JP3610241B2 - Ultrasonic motor for stage equipment - Google Patents

Ultrasonic motor for stage equipment Download PDF

Info

Publication number
JP3610241B2
JP3610241B2 JP27844198A JP27844198A JP3610241B2 JP 3610241 B2 JP3610241 B2 JP 3610241B2 JP 27844198 A JP27844198 A JP 27844198A JP 27844198 A JP27844198 A JP 27844198A JP 3610241 B2 JP3610241 B2 JP 3610241B2
Authority
JP
Japan
Prior art keywords
ultrasonic motor
friction member
contact surface
driven body
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27844198A
Other languages
Japanese (ja)
Other versions
JP2000116158A (en
Inventor
猛 宗石
裕作 石峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27844198A priority Critical patent/JP3610241B2/en
Publication of JP2000116158A publication Critical patent/JP2000116158A/en
Application granted granted Critical
Publication of JP3610241B2 publication Critical patent/JP3610241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波モータに関するものであり、測定装置や加工装置におけるテーブルなどのステージの駆動源として好適なステージ用超音波モータに関する。
【0002】
【従来の技術】
従来より超音波モータには、さまざまな構造をしたものが提案されているが、基本的な構造としては図10に示すようなものがあった。この超音波モータ21は交流電圧を印加することで振動する圧電素子24からなる振動体22と、該振動体22の端面に接着剤等により固着され、上記振動体22の振動に伴って楕円軌道を描く直方体の摩擦部材23とからなり、その平坦な先端面を被駆動体(不図示)との当接面23aとしたものがあった。なお、25は上記圧電素子24を振動させるために通電するための電極である。
【0003】
そして、この超音波モータ21により被駆動体を駆動させるには、図11に示すように、超音波モータ21の当接面23aを被駆動体28の側面に押圧した状態で位置決めしたあと、超音波モータ21に交流電圧を印加すると、振動体22の振動に伴って摩擦部材23が楕円軌道を描き、この時に被駆動体28との間で発生する摩擦力によって被駆動体28を矢印の方向に移動させるようになっていた。
【0004】
【発明が解決しようとする課題】
ところが、図10に示す超音波モータ21を用いて被駆動体28の移動を制御しようとしても、超音波モータ21の当接面23aが被駆動体28と偏当たりし、楕円軌道の短軸を中心として左右対称に当接させることができないため、被駆動体28との摩擦力が駆動中に変動し、その結果、ストローク内で被駆動体28の速度がばらついたり、移動方向で速度が異なるなど、安定した制御ができないといった課題があった。
【0005】
即ち、当接面23aの全面が被駆動体28と均等に当接するように平坦精度を高めようとしても限界があり、また、摩擦部材23の振動体22への固着具合や超音波モータ21の装置への取り付け具合などによっても被駆動体28との圧接状態が変化し易いため、当接面23aの全面が平坦面からなる超音波モータ21では、当接面23aが被駆動体28と偏当たりしないように調整することは極めて難しいものであった。
【0006】
また、偏当たりがあると、図11に示すように超音波モータ21の当接面23aが偏摩耗するため、被駆動体28との摩擦力がさらに大きく変化するとともに、摩耗粉が超音波モータ21の当接面23aと被駆動体28との間に入り込むと滑りを生じて超音波モータ21の制御状態がさらに不安定なものとなり、酷い時には超音波モータ21の駆動を停止させてしまうといった恐れもあった。
【0007】
その上、偏摩耗が発生すると、超音波モータ21本来の寿命を維持することがでず、短期間の使用で交換しなければならないといった不都合もあった。
【0008】
【課題を解決するための手段】
そこで、本発明は上記課題に鑑み、圧電素子からなる振動体と、該振動体の端面に設けられ、上記振動体の振動に伴って楕円軌道を描く摩擦部材とからなり、該摩擦部材の先端面が楕円駆動を描きながらステージに圧接することで被駆動体を圧接部位に対して左右に移動させることができるステージ装置用超音波モータにおいて、上記摩擦部材としてアルミナを主成分とするセラミックスが用いられるとともに、上記摩擦部材は幅が3mmで、その当接面を中心線平均粗さ(Ra)で0.4μm以下、曲率半径100mm以上の球面からなる凸状に形成し、かつ、上記摩擦部材の楕円駆動の軸を中心としてほぼ左右対称ステージに圧接するように構成したことを特徴とする。
【0010】
さらに、本発明は、上記当接面が曲面からなる凸状であって、その曲率半径が100mm以上であることを特徴とする。
【0011】
また、本発明は、上記摩擦部材の当接面を中心線平均粗さ(Ra)で0.4μm以下としたことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0013】
図1は本発明の超音波モータの一例を示す斜視図であり、図2はその主要部である摩擦部材を拡大した斜視図である。
【0014】
図1に示す超音波モータ1は、圧電素子4からなる振動体2と、該振動体2の端面に接着等により固着され、上記振動体2の振動に伴って楕円軌道を描く直方体をした摩擦部材3とからなり、その先端面を被駆動体(不図示)との当接面3aとしてある。そして、上記摩擦部材3の当接面3aは、図2に示すように曲面からなる凸状に形成してある。なお、5は上記圧電素子4を振動させるために通電するための電極である。
【0015】
この超音波モータ1により被駆動体を駆動させるには、図3に示すように、超音波モータ1の当接面3aを被駆動体8の側面に押圧した状態で位置決めし、この状態で上記超音波モータ1に交流電圧を印加すると、振動体2の振動に伴って摩擦部材3が楕円軌道を描き、この時に被駆動体8との間で発生する摩擦力によって被駆動体8が矢印の方向(圧接部位に対して左右の方向)に移動するようになっている。
【0016】
そして、本発明の超音波モータ1によれば、摩擦部材3の当接面3aを凸状に形成し、摩擦部材3が当接面3aの中央にて被駆動体8と当接するように構成してあることから、偏当たりがあったとしても楕円軌道の短軸を中心としてほぼ左右対称に当接させることができる。その結果、被駆動体8との摩擦力の変動を小さくすることができ、安定した被駆動体の制御が可能となる。しかも、当接面3aが曲面からなるため、被駆動体8との摺動における摩耗を低減することができ、耐久性を高めることもできる。
【0017】
なお、当接面3aの形状としては、図2,3に示すような曲面からなる凸状をしたものだけに限らず、例えば、図4(a)(b)に示すような中央に平坦面を有し、両端にC面やR面などの面取りを施した凸状や図4(c)に示す球面からなる凸状など、摩擦部材3の当接面3aにおいて少なくとも両端エッジに面取りが施された凸状であれば構わない。
【0018】
また、上記摩擦部材3は、被駆動体8と常に摺動することから耐摩耗性に優れた材質により形成することが重要であり、このような材質としてはアルミナ、ジルコニア、炭化珪素、窒化珪素等を主成分とするセラミックスや、TiC系、TiN系、TiC−TiN系のサーメット、さらには超硬合金を用いることができる。
【0019】
さらに、当接面3aの面粗さが粗すぎると、被駆動体8との摺動によって大きく摩耗することになる。その為、当接面3aの面粗さはできるだけ滑らかに仕上げることが必要であり、好ましくは中心線平均粗さ(Ra)で0.4μm以下とすることが良い。
【0020】
なお、上記材質によって当接面3aが凸状をした摩擦部材3を形成する方法としては、焼結された各材質にマシニング加工を施すか、凸状に対応した凹部を備える型に押し当てる平面研削にて所望の凸状に形成する。あるいはプレス成型の段階にて凸状を一体的に成形したものを焼結させて得ることもできる。しかるのち、上記凸状面を遊離砥粒や固定砥粒を用いての研磨あるいはバフ研磨にて当接面3aを形成することにより得ることができる。
【0021】
【実施例】
(実施例1)
本発明の超音波モータと従来の超音波モータをステージ装置に組み込み、各超音波モータにおける駆動特性について調べる実験を行った。
【0022】
本実験ではステージ装置として図5に示すものを用いた。1,21は超音波モータ、9は移動ステージ、10はベース基盤、11は移動ステージ9に超音波モータ1,21の駆動力を伝達するアルミナ製の案内ガイド、12は移動ステージ9を案内するためのクロスローラガイド、13は超音波モータ1,21を案内ガイド13に圧接するための押圧手段であり、上記移動ステージ9のストロークは220mmとした。
【0023】
また、超音波モータ1,21を構成する振動体2,22には、イスラエル・ナノモーション社製の圧電素子(形式SP−1)を用い、この振動体2,22の端面にアルミナセラミック製の摩擦部材3をエポキシ系接着剤にて固着したものを使用した。なお、摩擦部材3,23の形状は1辺が3mmの立方体とし、本発明は当接面3aを曲率半径200mmの曲面からなる凸状とし、従来例は当接面23aを平坦面としたものを使用した。
【0024】
そして、各超音波モータ1,21を駆動させ、開ループ制御(振動体2,22への負荷電圧が一定)にて移動ステージ9を往復移動させた時の移動ステージ9の速度をそれぞれ測定した。
【0025】
本発明の超音波モータ1を用いた時の移動ステージ9の速度を図6に、従来の超音波モータ21を用いた時の移動ステージ9の速度を図7にそれぞれ示す。
【0026】
なお、速度の算出は、リニアエンコーダ(不図示)にて移動ステージ9が移動した距離を測定し、その値を移動時間で除して求めた。
【0027】
この結果、図7に見られるように、従来の超音波モータ21を用いたものでは、行きと帰りで移動ステージ9の速度に差があり、またストローク内での速度も大きく変動していることが判る。
【0028】
これに対し、図6に見られるように、本発明の超音波モータ1を用いれば、移動ステージ9の速度が行きと帰りでほぼ一致しており、また、ストローク内での速度バラツキも殆どなかった。
【0029】
この結果、本発明の超音波モータ1を用いれば、開ループ制御におけるストローク内での速度バラツキや移動方向における速度差を低減することができるため、移動ステージ9の安定した閉ループ制御が可能となることが判る。
【0030】
(実施例2)
次に、本発明の超音波モータ1を用い、当接面3aの曲率半径を異ならせた時の摩耗の度合いについて調べる実験を実施例1と同様の条件にて行った。
【0031】
この結果は図8に示すように、いずれも移動ステージ9の総駆動距離が3km程度までは摩耗が進み、それ以降は摩耗の進行が収まることが判る。これは、摩擦部材3の先端面を凸状に形成してあることから、楕円軌道の短軸を中心にほぼ左右対称に圧接させることができるため、曲率半径の違いによる初期摩耗量には差があるものの、その後の摩耗量は低減できるものと思われる。
【0032】
この結果、当接面3aはできるだけ滑らかな曲面状に形成することで初期摩耗を低減することができ、特に、曲率半径Rを100mm以とすれば、初期摩耗量を低減できるとともに、初期摩耗が終了するまでの時間も短くでき、優れていた。
【0033】
(実施例3)
さらに、本発明の超音波モータ1を用い、当接面3aの面粗さを異ならせた時の初期摩耗量について調べる実験を実施例1と同様の条件にて行った。なお、本実験では当接面3aを曲面からなる凸状とし、その曲率半径Rを100mmとした。
【0034】
この結果を図9に示すように、当接面3aの面粗さが滑らかなほど、初期摩耗量を低減できることが判る。そして、当接面3aの面粗さが中心線平均粗さ(Ra)で0.4μmと0.2μmの時では初期摩耗量に大きな差が見られなかったのに対し、中心線平均粗さ(Ra)が0.8μmとなると初期摩耗量が多くなり、また、初期摩耗が終了するまでの距離も大きくなることが判る。
【0035】
この結果、当接面3aの面粗さを中心線平均粗さ(Ra)で0.4μm以下とすることにより初期摩耗量を抑えられることが判る。
【0036】
【発明の効果】
以上のように、本発明によれば、圧電素子からなる振動体と、該振動体の端面に設けられ、上記振動体の振動に伴って楕円軌道を描く摩擦部材とからなり、該摩擦部材の先端面が楕円駆動を描きながら被駆動体に圧接することでステージを圧接部位に対して左右に移動させることができるステージ装置用超音波モータにおいて、上記摩擦部材としてアルミナを主成分とするセラミックスが用いられるとともに、上記摩擦部材は幅が3mmで、その当接面を中心線平均粗さ(Ra)で0.4μm以下、曲率半径100mm以上の球面からなる凸状に形成し、かつ、上記摩擦部材の楕円駆動の軸を中心としてほぼ左右対称ステージに圧接するように構成したことから、被駆動体との偏当たりによる摩擦力の変動を大幅に低減することができる。その為、本発明の超音波モータをテーブル等の被駆動体の駆動源として用いれば、被駆動体のストローク内における速度変化や移動方向における速度差をなくすことができるため、条件設定を短時間で行うことができ、しかも、安定した制御が可能となる。
【0037】
また、本発明は、上記摩擦部材の当接面を中心線平均粗さ(Ra)で0.4μm以下としたことから、被駆動体との摺動に伴う当接面の摩耗を低減し、超音波モータの寿命を向上させることができる。
【図面の簡単な説明】
【図1】本発明の超音波モータの一例を示す斜視図である。
【図2】図1の主要部である摩擦部材を拡大した斜視図である。
【図3】図1の超音波モータを被駆動体に当接面させた状態を示す平面図である。
【図4】(a)〜(c)はさまざまな当接面の形状を示す図である。
【図5】実験で使用したステージ装置を示す一部を破断した斜視図である。
【図6】本発明の超音波モータを用いた時の移動ステージの移動距離と速度との関係を示すグラフである。
【図7】従来の超音波モータを用いた時の移動ステージの移動距離と速度との関係を示すグラフである。
【図8】凸状に形成した当接面の曲率半径と摩耗量との関係を示すグラフである。
【図9】凸状に形成した当接面の面粗さと初期摩耗量との関係を示すグラフである。
【図10】従来の超音波モータの一例を示す斜視図である。
【図11】図10の超音波モータを被駆動体に当接面させた状態を示す平面図である。
【符号の説明】
1,21・・・超音波モータ
2,22・・・振動体
3,23・・・摩擦部材
3a,23a・・・当接面
9・・・移動ステージ
10・・・ベース基盤
11・・・案内ガイド
12・・・クロスローラガイド
13・・・押圧手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic motor, and more particularly to an ultrasonic motor for a stage suitable as a drive source for a stage such as a table in a measuring apparatus or a processing apparatus .
[0002]
[Prior art]
Conventionally, ultrasonic motors having various structures have been proposed, but the basic structure is as shown in FIG. The ultrasonic motor 21 is fixed to a vibrating body 22 composed of a piezoelectric element 24 that vibrates when an alternating voltage is applied, and an end face of the vibrating body 22 with an adhesive or the like, and an elliptical orbit along with the vibration of the vibrating body 22. And a frictional member 23 having a rectangular parallelepiped shape, and a flat tip surface of the friction member 23 is used as a contact surface 23a with a driven body (not shown). Reference numeral 25 denotes an electrode for energizing the piezoelectric element 24 to vibrate.
[0003]
In order to drive the driven body by the ultrasonic motor 21, as shown in FIG. 11, after positioning the contact surface 23a of the ultrasonic motor 21 against the side surface of the driven body 28, When an AC voltage is applied to the sonic motor 21, the friction member 23 draws an elliptical orbit along with the vibration of the vibrator 22, and the driven body 28 is moved in the direction of the arrow by the frictional force generated between the friction member 23 and the driven body 28 at this time. Was supposed to be moved to.
[0004]
[Problems to be solved by the invention]
However, even if the ultrasonic motor 21 shown in FIG. 10 is used to control the movement of the driven body 28, the contact surface 23 a of the ultrasonic motor 21 is offset against the driven body 28, and the short axis of the elliptical orbit is changed. Since it cannot be asymmetrically brought into contact with the center as a center, the frictional force with the driven body 28 fluctuates during driving. As a result, the speed of the driven body 28 varies within the stroke, and the speed varies depending on the moving direction. There was a problem that stable control was not possible.
[0005]
In other words, there is a limit in trying to increase the flatness accuracy so that the entire contact surface 23a contacts the driven body 28 evenly. Further, the degree of fixation of the friction member 23 to the vibrating body 22 and the ultrasonic motor 21 are limited. Since the pressure contact state with the driven body 28 is likely to change depending on the state of attachment to the apparatus or the like, in the ultrasonic motor 21 in which the entire contact surface 23a is a flat surface, the contact surface 23a is not aligned with the driven body 28. It was extremely difficult to adjust so as not to hit.
[0006]
In addition, if there is uneven contact, the contact surface 23a of the ultrasonic motor 21 is unevenly worn as shown in FIG. 11, so that the frictional force with the driven body 28 is further greatly changed, and the wear powder is generated by the ultrasonic motor. If it enters between the contact surface 23a of 21 and the to-be-driven body 28, it will slip, the control state of the ultrasonic motor 21 will become further unstable, and if it is severe, the drive of the ultrasonic motor 21 will be stopped. There was also fear.
[0007]
In addition, if uneven wear occurs, the original life of the ultrasonic motor 21 cannot be maintained, and there is a disadvantage that it must be replaced after a short period of use.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, a vibrating body made of piezoelectric element, provided on the end face of the vibrating body consists of a friction member for drawing an elliptical orbit in accordance with the vibration of the vibrating body, of the friction member tip In the ultrasonic motor for a stage device that can move the driven body to the left and right with respect to the pressed part by pressing the surface while drawing the ellipse drive, ceramics mainly composed of alumina is used as the friction member. together is, in the friction members have a width of 3 mm, forms an abutment surface of that center line average roughness (Ra) 0.4 .mu.m hereinafter, the convex shape consisting of a curvature radius 100mm or more spherical, and the characterized by being configured to abut pressure stage substantially symmetrical about the minor axis of the ellipse driving friction member.
[0010]
Furthermore, the present invention is characterized in that the contact surface is a convex shape having a curved surface, and the radius of curvature is 100 mm or more.
[0011]
Further, the present invention is characterized in that the contact surface of the friction member has a center line average roughness (Ra) of 0.4 μm or less.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0013]
FIG. 1 is a perspective view showing an example of the ultrasonic motor of the present invention, and FIG. 2 is an enlarged perspective view of a friction member which is a main part thereof.
[0014]
An ultrasonic motor 1 shown in FIG. 1 has a vibrating body 2 composed of a piezoelectric element 4 and a friction that is fixed to the end face of the vibrating body 2 by adhesion or the like and has a rectangular parallelepiped that draws an elliptical orbit along with the vibration of the vibrating body 2. It consists of member 3, and the front end surface is made into the contact surface 3a with a to-be-driven body (not shown). And the contact surface 3a of the said friction member 3 is formed in the convex form which consists of a curved surface, as shown in FIG. Reference numeral 5 denotes an electrode for energizing the piezoelectric element 4 to vibrate.
[0015]
In order to drive the driven body by the ultrasonic motor 1, as shown in FIG. 3, the ultrasonic motor 1 is positioned in a state where the contact surface 3 a of the ultrasonic motor 1 is pressed against the side surface of the driven body 8. When an AC voltage is applied to the ultrasonic motor 1, the friction member 3 draws an elliptical orbit along with the vibration of the vibrating body 2, and the driven body 8 is indicated by an arrow due to the frictional force generated between the driven body 8 and the driven body 8. It moves in the direction (left and right direction with respect to the pressed part) .
[0016]
According to the ultrasonic motor 1 of the present invention, the contact surface 3a of the friction member 3 is formed in a convex shape, and the friction member 3 is configured to contact the driven body 8 at the center of the contact surface 3a. For this reason, even if there is a bias, it can be brought into substantially symmetrical contact about the minor axis of the elliptical orbit. As a result, the fluctuation of the frictional force with the driven body 8 can be reduced, and the driven body can be controlled stably. In addition, since the contact surface 3a is a curved surface, wear during sliding with the driven body 8 can be reduced, and durability can be increased.
[0017]
The shape of the abutting surface 3a is not limited to a convex shape having a curved surface as shown in FIGS. 2 and 3. For example, a flat surface at the center as shown in FIGS. Chamfering is applied to at least both edges of the contact surface 3a of the friction member 3, such as a convex shape with chamfered surfaces such as a C surface and an R surface at both ends, or a convex shape consisting of a spherical surface as shown in FIG. Any convex shape may be used.
[0018]
In addition, since the friction member 3 always slides with the driven body 8, it is important to form the friction member 3 with a material having excellent wear resistance. Examples of such a material include alumina, zirconia, silicon carbide, silicon nitride. Such ceramics as the main component, TiC-based, TiN-based, TiC-TiN-based cermets, and cemented carbide can be used.
[0019]
Furthermore, if the surface roughness of the contact surface 3a is too rough, the contact surface 3a is greatly worn by sliding with the driven body 8. Therefore, it is necessary to finish the surface roughness of the contact surface 3a as smoothly as possible, and the center line average roughness (Ra) is preferably 0.4 μm or less.
[0020]
In addition, as a method of forming the friction member 3 in which the contact surface 3a has a convex shape by the above-described material, machining is performed on each sintered material or a flat surface pressed against a mold having a concave portion corresponding to the convex shape. A desired convex shape is formed by grinding. Or it can also obtain by sintering what formed the convex shape integrally in the stage of press molding. After that, the convex surface can be obtained by forming the contact surface 3a by polishing with free abrasive grains or fixed abrasive grains or by buffing.
[0021]
【Example】
Example 1
The ultrasonic motor of the present invention and a conventional ultrasonic motor were incorporated in a stage apparatus, and an experiment was conducted to examine the drive characteristics of each ultrasonic motor.
[0022]
In this experiment, the stage apparatus shown in FIG. 5 was used. 1 and 21 are ultrasonic motors, 9 is a moving stage, 10 is a base board, 11 is a guide guide made of alumina for transmitting the driving force of the ultrasonic motors 1 and 21 to the moving stage 9, and 12 is for guiding the moving stage 9. A cross roller guide 13 is a pressing means for pressing the ultrasonic motors 1 and 21 against the guide guide 13, and the stroke of the moving stage 9 is 220 mm.
[0023]
In addition, for the vibrators 2 and 22 constituting the ultrasonic motors 1 and 21, a piezoelectric element (form SP-1) manufactured by Israel Nanomotion Co. is used, and the end face of the vibrators 2 and 22 is made of alumina ceramic. The friction member 3 was fixed with an epoxy adhesive. The shape of the friction members 3 and 23 is a cube having a side of 3 mm. In the present invention, the contact surface 3a is a convex shape having a curved surface with a radius of curvature of 200 mm, and in the conventional example, the contact surface 23a is a flat surface. It was used.
[0024]
Then, each ultrasonic motor 1 and 21 was driven, and the speed of the moving stage 9 when the moving stage 9 was reciprocated by open loop control (the load voltage to the vibrating bodies 2 and 22 was constant) was measured. .
[0025]
FIG. 6 shows the speed of the moving stage 9 when the ultrasonic motor 1 of the present invention is used, and FIG. 7 shows the speed of the moving stage 9 when the conventional ultrasonic motor 21 is used.
[0026]
The speed was calculated by measuring the distance traveled by the moving stage 9 with a linear encoder (not shown) and dividing the value by the moving time.
[0027]
As a result, as shown in FIG. 7, in the case where the conventional ultrasonic motor 21 is used, there is a difference in the speed of the moving stage 9 between going and returning, and the speed in the stroke also fluctuates greatly. I understand.
[0028]
On the other hand, as shown in FIG. 6, when the ultrasonic motor 1 of the present invention is used, the speed of the moving stage 9 is almost the same on the way back and forth, and there is almost no speed variation within the stroke. It was.
[0029]
As a result, if the ultrasonic motor 1 of the present invention is used, the speed variation within the stroke in the open loop control and the speed difference in the moving direction can be reduced, so that stable closed loop control of the moving stage 9 becomes possible. I understand that.
[0030]
(Example 2)
Next, using the ultrasonic motor 1 of the present invention, an experiment for examining the degree of wear when the radius of curvature of the contact surface 3a was varied was performed under the same conditions as in Example 1.
[0031]
As shown in FIG. 8, the results show that the wear progresses until the total driving distance of the moving stage 9 is about 3 km, and the progress of the wear stops thereafter. This is because the tip surface of the friction member 3 is formed in a convex shape, so that it can be pressed almost symmetrically about the minor axis of the elliptical orbit, so there is a difference in the initial wear due to the difference in the radius of curvature. However, it seems that the amount of wear after that can be reduced.
[0032]
As a result, the abutment surface 3a can be reduced initial wear by forming as much as possible a smooth curved surface, in particular, if the radius of curvature R and the 100mm or more, it is possible to reduce the initial wear amount, initial wear It was excellent because the time to finish was shortened.
[0033]
(Example 3)
Furthermore, an experiment for examining the initial wear amount when the surface roughness of the contact surface 3a was varied using the ultrasonic motor 1 of the present invention was performed under the same conditions as in Example 1. In this experiment, the contact surface 3a is a convex surface having a curved surface, and its curvature radius R is 100 mm.
[0034]
As shown in FIG. 9, it can be seen that the smoother the surface roughness of the contact surface 3a, the lower the initial wear amount. And when the surface roughness of the contact surface 3a is 0.4 μm and 0.2 μm in the centerline average roughness (Ra), no significant difference was found in the initial wear amount, whereas the centerline average roughness It can be seen that when (Ra) is 0.8 μm, the amount of initial wear increases and the distance until the initial wear ends is also increased.
[0035]
As a result, it is understood that the initial wear amount can be suppressed by setting the surface roughness of the contact surface 3a to 0.4 μm or less in terms of the center line average roughness (Ra).
[0036]
【The invention's effect】
As described above, according to the present invention, the vibration member including the piezoelectric element and the friction member that is provided on the end surface of the vibration member and draws an elliptical orbit along with the vibration of the vibration member, In the ultrasonic motor for a stage apparatus in which the stage can be moved to the left and right with respect to the pressed part by pressing the driven surface while drawing the elliptical drive, the ceramic mainly composed of alumina is used as the friction member. together used in the friction member have a width of 3 mm, forms an abutment surface of that center line average roughness (Ra) 0.4 .mu.m hereinafter, the convex shape consisting of a curvature radius 100mm or more spherical, and, from what has been configured to abut pressure stage substantially symmetrical about the minor axis of the ellipse driving of the friction member, it is possible to greatly reduce the variation of frictional force due to contact polarization of the driven body For this reason, if the ultrasonic motor of the present invention is used as a drive source for a driven body such as a table, the speed change in the stroke of the driven body and the speed difference in the moving direction can be eliminated. In addition, stable control is possible.
[0037]
In addition, since the contact surface of the friction member has a center line average roughness (Ra) of 0.4 μm or less, the present invention reduces wear of the contact surface due to sliding with the driven body, The life of the ultrasonic motor can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an ultrasonic motor of the present invention.
FIG. 2 is an enlarged perspective view of a friction member that is a main part of FIG.
3 is a plan view showing a state in which the ultrasonic motor of FIG. 1 is brought into contact with a driven body. FIG.
FIGS. 4A to 4C are diagrams showing various shapes of contact surfaces. FIG.
FIG. 5 is a partially cutaway perspective view showing a stage apparatus used in an experiment.
FIG. 6 is a graph showing the relationship between the moving distance and speed of the moving stage when using the ultrasonic motor of the present invention.
FIG. 7 is a graph showing the relationship between the moving distance and speed of a moving stage when a conventional ultrasonic motor is used.
FIG. 8 is a graph showing the relationship between the radius of curvature of a contact surface formed in a convex shape and the amount of wear.
FIG. 9 is a graph showing the relationship between the roughness of the contact surface formed in a convex shape and the initial wear amount.
FIG. 10 is a perspective view showing an example of a conventional ultrasonic motor.
11 is a plan view showing a state in which the ultrasonic motor of FIG. 10 is brought into contact with a driven body. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,21 ... Ultrasonic motor 2,22 ... Vibration body 3,23 ... Friction member 3a, 23a ... Contact surface 9 ... Moving stage 10 ... Base base 11 ... Guide guide 12 ... Cross roller guide 13 ... Pressing means

Claims (1)

圧電素子からなる振動体と、該振動体の端面に設けられ、上記振動体の振動に伴って楕円軌道を描く摩擦部材とからなり、該摩擦部材の先端面が楕円駆動を描きながらステージに圧接することで被駆動体を圧接部位に対して左右に移動させることができるステージ装置用超音波モータにおいて、上記摩擦部材としてアルミナを主成分とするセラミックスが用いられるとともに、上記摩擦部材は幅が3mmで、その当接面を中心線平均粗さ(Ra)で0.4μm以下、曲率半径100mm以上の球面からなる凸状に形成し、かつ、上記摩擦部材の楕円駆動の軸を中心としてほぼ左右対称ステージに圧接するように構成したことを特徴とするステージ装置用超音波モータ。A vibrating body composed of a piezoelectric element and a friction member provided on the end face of the vibrating body and which draws an elliptical orbit along with the vibration of the vibrating body. The tip surface of the friction member is pressed against the stage while drawing an elliptical drive. Thus, in the ultrasonic motor for a stage apparatus that can move the driven body to the left and right with respect to the press contact portion, ceramics mainly composed of alumina are used as the friction member, and the friction member has a width of 3 mm. center in the abutting surface center line average roughness of its (Ra) in 0.4μm hereinafter, is formed in a convex shape made of a curvature radius 100mm or more spherical, and the minor axis of the ellipse driving of the friction member ultrasonic motor stage apparatus characterized by being configured to contact pressure stage substantially symmetrical as.
JP27844198A 1998-09-30 1998-09-30 Ultrasonic motor for stage equipment Expired - Fee Related JP3610241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27844198A JP3610241B2 (en) 1998-09-30 1998-09-30 Ultrasonic motor for stage equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27844198A JP3610241B2 (en) 1998-09-30 1998-09-30 Ultrasonic motor for stage equipment

Publications (2)

Publication Number Publication Date
JP2000116158A JP2000116158A (en) 2000-04-21
JP3610241B2 true JP3610241B2 (en) 2005-01-12

Family

ID=17597394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27844198A Expired - Fee Related JP3610241B2 (en) 1998-09-30 1998-09-30 Ultrasonic motor for stage equipment

Country Status (1)

Country Link
JP (1) JP3610241B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1819036B1 (en) 1998-12-21 2013-06-19 Seiko Epson Corporation Piezoelectric actuator, timepiece, and portable device
JP2008253023A (en) * 2007-03-29 2008-10-16 Fujinon Corp Drive unit
JP2011155761A (en) * 2010-01-27 2011-08-11 Ishikawa Prefecture Vibrator friction contact member for ultrasonic motor and vibrator for ultrasonic motor
JP5627258B2 (en) * 2010-03-23 2014-11-19 キヤノン株式会社 Vibration type actuator and manufacturing method thereof
KR101709976B1 (en) * 2014-06-12 2017-02-27 전자부품연구원 Ultrasonic motor with four contact

Also Published As

Publication number Publication date
JP2000116158A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
JP3610241B2 (en) Ultrasonic motor for stage equipment
US6107724A (en) Vibration wave driving device and apparatus having the same
US20030173869A1 (en) Ultrasonic motor and guide apparatus having the same as driving source of movable body
JPH0532994B2 (en)
JP2011015552A (en) Drive device
JPS59188381A (en) Improvement in rotor/movable element of surface wave motor
WO2011093307A1 (en) Frictional contact member for transducer in ultrasonic motor and transducer for ultrasonic motor
JPH05252767A (en) Ultrasonic motor
JP2003018870A (en) Ultrasonic motor and guide device applying the ultrasonic motor to driving source of moving body
JPH11136968A (en) Ultrasonic drive device
JP3744111B2 (en) Vibration actuator
JP4632922B2 (en) Ultrasonic motor
JP2002027768A (en) Ultrasonic motor and guide apparatus using ultrasonic motor as driving source for movable body
JP2003259667A (en) Method of driving piezoelectric motor
JPS6166574A (en) Piezoelectric linear motor
JP4535709B2 (en) Drive device
JP3241703B2 (en) Ultrasonic motor and ultrasonic motor manufacturing method
JP2003343561A (en) Linear guide device
JPH03243175A (en) Ultrasonic motor
JPH11136972A (en) Ultrasonic driver
JPH018287Y2 (en)
JP2003224987A (en) Vibration-type drive apparatus
JP2669646B2 (en) Vibration type guide mechanism
JPS6264276A (en) Driving device
JP2511918B2 (en) Jig for curved surface processing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees