same
Odinets et al. Novel α-fluorinated cyclic phosphite and phosphinite ligands and their Rh-complexes as suitable catalysts in hydroformylation
US6043398A (en) Chemical processes using aryl diphosphine containing catalysts
JP3007984B1 (en) Method for producing unsaturated phosphonate ester
JP2775426B2 (en) Method for producing unsaturated phosphonate ester
US5817775A (en) Phosphines and catalysts containing the same

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3610371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term