JP2011155761A - Vibrator friction contact member for ultrasonic motor and vibrator for ultrasonic motor - Google Patents

Vibrator friction contact member for ultrasonic motor and vibrator for ultrasonic motor Download PDF

Info

Publication number
JP2011155761A
JP2011155761A JP2010015217A JP2010015217A JP2011155761A JP 2011155761 A JP2011155761 A JP 2011155761A JP 2010015217 A JP2010015217 A JP 2010015217A JP 2010015217 A JP2010015217 A JP 2010015217A JP 2011155761 A JP2011155761 A JP 2011155761A
Authority
JP
Japan
Prior art keywords
vibrator
ultrasonic motor
pin
shaped member
driven body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010015217A
Other languages
Japanese (ja)
Inventor
Masahiro Takano
昌宏 高野
Kenichi Hirosaki
憲一 廣崎
Ryuji Shintani
隆二 新谷
Takuya Osada
卓也 長田
Sho Makino
翔 槙野
Satoru Ichimura
悟 市村
Takashi Yoshida
崇 吉田
Masayuki Ishida
真之 石田
Hiroshi Kawai
博司 河合
Mikio Takimoto
幹夫 滝本
Kentaro Nakamura
中村  健太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefecture
Nikko Co Ltd
Tokyo Institute of Technology NUC
SIGMAKOKI Co Ltd
Nikko KK
Original Assignee
Ishikawa Prefecture
Nikko Co Ltd
Tokyo Institute of Technology NUC
SIGMAKOKI Co Ltd
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefecture, Nikko Co Ltd, Tokyo Institute of Technology NUC, SIGMAKOKI Co Ltd, Nikko KK filed Critical Ishikawa Prefecture
Priority to JP2010015217A priority Critical patent/JP2011155761A/en
Priority to PCT/JP2011/051418 priority patent/WO2011093307A1/en
Publication of JP2011155761A publication Critical patent/JP2011155761A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/003Driving devices, e.g. vibrators using longitudinal or radial modes combined with bending modes
    • H02N2/004Rectangular vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0065Friction interface

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibrator for an ultrasonic motor, which has a continuous initial operation by the shape of a friction contact portion at the tip of a vibrator, and capable of maintaining stably speed, thrust force and a stable resonant frequency, and of obtaining stable operation characteristics for long time. <P>SOLUTION: There are provided the friction contact member of the vibrator 1 for the ultrasonic motor for driving a driven body 2 by frictional contact, wherein a contact of the tip of the vibrator is made of a pin-shaped member in which the outer shape of a cross section and the cross sectional area keep the same state along an axial direction in abrading the contact by frictional contact with the driven body; and the vibrator for the ultrasonic motor, which is equipped with the friction contact member for the vibrator for the ultrasonic motor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は超音波モータ用振動子に関し、特に、被駆動体を摩擦接触で駆動する振動子先端の摩擦接触部の構造に関する。   The present invention relates to a vibrator for an ultrasonic motor, and more particularly to a structure of a friction contact portion at the tip of a vibrator that drives a driven body by friction contact.

電子・情報技術の急速な発展に伴ない、精密部品の更なる微細化、高集積化が求められており、ナノオーダ(10-9m)での検査や超微細加工に対応する超精密位置決め装置が必要となっている。また、医療やバイオ研究において、タンパク質や細胞の制御による応用技術開発が進み、より微細な領域での位置決めが可能な顕微鏡用ステージに対するニーズが高まっている。さらに近年では高精度化への要求と併せて、検査、加工、測定などの対象物が小さくなるに伴ない、位置決め装置やその駆動源の小形化、軽量化も求められている。 With the rapid development of electronic and information technology, there is a need for further miniaturization and higher integration of precision parts, and ultra-precision positioning equipment that supports nano-order (10 -9 m) inspection and ultra-fine processing. Is required. In medical and bio-research, the development of applied technology by controlling proteins and cells has progressed, and the need for a microscope stage capable of positioning in a finer region is increasing. Furthermore, in recent years, along with the demand for higher accuracy, as the objects for inspection, processing, measurement, etc. become smaller, the positioning device and its drive source are also required to be smaller and lighter.

このようなナノオーダでの微細領域に対処する駆動装置として、従来の電磁モータに代わって、特許文献1〜3に記載されるような圧電振動素子を用いた超音波モータが開発されている。これらの特許文献には、後述するように被駆動体と摩擦接触する振動素子先端の摩擦接触子の材質、硬度、耐摩耗性などについて詳述されている。   As a drive device that copes with such a fine region in the nano-order, an ultrasonic motor using a piezoelectric vibration element as described in Patent Documents 1 to 3 has been developed in place of a conventional electromagnetic motor. In these patent documents, as will be described later, the material, hardness, wear resistance, and the like of the friction contact at the tip of the vibration element that makes frictional contact with the driven body are described in detail.

この超音波モータは、電磁モータとは全く異なる駆動原理に基づく駆動装置であり、低速、高トルク、無音、停止時の保持性など優れた特長を有している。また、振動子の構造が単純なことから小形化に有利であり、小型アクチュエータとしても期待されている。   This ultrasonic motor is a driving device based on a driving principle that is completely different from that of an electromagnetic motor, and has excellent features such as low speed, high torque, silence, and retention when stopped. Further, since the structure of the vibrator is simple, it is advantageous for downsizing and is expected as a small actuator.

一般に超音波モータは振動子と移動体(被駆動体)とにより構成されており、この振動子の摩擦接触部を前記移動体に押し付け、加圧した状態で機能する。この状態で前記振動子の摩擦接触部に楕円運動を発生させることで、摩擦接触部が移動体に間欠的に圧接しながら前記移動体を一方向に送り出す。前記移動体の動作速度は楕円運動の振幅の大きさを変えることで制御される。   In general, an ultrasonic motor is composed of a vibrator and a moving body (driven body), and functions in a state where the frictional contact portion of the vibrator is pressed against the moving body and pressurized. In this state, an elliptical motion is generated in the frictional contact portion of the vibrator, so that the frictional contact portion intermittently presses the moving body and sends the moving body in one direction. The moving speed of the moving body is controlled by changing the amplitude of the elliptical motion.

特開平5−252767号公開公報JP-A-5-252767 特開2002−27768号特許公報Japanese Patent Laid-Open No. 2002-27768 特開2005−124377号公開公報JP 2005-124377 A

超音波モータでは動作特性が安定することが必要であり、そのためには振動子の楕円運動を被駆動体に伝達する振動子先端の摩擦接触部の材質、形状などの選定が特に重要となる。しかし従来は前記摩擦接触部の材質のみに配慮し、摩擦接触部の形状や構造自体には細かな注意が払われていない。前記接触部の耐摩耗性が優れていても、その形状によって動作特性が変動し、移動速度や推力の安定性、共振周波数の安定性がくずれてしまうことがある。   Ultrasonic motors need to have stable operating characteristics. For this purpose, selection of the material and shape of the frictional contact portion at the tip of the vibrator that transmits the elliptical motion of the vibrator to the driven body is particularly important. However, conventionally, only the material of the friction contact portion is considered, and detailed attention is not paid to the shape and structure of the friction contact portion. Even if the contact portion has excellent wear resistance, the operating characteristics may vary depending on its shape, and the movement speed, thrust stability, and resonance frequency stability may be impaired.

例えば、前記摩擦接触部を半球体で構成した場合、長期使用で前記半球体が摩耗すると、被駆動体との接触面積が当初の状態より増加して共振周波数が上昇し、速度低下や動作停止の事態をひき起こす。また、前記摩擦接触が角柱など稜部をもつ矩形体で構成した場合、稜部の接触でチッピングを起こすことがあり、かつ稜部の摩耗による初期動作が持続せず、寿命が短くなる。さらに、前記摩擦接触部の面積が大きすぎると、接触面の摩耗が全面均等にならず、動作性が悪くなり、逆に前記摩擦接触部の面積が小さすぎると、摩耗の進行が早く、短寿命となってしまう。   For example, when the frictional contact portion is composed of a hemisphere, if the hemisphere wears out after long-term use, the contact area with the driven body increases from the initial state, the resonance frequency increases, and the speed decreases or the operation stops. Cause the situation. Further, when the frictional contact is constituted by a rectangular body having a ridge such as a prism, chipping may occur due to the contact of the ridge, and the initial operation due to wear of the ridge is not maintained, resulting in a short life. Furthermore, if the area of the frictional contact portion is too large, the wear on the contact surface is not even and the operability is deteriorated. Conversely, if the area of the frictional contact portion is too small, the progress of wear is rapid and short. End of life.

特許文献1では、振動子先端の摩擦接触部にステンレス材などの摩耗に強い鋼材を使用し、被駆動体をアルミナセラミックス、ジルコニアセラミックスその他の耐摩耗性のセラミックス材で構成して接触部全体の耐摩耗性を高めた構成について記載しているが、同文献1の図2に見られるように振動子先端の接触部は半球体であり、前述したように接触摩耗による接触面積の変化が生じる。   In Patent Document 1, the friction contact portion at the tip of the vibrator is made of a wear-resistant steel material such as stainless steel, and the driven body is made of alumina ceramic, zirconia ceramic, or other wear-resistant ceramic material, Although the structure with improved wear resistance is described, as shown in FIG. 2 of the document 1, the contact portion at the tip of the vibrator is a hemisphere, and the contact area changes due to contact wear as described above. .

また、特許文献2においても、振動子先端の押圧部材(摩擦接触部)の材質や表面粗さ、機械的強度など摩耗量低減についての対策がなされているものの、前記押圧部材の形状については言及されておらず、90°の稜部をもつ部材が図示されているのみである。特許文献3においても、摩擦部材をアルミナやアルミナと炭化チタンとの複合材料、ジルコニアなどで形成することで耐摩耗性を高めることが示されているものの、同文献3に図示された摩擦部材は半球体となっており、特許文献1と同様の問題がある。   Also in Patent Document 2, although measures are taken for reducing the amount of wear such as the material, surface roughness, mechanical strength of the pressing member (friction contact portion) at the tip of the vibrator, the shape of the pressing member is mentioned. Only members with 90 ° ridges are shown. Even in Patent Document 3, although it is shown that the friction member is made of alumina, a composite material of alumina and titanium carbide, zirconia, or the like, the wear resistance is improved. It is a hemisphere and has the same problem as Patent Document 1.

従って、本発明は、振動子先端の摩擦接触部の形状により初期動作が持続して安定な速度、推力、安定な共振周波数が保たれ、安定した動作特性が長期にわたって得られる超音波モータ用振動子を提供することを課題とするものである。   Therefore, according to the present invention, the vibration for an ultrasonic motor that maintains the stable speed, thrust, and stable resonance frequency by the shape of the frictional contact portion at the tip of the vibrator, maintains a stable speed, thrust, and stable resonance frequency, and provides stable operating characteristics over a long period. The challenge is to provide a child.

本発明によれば、(1)被駆動体を摩擦接触で駆動する超音波モータ用振動子の摩擦接触部材において、振動子先端の接触子を前記被駆動体との摩擦接触で摩耗する際に軸方向に沿って横断面の外形と横断面積が同一の状態を保つピン形部材で構成したことを特徴とする超音波モータ用振動子摩擦接触部材が提供される。   According to the present invention, (1) in a frictional contact member of a vibrator for an ultrasonic motor that drives a driven body by frictional contact, when the contact at the tip of the vibrator is worn by frictional contact with the driven body. A vibrator frictional contact member for an ultrasonic motor, characterized in that it is constituted by a pin-shaped member that maintains the same cross sectional area and cross sectional area along the axial direction.

また、本発明によれば、(2)前記ピン形部材が、横断面が直径0.3mm以上、1.0mm以下の円形状で、かつ長さが0.3mm以上、2.0mm以下である前記(1)に記載の超音波モータ用振動子摩擦接触部材が提供される。   According to the invention, (2) the pin-shaped member has a circular shape with a cross section of a diameter of 0.3 mm or more and 1.0 mm or less, and a length of 0.3 mm or more and 2.0 mm or less. The vibrator frictional contact member for an ultrasonic motor according to (1) is provided.

また、本発明によれば、(3)前記ピン形部材が、横断面が1辺0.3mm以上、1.0mm以下で、長さ0.3mm以上、2.0mm以下の矩形状であり、前記矩形の稜部がR面取りされている前記(1)に記載の超音波モータ用振動子摩擦接触部材が提供される。   According to the present invention, (3) the pin-shaped member has a rectangular shape with a side cross-section of 0.3 mm to 1.0 mm and a length of 0.3 mm to 2.0 mm. The vibrator friction contact member for an ultrasonic motor according to (1), wherein the rectangular ridge portion is rounded.

また、本発明によれば、(4)前記ピン形部材が振動子先端部分のピン台に設けられ、前記ピン台が直径1mm以上の円柱形もしくは角柱形である前記(2)または(3)に記載の超音波モータ用振動子摩擦接触部材が提供される。   According to the present invention, (4) the pin-shaped member is provided on a pin base at the tip of the vibrator, and the pin base is a columnar or prismatic shape having a diameter of 1 mm or more. The vibrator friction contact member for ultrasonic motors described in 1) is provided.

さらに、本発明によれば、(5)前記(1)〜(4)のいずれかに記載の超音波モータ用振動子摩擦接触部材を備えた超音波モータ用振動子が提供される。   Furthermore, according to the present invention, there is provided (5) an ultrasonic motor vibrator comprising the ultrasonic motor vibrator frictional contact member according to any one of (1) to (4).

本発明によれば、超音波モータ用振動子における振動子先端の摩擦接触部が摩擦摩耗した後も、被駆動体との接触面積が一定となる形状とすることで、動作特性の安定した超音波モータ用振動子が実現できる。
また、摩擦接触部の稜部でのチッピングが起こらず、摩耗の進行や毀損が抑制され、寿命の長い超音波モータ用振動子が実現できる。
According to the present invention, even after the frictional contact portion at the tip of the vibrator in the ultrasonic motor vibrator is frictionally worn, the shape in which the contact area with the driven body is constant makes it possible to achieve super stable operation characteristics. A vibrator for a sonic motor can be realized.
Further, chipping at the ridge portion of the frictional contact portion does not occur, progress of wear and damage are suppressed, and an ultrasonic motor vibrator having a long life can be realized.

本発明の実施例1による超音波モータ用振動子の平面図(A)および側面図(B)である。It is the top view (A) and side view (B) of the vibrator for ultrasonic motors by Example 1 of the present invention. (a)〜(c)は、図1に示す振動子先端の摩擦接触子(ピン形部材)で摩耗が進行していく状態を示す斜視図である。(A)-(c) is a perspective view which shows the state which abrasion progresses with the friction contactor (pin-shaped member) of the front-end | tip of a vibrator | oscillator shown in FIG. 本発明の実施例2による超音波モータ用振動子の平面図(A)および側面図(B)である。It is the top view (A) and side view (B) of the vibrator for ultrasonic motors by Example 2 of the present invention. 本発明が適用される超音波モータの作動原理を模型的に示す図である。It is a figure which shows the operating principle of the ultrasonic motor to which this invention is applied typically. (a)〜(c)は、振動子先端の摩擦接触子を半球体で構成した従来例の振動子の摩耗進行状態を示す平面図である。(A)-(c) is a top view which shows the abrasion progress state of the vibrator | oscillator of the prior art example which comprised the friction contactor of the vibrator | oscillator tip with the hemisphere. 本発明の実施例3による角柱形のピン形部材の拡大平面図である。It is an enlarged plan view of a prismatic pin-shaped member according to Embodiment 3 of the present invention. 超音波モータにおける被駆動体の移動距離と共振周波数の関係を本発明と従来例の振動子を比較して示した図である。It is the figure which showed the relationship between the moving distance of the to-be-driven body in an ultrasonic motor, and the resonance frequency by comparing this invention with the vibrator of a prior art example.

次に、本発明を、図面を参照しながら実施形態に係る超音波モータについて説明する。図4は本発明が適用される超音波モータの作動原理を模型的に示した図である。この超音波モータは振動子1とスライダ(被駆動体)2を含み、振動子1は圧電振動素子で構成され、この側面に設けた電極(図示省略)を印加することにより、伸縮動作と屈曲動作が同時に生成され、その組み合せにより、少なくともその一部が、特に被駆動体2と摩擦接触する振動子先端部が楕円運動を行って被駆動体2を間欠的に移動動作させる。例えば、図4(A)中のp点(振動子の左端面の中心点)は、(a)〜(d)の4つの状態を経て同図(B)に示す軌跡を描く。図中、xは振動子の長手方向軸線、yは振動子の上下側面1aに垂直な軸線である。   Next, the ultrasonic motor according to the embodiment will be described with reference to the drawings. FIG. 4 is a diagram schematically showing the operating principle of an ultrasonic motor to which the present invention is applied. This ultrasonic motor includes a vibrator 1 and a slider (driven body) 2, and the vibrator 1 is composed of a piezoelectric vibration element. By applying an electrode (not shown) provided on this side surface, the expansion and contraction operation and bending are performed. The motions are generated at the same time, and at least a part of the motion, in particular, the tip of the vibrator that is in frictional contact with the driven body 2 performs an elliptical motion to move the driven body 2 intermittently. For example, the point p (center point of the left end face of the vibrator) in FIG. 4A draws a locus shown in FIG. 4B through the four states (a) to (d). In the figure, x is an axis in the longitudinal direction of the vibrator, and y is an axis perpendicular to the upper and lower side surfaces 1a of the vibrator.

振動子1の楕円運動している先端部分には、摩擦接触子3が固着(接着)されている。振動子1の楕円運動は摩擦接触子3を介して被駆動体2に伝達され、被駆動体2を動かす駆動力となる。図4の例では、この楕円運動の反復により被駆動体2はガイド4に沿って下方へと送られる。また、被駆動2を円環状にすれば、ガイド4のまわりの回転運動を生じさせることも可能である。なお、楕円運動の大きさは前記圧電振動素子1の電極への入力電圧によって制御される。   A friction contact 3 is fixed (adhered) to the tip portion of the vibrator 1 that is elliptically moving. The elliptical motion of the vibrator 1 is transmitted to the driven body 2 through the friction contact 3 and becomes a driving force for moving the driven body 2. In the example of FIG. 4, the driven body 2 is sent downward along the guide 4 by repeating this elliptical motion. Further, if the driven 2 is formed in an annular shape, a rotational motion around the guide 4 can be generated. The magnitude of the elliptical motion is controlled by the input voltage to the electrode of the piezoelectric vibration element 1.

次に、本発明を各種の実施例について具体的に説明する。   Next, the present invention will be specifically described with reference to various examples.

図1は本発明の実施例1による超音波モータ用振動子の平面図(A)および側面図(B)、図2は図1に示す振動子先端の摩擦接触子(ピン形部材)6およびピン台5を示す拡大斜視図であり、使用継続により同図の(a)から(c)へとピン形部材6の摩耗が進行していく状態を示している。図1のように振動子1の先端部にはピン台5が設けられ、さらにこのピン台5の上面に、被駆動体と摩擦接触するピン形部材6が設けられている。   FIG. 1 is a plan view (A) and a side view (B) of a vibrator for an ultrasonic motor according to a first embodiment of the present invention, and FIG. 2 is a friction contact (pin-shaped member) 6 at the tip of the vibrator shown in FIG. It is an expansion perspective view which shows the pin stand 5, and has shown the state from which the wear of the pin-shaped member 6 progresses from (a) to (c) of the figure by continuing use. As shown in FIG. 1, a pin base 5 is provided at the tip of the vibrator 1, and a pin-shaped member 6 that is in frictional contact with the driven body is provided on the upper surface of the pin base 5.

実施例1のピン形部材6は横断面が軸方向に沿って同一の外径を成す円柱形に形成されている。したがって、被駆動体との摩擦接触でピン形部材6が摩耗して図2に示すように初期状態(a)から(b)、(c)へと摩耗が進んでいっても、長さが減少するだけで被駆動体との接触面積は変わらず、これにより、初期動作が持続して安定した速度、推力、共振周波数が保たれる。なお、ピン台5に設けるピン形部材6は接着手段によってピン台5に固着してもよいし、ピン台5と一体に形成してもよい。   The pin-shaped member 6 of the first embodiment is formed in a columnar shape whose cross section has the same outer diameter along the axial direction. Therefore, even if the pin-shaped member 6 is worn by frictional contact with the driven body and the wear progresses from the initial state (a) to (b) and (c) as shown in FIG. Just by decreasing, the contact area with the driven body does not change, so that the initial operation is continued and stable speed, thrust, and resonance frequency are maintained. The pin-shaped member 6 provided on the pin base 5 may be fixed to the pin base 5 by an adhesive means, or may be formed integrally with the pin base 5.

図5は振動子先端の摩擦接触子3を半球体で構成した従来例の振動子の摩耗進行状態を示した平面図である。初期状態(a)から(b)、(c)へと摩耗が進むにつれて被駆動体との接触部3aの面積は平坦状に増大していき、それにつれて共振周波数が上昇し、速度が次第に遅くなり、最終的には停止するに至る。   FIG. 5 is a plan view showing a state of progress of wear of a conventional vibrator in which the friction contact 3 at the tip of the vibrator is formed of a hemisphere. As wear progresses from the initial state (a) to (b) and (c), the area of the contact portion 3a with the driven body increases in a flat shape, and the resonance frequency increases and the speed gradually decreases as the area increases. Will eventually stop.

本発明に係る実施例1の円柱形のピン形部材6はピン直径が0.3mm以上、1.0mm以下であり、好ましくは、0.5mm以上、0.8mm以下がよい。ピン形部材6の直径が1mmを超えると接触面が大きすぎてピン先端の摩耗が全面均等にならず、動作性が悪くなる。また、ピン直径が0.3mmより小さくなると、摩耗の進行が早く、寿命が短くなる。   The cylindrical pin-shaped member 6 of Example 1 according to the present invention has a pin diameter of 0.3 mm or more and 1.0 mm or less, preferably 0.5 mm or more and 0.8 mm or less. When the diameter of the pin-shaped member 6 exceeds 1 mm, the contact surface is too large, and the wear at the tip of the pin is not uniform throughout, resulting in poor operability. On the other hand, when the pin diameter is smaller than 0.3 mm, the wear progresses quickly and the life is shortened.

ピン形部材6の長さは0.3mm以上、2mm以下が好ましい。長さが2mmを超えると、ピンの根元にかかる応力でピン形部材6の破壊が起こり易くなると共に、ピン自身の振動が発生し、超音波モータの位置決め精度が低下する。
また、ピン形部材6の横断面を円形状とすることにより、被駆動体に対する接触の方向性がなくなり、セッティングの自由度が高くなり、量産性にも優れる。
The length of the pin-shaped member 6 is preferably 0.3 mm or more and 2 mm or less. When the length exceeds 2 mm, the pin-shaped member 6 is easily broken by the stress applied to the base of the pin, and vibration of the pin itself is generated, so that the positioning accuracy of the ultrasonic motor is lowered.
Moreover, by making the cross-section of the pin-shaped member 6 circular, the directivity of contact with the driven body is eliminated, the degree of freedom in setting is increased, and mass productivity is also excellent.

実施例1では、図1のようにピン形部材6が固着されたピン台5はその横断面が直径1mm以上の円形状に構成されている。ピン台5の直径が1mm以下になると、振動子1との接着面の曲げ応力により、ピン台5が振動子1に対して脱落し易くなる。   In the first embodiment, the pin base 5 to which the pin-shaped member 6 is fixed as shown in FIG. 1 is formed in a circular shape with a cross section of 1 mm or more in diameter. When the diameter of the pin base 5 is 1 mm or less, the pin base 5 easily falls off the vibrator 1 due to the bending stress of the adhesive surface with the vibrator 1.

図3は本発明の実施例2による超音波モータ用振動子の平面図(A)および側面図(B)である。この場合は、振動子先端部分のピン台5はその横断面が矩形状に形成されている。一例として矩形状ピン台の短辺の長さが2mm、長辺の長さが3mmである。なお、矩形状ピン台5はその横断面が正方形であってもよい。この場合、正方形断面の一辺の長さは円柱形のピン台と同様に1mm以上とするのがよい。   FIG. 3 is a plan view (A) and a side view (B) of the ultrasonic motor transducer according to the second embodiment of the present invention. In this case, the pin table 5 at the tip of the vibrator has a rectangular cross section. As an example, the rectangular pin base has a short side length of 2 mm and a long side length of 3 mm. The rectangular pin base 5 may have a square cross section. In this case, the length of one side of the square cross section is preferably 1 mm or more like the cylindrical pin base.

ピン形部材はその横断面が矩形状の角柱であってもよい。図6は角柱形のピン形部材7の拡大平面図であり、この場合、角柱の4側部7aの稜部がR面取りが施されている。この実施例における角柱の一辺の長さは前述した円柱形のピン形部材の直径と大略同じでよい。また、角柱形の場合もピン長さは2mm以下が好ましい。角柱の稜部にR面取りがなされない場合は、摩擦接触中に稜部でチッピングが起こり、この部分で摩耗が加速され、初期動作が維持されず、寿命が短くなるが、稜部のR面取りにより、このような問題は起こらなくなることが確認された。   The pin-shaped member may be a prism having a rectangular cross section. FIG. 6 is an enlarged plan view of the prismatic pin-shaped member 7. In this case, the ridges of the four side portions 7a of the prism are chamfered. The length of one side of the prism in this embodiment may be substantially the same as the diameter of the cylindrical pin-shaped member described above. In the case of a prismatic shape, the pin length is preferably 2 mm or less. When the chamfer is not chamfered at the ridge of the prism, chipping occurs at the ridge during frictional contact, wear is accelerated at this part, the initial operation is not maintained, and the service life is shortened. Thus, it was confirmed that such a problem does not occur.

図7は被駆動体の移動が進んでいった場合の共振周波数の変化を、本発明による摩擦接触子と従来の摩擦接触子とで比較して示した図である。図中、aは従来の半径2mmの半球体の摩擦接触子の場合、bは従来の半径2mmの円柱体を中心で軸方向に沿って分割して所定長さの半円柱とした摩擦接触子の場合であり、cは本発明による直径0.8mmの横断面の等しい円柱のピン形部材の接触子である。なお、前記半円柱の場合は円柱の分割面を振動子の先端部に固着している。また、この例では振動子側の接触子および被駆動体を部分安定化ジルコニアで形成した。この図からも分るように、半球体の場合は移動距離1000mあたりから、半円柱の場合は、移動距離500mあたりから急激に共振周波数が上昇するのに対し、本発明の横断面積一定の円柱ピン形部材では略全移動範囲にわたって共振周波数が概ね一定化し、超音波モータの動作特性が安定している。   FIG. 7 is a diagram showing a change in the resonance frequency when the movement of the driven body proceeds, comparing the friction contact according to the present invention and the conventional friction contact. In the figure, a is a conventional hemispherical friction contact having a radius of 2 mm, and b is a conventional friction contact having a predetermined length of a cylindrical body having a radius of 2 mm divided along the axial direction. And c is a contact of a cylindrical pin-shaped member having a transverse cross section with a diameter of 0.8 mm according to the present invention. In the case of the semi-cylinder, the divided surface of the cylinder is fixed to the tip of the vibrator. In this example, the vibrator side contactor and driven body are formed of partially stabilized zirconia. As can be seen from this figure, the resonance frequency suddenly increases from around 1000 m in the case of a hemisphere and from around 500 m in the case of a semi-cylinder, whereas the cylinder with a constant cross-sectional area according to the present invention. In the pin-shaped member, the resonance frequency is substantially constant over substantially the entire movement range, and the operating characteristics of the ultrasonic motor are stable.

本発明におけるピン形部材の材質としては、各種のアルミナセラミックその他の耐摩耗性部材が採用可能である。一例を挙げると、エンジニアリングプラスチック、特にPPSを使用した場合、被駆動体は部分安定化ジルコニアもしくは96%以上のアルミナが望ましい。また、ピン形部材の材質にセラミックを選択した場合は、ピン形部材を部分安定化ジルコニアとし、被駆動体側は96%以上のアルミナとするのが望ましい。   As the material of the pin-shaped member in the present invention, various types of alumina ceramics and other wear-resistant members can be employed. For example, when an engineering plastic, particularly PPS is used, the driven body is preferably partially stabilized zirconia or 96% alumina or more. Further, when ceramic is selected as the material of the pin-shaped member, it is desirable that the pin-shaped member is partially stabilized zirconia and the driven body side is 96% or more alumina.

1 振動子
2 被駆動体(スライダ)
5 ピン台
6 円柱形のピン形部材
7 角柱形のピン形部材
1 vibrator 2 driven body (slider)
5 Pin base 6 Cylindrical pin-shaped member 7 Prismatic pin-shaped member

Claims (5)

被駆動体を摩擦接触で駆動する超音波モータ用振動子の摩擦接触部材において、振動子先端の接触子を前記被駆動体との摩擦接触で摩耗する際に軸方向に沿って横断面の外形と横断面積が同一の状態を保つピン形部材で構成したことを特徴とする超音波モータ用振動子摩擦接触部材。   In a frictional contact member of an ultrasonic motor vibrator that drives a driven body by frictional contact, when the contact at the tip of the vibrator is worn by frictional contact with the driven body, the outer shape of the cross section along the axial direction A vibratory friction contact member for an ultrasonic motor, characterized by comprising a pin-shaped member that maintains the same cross-sectional area. 前記ピン形部材が、横断面が直径0.3mm以上、1.0mm以下の円形状で、かつ長さが0.3mm以上、2.0mm以下である請求項1に記載の超音波モータ用振動子摩擦接触部材。   2. The vibration for an ultrasonic motor according to claim 1, wherein the pin-shaped member has a circular cross section with a diameter of 0.3 mm or more and 1.0 mm or less and a length of 0.3 mm or more and 2.0 mm or less. Child friction contact member. 前記ピン形部材が、横断面が1辺0.3mm以上、1.0mm以下で、長さ0.3mm以上、2.0mm以下の矩形状であり、前記矩形の稜部がR面取りされている請求項1に記載の超音波モータ用振動子摩擦接触部材。   The pin-shaped member has a rectangular shape with a lateral cross-section of 0.3 mm or more and 1.0 mm or less, a length of 0.3 mm or more and 2.0 mm or less, and the ridge portion of the rectangle is chamfered. The vibrator friction contact member for an ultrasonic motor according to claim 1. 前記ピン形部材が振動子先端部分のピン台に設けられ、前記ピン台が直径1mm以上の円柱形もしくは角柱形である請求項2または3に記載の超音波モータ用振動子摩擦接触部材。   The vibrator friction contact member for an ultrasonic motor according to claim 2 or 3, wherein the pin-shaped member is provided on a pin base at a tip portion of the vibrator, and the pin base has a cylindrical shape or a prism shape with a diameter of 1 mm or more. 請求項1〜4のいずれかに記載の超音波モータ用振動子摩擦接触部材を備えた超音波モータ用振動子。   An ultrasonic motor vibrator comprising the ultrasonic motor vibrator frictional contact member according to claim 1.
JP2010015217A 2010-01-27 2010-01-27 Vibrator friction contact member for ultrasonic motor and vibrator for ultrasonic motor Pending JP2011155761A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010015217A JP2011155761A (en) 2010-01-27 2010-01-27 Vibrator friction contact member for ultrasonic motor and vibrator for ultrasonic motor
PCT/JP2011/051418 WO2011093307A1 (en) 2010-01-27 2011-01-26 Frictional contact member for transducer in ultrasonic motor and transducer for ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015217A JP2011155761A (en) 2010-01-27 2010-01-27 Vibrator friction contact member for ultrasonic motor and vibrator for ultrasonic motor

Publications (1)

Publication Number Publication Date
JP2011155761A true JP2011155761A (en) 2011-08-11

Family

ID=44319294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015217A Pending JP2011155761A (en) 2010-01-27 2010-01-27 Vibrator friction contact member for ultrasonic motor and vibrator for ultrasonic motor

Country Status (2)

Country Link
JP (1) JP2011155761A (en)
WO (1) WO2011093307A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658950B2 (en) 2016-07-28 2020-05-19 Seiko Epson Corporation Piezoelectric actuator, piezoelectric motor, robot, and electronic component conveyance apparatus
CN112636630A (en) * 2019-09-24 2021-04-09 精工爱普生株式会社 Piezoelectric actuator, piezoelectric motor, and robot
US11716034B2 (en) 2020-03-12 2023-08-01 Seiko Epson Corporation Piezoelectric drive device, piezoelectric motor, and robot with the piezoelectric drive device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116158A (en) * 1998-09-30 2000-04-21 Kyocera Corp Ultrasonic motor
JP2002027768A (en) * 2000-07-03 2002-01-25 Kyocera Corp Ultrasonic motor and guide apparatus using ultrasonic motor as driving source for movable body
WO2007105489A1 (en) * 2006-03-13 2007-09-20 Fujinon Corporation Ultrasonic actuator
JP2009038888A (en) * 2007-08-01 2009-02-19 Sharp Corp Drive apparatus, image-pickup device, image-pickup apparatus, and assembly method of drive apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000116158A (en) * 1998-09-30 2000-04-21 Kyocera Corp Ultrasonic motor
JP2002027768A (en) * 2000-07-03 2002-01-25 Kyocera Corp Ultrasonic motor and guide apparatus using ultrasonic motor as driving source for movable body
WO2007105489A1 (en) * 2006-03-13 2007-09-20 Fujinon Corporation Ultrasonic actuator
JP2009038888A (en) * 2007-08-01 2009-02-19 Sharp Corp Drive apparatus, image-pickup device, image-pickup apparatus, and assembly method of drive apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10658950B2 (en) 2016-07-28 2020-05-19 Seiko Epson Corporation Piezoelectric actuator, piezoelectric motor, robot, and electronic component conveyance apparatus
CN112636630A (en) * 2019-09-24 2021-04-09 精工爱普生株式会社 Piezoelectric actuator, piezoelectric motor, and robot
US11502623B2 (en) 2019-09-24 2022-11-15 Seiko Epson Corporation Piezoelectric actuator, piezoelectric motor, and robot
CN112636630B (en) * 2019-09-24 2023-05-23 精工爱普生株式会社 Piezoelectric actuator, piezoelectric motor and robot
US11716034B2 (en) 2020-03-12 2023-08-01 Seiko Epson Corporation Piezoelectric drive device, piezoelectric motor, and robot with the piezoelectric drive device

Also Published As

Publication number Publication date
WO2011093307A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
US11664746B2 (en) Friction member to contact opposite member, method for manufacturing friction member, vibration-type actuator, and electronic device
Xu et al. Piezoelectric actuator for machining on macro-to-micro cylindrical components by a precision rotary motion control
US6979935B2 (en) Piezoelectric motor and electronic equipment with piezoelectric motor
US9507119B2 (en) Vibrator of vibratory drive unit, vibratory drive unit, interchangeable lens, imaging device, and automatic stage
JP2017225333A (en) Friction material, method for producing friction material, vibration type actuator and electronic equipment
WO2011093307A1 (en) Frictional contact member for transducer in ultrasonic motor and transducer for ultrasonic motor
JP2006271065A (en) Driving device
JP2011015552A (en) Drive device
US8446068B2 (en) Ultrasonic motor
JP2012531182A (en) Domed linear piezoelectric motor
WO2015098968A1 (en) Drive mechanism
JP2012210049A (en) Piezoelectric actuator, robot, and robot hand
JP3610241B2 (en) Ultrasonic motor for stage equipment
JP5654795B2 (en) Ultrasonic drive mechanism
JP6638912B2 (en) Drive mechanism
JPH11136968A (en) Ultrasonic drive device
US20230268849A1 (en) Vibration type actuator capable of reducing change in force generated between contact body and vibrating body, multi-axis stage, articulated robot, and device
JP4535709B2 (en) Drive device
JP2001186783A (en) Guiding device using ultrasonic motor as driving source of movable body
JP2002027768A (en) Ultrasonic motor and guide apparatus using ultrasonic motor as driving source for movable body
JP2010193633A (en) Jogging mechanism
JPH06319279A (en) Ultrasonic linear actuator
JP2020054228A (en) Drive mechanism
JP2001190080A (en) Vibration actuator
JP5929283B2 (en) Vibration actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140418