JP3608383B2 - Ferritic stainless steel with excellent surface properties and press formability - Google Patents
Ferritic stainless steel with excellent surface properties and press formability Download PDFInfo
- Publication number
- JP3608383B2 JP3608383B2 JP15466098A JP15466098A JP3608383B2 JP 3608383 B2 JP3608383 B2 JP 3608383B2 JP 15466098 A JP15466098 A JP 15466098A JP 15466098 A JP15466098 A JP 15466098A JP 3608383 B2 JP3608383 B2 JP 3608383B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- value
- stainless steel
- oxide inclusions
- ferritic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、表面性状およびプレス成形性に優れたフェライト系ステンレス鋼に関し、特にフェライト系ステンレス鋼における酸化物系介在物の組成状態を適切に制御すると共に、Vを適量添加することによって、表面性状の劣化を招くことなしにプレス成形性の有利な改善を図ろうとするものである。
【0002】
【従来の技術】
SUS 430 で代表されるフェライト系ステンレス鋼は、高価なNiを殆ど含まないため、オーステナイト系ステンレス鋼に比べると安価なだけでなく、耐応力腐食割れ性に優れることから、各種厨房器具、自動車排気系部品などの分野で幅広く使用されている。
【0003】
このフェライト系ステンレス鋼のプレス成形性に関しては、絞り、張り出し、深絞り加工性などが要求され、これらの特性を改善するために、これまで数多くの試みがなされている。
例えば、特開平1−201445号公報には、低P,S化と共に、Nb,Ti等の炭窒化物生成元素の添加による深絞り性の改善技術が提唱されている。しかしながら、この技術は、低P,S化が不可欠であるため、製鋼工程での負荷が大きいという問題があった。
【0004】
また、特開昭58−71356号公報には、熱間圧延前におけるスラブ加熱温度を1130℃を超えないように制御することによって、平均r値を向上する製造方法が提唱されている。しかしながら、スラブ加熱温度を下げると、熱間加工性が低下し、コイル表面にヘゲ疵などの表面欠陥が発生する危険性が高く、その後のグラインダー手入れや酸洗によるコスト増を招くという問題があった。
【0005】
さらに、特開平1−136930号公報には、熱間圧延における仕上げ圧延条件を規定することによって平均r値を向上させる方法が提唱されている。
しかしながら、この方法は、熱延工程における制御圧延であり、仕上げ温度が低い上にロール潤滑を行わなければならないなど、工程的な負荷が大きいという問題があった。
【0006】
【発明が解決しようとする課題】
上述したとおり、従来の技術は、たとえr値の改善がなされても、製造コストの増加や工程的な負荷が大きい、あるいは鋼板の表面性状を大きく損なうといった各種の問題を残していた。
この発明は、上記の実情に鑑み開発されたもので、r値に優れるのはいうまでもなく、従来技術が抱えている工程負荷およびヘゲ発生等の問題を有利に解決したフェライト系ステンレス鋼を提案することを目的とする。
【0007】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく鋭意研究を行った結果、r値は、フェライト系ステンレス鋼における酸化物系介在物の組成状態に強く依存し、従ってかかる酸化物系介在物の組成を適切に制御すると共に、Vを適量添加することが、所期した目的の達成に極めて有効であるとの知見を得た。
この発明は、上記の知見に立脚するものである。
【0008】
すなわち、この発明は、Cr:15〜20wt%を含有するフェライト系ステンレス鋼において、Vを 0.005〜1.0 wt%の範囲で含有させると共に、Alを 0.005wt%以下、Oを 0.001〜0.007 wt%の範囲とし、かつ鋼中の酸化物系介在物の成分中、 Al2O3およびCr2O3 をそれぞれ、 Al2O3:5wt%以下、 Cr2O3:10〜50wt%の範囲としたことを特徴とする、表面性状およびプレス成形性に優れたフェライト系ステンレス鋼である。
【0009】
この発明において、鋼中の酸化物系介在物については、上記したとおり、 Al2O3およびCr2O3 をそれぞれ Al2O3:5wt%以下、 Cr2O3:10〜50wt%にすると共に、MnO を10〜50wt%およびSiO2を20wt%以下とすることがより好ましい。
【0010】
なお、この発明において、酸化物系介在物とは、製鋼工程で生成する脱酸生成物と原料から混入する酸化物の両者を含む。また、製鋼工程で生成する脱酸生成物とは、単なる酸化物だけでなく、硫化物等が混在した複合形態を含む。ここに、酸化物系介在物としては、上記した Al2O3やCr2O3, MnO, SiO2の他、 MgOおよびFeO 等が挙げられる。
【0011】
【発明実施の形態】
以下、この発明を導くに至った実験結果について説明する。
C:0.06wt%、Cr:16.4wt%、O:40 ppmに固定し、AlおよびVをそれぞれ、Al:0.0006〜0.05wt%、V:0.001 〜3.0 wt%の範囲で変化させた組成の鋼を、真空溶解炉で溶製し、小型鋼塊(50kg)とした。その際、酸化物系介在物の組成状態を、溶製条件を変更することによって種々に変化させた。
ついで、1180℃に加熱後、熱間圧延により4.0 mm厚の熱延板とし、ついでこれらの熱延板に 860℃, 8hの焼鈍を行い、15℃/h程度の冷却速度で徐冷処理を施した後、冷間圧延により0.5 mm厚の冷延板とした。その後、冷延板に 810℃, 30sの仕上げ焼鈍を施して製品板とした。
【0012】
かくして得られた製品板から、圧延方向(L方向)、圧延方向と45°をなす方向(X方向)および圧延方向と直角な方向(C方向)からJIS 13号B試験片を採取し、引張試験を実施して、各方向のr値(rL,rX,rC )を測定し、平均r値を求めた。ここで、平均r値は次式で定義するものとする。
平均r値=(rL +2rX +rC )/4
【0013】
図1に、V添加量と平均r値との関係について調査した結果を示す。
同図に示したとおり、V量を 0.005wt%以上添加した場合には良好な平均r値が得られることが分かる。
なお、V量の上限は、製造コストおよび過剰添加による硬質化の面から1.0 wt%とする必要がある。
【0014】
次に、図2に、酸化物系介在物中の Al2O3濃度と平均r値との関係について調べた結果を、また図3には、酸化物系介在物中の Cr2O3濃度と平均r値との関係について調べた結果を、それぞれ示す。
図2に示したとおり、酸化物系介在物中の Al2O3濃度が5wt%以下であれば平均r値の改善が見込まれることが分かる。
また、図3に示したとおり、酸化物系介在物中の Cr2O3濃度が10〜50wt%の範囲を満足する場合に、平均r値が著しく改善されることが分かる。
【0015】
そこで、この発明では、フェライト系ステンレス鋼に、 0.005〜1.0 wt%の範囲でVを添加すると共に、酸化物系介在物の成分中、特に Al2O3およびCr2O3 について、それぞれ Al2O3≦5wt%、 Cr2O3:10〜50wt%の範囲に制限することにしたのである。
【0016】
上述したとおり、酸化物系介在物の成分中、r値に特に影響を及ぼす成分は、 Al2O3およびCr2O3 であるが、その他にも、MnO などもr値に影響を及ぼすことが判明した。
図4に、酸化物系介在物中の MnO濃度と平均r値との関係について調べた結果を示す。
同図に示したとおり、満足できる平均r値が得るためには、酸化物系介在物中の MnO濃度を10〜50wt%程度とするのが好ましいことが判る。
【0017】
さらに、酸化物系介在物のうち、SiO2も加工性に影響を及ぼし、この加工性の面からはSiO2濃度を20wt%以下に制限するのが有利であることが判明した。
従って、良好な加工性を得るためには、鋼中の酸化物系介在物の各成分につき、 Al2O3およびCr2O3 をそれぞれ Al2O3:5wt%以下、 Cr2O3:10〜50wt%にすると共に、 MnOを10〜50wt%およびSiO2を20wt%以下とすることが好ましい。
【0018】
次に、この発明の素材成分について説明する。
この発明は、Crを15〜20wt%の範囲で含有し、Alを 0.005wt%以下かつO量を 0.001〜0.007 wt%の範囲に制限したものであれば、いわゆるフェライト系ステンレス鋼全般に適用することができる。
ここに、Cr, AlおよびO含有量を上記の範囲に限定した理由を、V含有量の限定理由と共に説明する。
Cr:15〜20wt%
Crは、ステンレス鋼としての耐食性を確保するために不可欠な元素である。しかしながら、その量が15wt%未満では耐食性が不足し、一方20wt%を超えると冷間加工性の低下や靱性の劣化を招くので、含有量は15〜20wt%の範囲に限定した。より好適には16〜18wt%の範囲である。
【0019】
Al:0.005 wt%以下
Alを添加すると、酸化物系介在物中の Al2O3濃度が上昇し、耐食性を劣化させるばかりでなく、コイルの表面品質を劣化させる原因となる。また、酸化物系介在物中のAl2O3 濃度が上昇すると、酸化物系介在物中の Cr2O3濃度が減少し、V炭窒化物が周りに析出しにくくなり、仕上げ焼鈍時に固溶C,N量の低減が期待できない。従って、Alは意図的な添加を避け、上限を 0.005wt%とした。より好適には0.003 wt%以下である。
【0020】
O:0.001 〜0.007 wt%
Oは、溶鋼中でAlやMnと結合し酸化物系介在物を生成する。その結果、耐食性の劣化や鋼板表面の傷の原因となるため、Oの上限は 0.007wt%とした。一方、この発明において、酸化物系介在物、VやCr等の炭窒化物の析出サイトとして作用するため、0.001 wt%に満たないと固溶C,Nの低減に寄与しない。従って、この発明では、O量について 0.001〜0.007 wt%の範囲に限定した。より好適には0.0015〜0.006 wt%の範囲である。
【0021】
V:0.005 〜1.0 wt%
Vは、炭窒化物として酸化物系介在物の周りに析出し、プレス成形性に有害なC,Nを固定するためのサイトとして有効に作用し、軟質化およびr値向上に極めて有用な元素である。しかしながら、含有量が 0.005wt%未満ではこれらの効果が期待できず、一方 1.0wt%を超える添加は効果が飽和するばかりか、製造性の低下やコストの上昇を招く。従って、Vの添加量は 0.005〜1.0 wt%の範囲に限定した。より好適には0.01〜0.5 wt%の範囲である。
【0022】
その他の成分については、特に限定されることはないが、特に好ましい成分組成範囲は次のとおりである。
C:0.1 wt%以下
Cは、r値および伸び特性を低下させる元素である。とくに、0.1 wt%を超えるとその影響が顕著になるので、Cは 0.1wt%以下とすることが望ましい。より好適には0.07wt%以下である。
【0023】
Si:1.0 wt%以下
Siは、脱酸のために有効な元素であるが、過剰の添加は硬質化を招くので、その添加量は 1.0wt%以下とすることが望ましい。より好適には 0.5wt%以下である。
【0024】
Mn:1.0 wt%以下
Mnは、鋼中に存在するSを析出固定し、熱間圧延性を保つために有効な元素であるが、過剰の添加は冷間加工性の低下を招くので、その添加量は 1.0wt%以下とすることが望ましい。より好適には 0.8wt%以下である。
【0025】
N:0.1 wt%以下
Nは、Cと同様、r値および伸び特性を低下させる元素である。特に、0.1 wt%を超えるとその影響が顕著になるので、Nは 0.1wt%以下とすることが望ましい。より好適には0.07wt%以下である。
【0026】
なお、この発明では、PおよびS等については、特に厳しく制限しなくても、十分に所定の材質を得ることができる。
【0027】
この発明に従い、V添加量ならびに酸化物系介在物中の Cr2O3濃度および Al2O3濃度を所定の範囲に制限することによってr値が改善される理由は、まだ明確に解明されたわけではないが、冷延板焼鈍中の再結晶挙動が関与しているものと思われる。
すなわち、酸化物系介在物中の Al2O3濃度が5wt%以下、Cr2O3 濃度が10〜50wt%、さらに好ましくは MnO濃度が10〜50wt%の範囲を満足していると、V添加により酸化物系介在物の周りに析出したV炭窒化物が析出サイトとして作用し、さらにその周りにCrの炭窒化物が析出し、仕上げ焼鈍時に固溶C,Nの低減が図られる。その結果、引き続く再結晶において、r値の向上に有効な(111)集合組織を優先的に発達させることができる。
一方、 Al2O3濃度が5wt%を上回るか、 Cr2O3濃度が10wt%未満または50wt%超の場合には、前述したV炭窒化物の析出サイトとしての効果が小さく、仕上げ焼鈍時に固溶C,Nの低減が望めないことから、(111)集合組織の発達が抑制されてしまうためと考えられる。
【0028】
この発明において、上記したような酸化物系介在物の組成状態は、次のようにして制御することができる。
まず、溶製時におけるスラグとして、 CaO−SiO2−Al2O3 三元系のものを用いる。そして、このスラグ中における Al2O3濃度を5wt%以下に制御すると共に、塩基度(CaO /SiO2)を1.5 以下に調整する。なお、溶鋼中のAl量は 0.005wt%以下に抑制しておく必要があり、またO量については70 ppm以下まで低減することが望ましい。
上記の処理によって、酸化物系介在物における Al2O3濃度および Cr2O3濃度を所定の範囲に制御することができる。
なお、連続鋳造スラブの冷却速度を30℃/s以下とすることも有利である。
【0029】
その後の処理については、常法に従って行えば良く、例えば1300〜700 ℃で熱間圧延したのち、圧下率:50〜90%程度で冷間圧延し、ついで 700〜1000℃程度の温度で仕上げ焼鈍を施せば良い。
なお、この発明鋼は、熱延焼鈍薄鋼板、タンデム圧延−達続焼鈍を行った冷延鋼板、光輝焼鈍板等にも適用可能である。
【0030】
【実施例】
表1に示す成分組成の鋼を溶製し、連続鋳造により200 mm厚のスラブとした。その際、脱酸方法、鋳造条件を変えることによって、スラブ中における酸化物系介在物の組成状態を変化させた。
このとき MnO−SiO2系介在物とする場合には、スラグの塩基度を1.4 とし、スラグ中の Al2O3濃度を5wt%以下まで低減した。一方、 Al2O3系介在物とする場合には、塩基度を2.0 以上とし、スラグ中の Al2O3濃度を20%以上とした。
この実験において、脱酸に要した時間は30分であり、O量を40 ppmまで低減させた。なお、鋳造に先立って鋳型内に不活性ガスを吹き込み、溶鋼の温度制御ならびに介在物の浮上除去を促進させた。
【0031】
鋳造に際しては、SiO2, CaO を主成分とするモールドパウダーを鋳型内で鋳片表面に投入し、鋳片と鋳型の間を潤滑すると同時に、鋳造中に鋳片内部から浮上してくる介在物を捕捉除去した。
ついで、この連続鋳造スラブを、通常の熱間圧延により熱延板とし、熱延板焼鈍後、酸洗したのち、冷間圧延により0.5 mm厚の冷延板とし、ついで仕上げ焼鈍を施して製品板とした。
【0032】
かくして得られた製品板について、前述の方法で、平均r値を求めた。
また、各製品板の組織を走査型電子顕微鏡で 200視野について観察ならびに同定を行い、さらに抽出分析により酸化物系介在物の組成を調査した。
さらに、重量:約20tのコイル全長にわたって表面性状を観察し、ヘゲ疵の定量を行った。ここに、ヘゲ疵の量は、1個/コイル以下を良好と判断した。
これらの結果を表2に示す。
【0033】
【表1】
【0034】
【表2】
【0035】
表2に示したとおり、この発明に従い、所定量のVを添加すると共に、Al2O3 およびCr2O3 をそれぞれ、 Al2O3≦5wt%、 Cr2O3:10〜50wt%の範囲に制限したものはいずれも、優れたr値が得られ、またヘゲ疵の発生もほとんど認められなかった。
【0036】
【発明の効果】
かくして、この発明によれば、表面性状の劣化なしに、プレス成形性に優れたフェライト系ステンレス鋼を安価に得ることができ、産業上極めて有用であるといえる。
【図面の簡単な説明】
【図1】V添加量と平均r値との関係を示すグラフである。
【図2】酸化物系介在物中の Al2O3濃度と平均r値との関係を示すグラフである。
【図3】酸化物系介在物中の Cr2O3濃度と平均r値との関係を示すグラフである。
【図4】酸化物系介在物中の MnO濃度と平均r値との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic stainless steel excellent in surface properties and press formability, and in particular, by appropriately controlling the composition state of oxide inclusions in ferritic stainless steel and adding an appropriate amount of V, the surface properties. Thus, it is intended to advantageously improve the press formability without incurring deterioration.
[0002]
[Prior art]
Since ferritic stainless steel represented by SUS 430 contains almost no expensive Ni, it is not only cheaper than austenitic stainless steel, but also has excellent resistance to stress corrosion cracking. Widely used in fields such as system parts.
[0003]
With respect to the press formability of this ferritic stainless steel, drawing, overhanging, deep drawing workability, etc. are required, and many attempts have been made so far to improve these properties.
For example, Japanese Patent Laid-Open No. 1-201445 proposes a technique for improving deep drawability by adding carbonitride-generating elements such as Nb and Ti as well as reducing P and S. However, this technique has a problem that the load in the steel making process is large because low P and S are indispensable.
[0004]
Japanese Patent Laid-Open No. 58-71356 proposes a manufacturing method for improving the average r value by controlling the slab heating temperature before hot rolling so as not to exceed 1130 ° C. However, when the slab heating temperature is lowered, hot workability is reduced, and there is a high risk that surface defects such as lashes will be generated on the coil surface, resulting in increased costs due to subsequent grinder care and pickling. there were.
[0005]
Furthermore, Japanese Patent Application Laid-Open No. 1-136930 proposes a method for improving the average r value by defining finish rolling conditions in hot rolling.
However, this method is controlled rolling in the hot rolling process, and there is a problem that the process load is large, for example, the finishing temperature is low and roll lubrication must be performed.
[0006]
[Problems to be solved by the invention]
As described above, even if the r value is improved, the conventional technique has left various problems such as an increase in manufacturing cost, a large process load, or a large deterioration in the surface properties of the steel sheet.
The present invention was developed in view of the above circumstances, and it goes without saying that the r-value is excellent, and the ferritic stainless steel that advantageously solves the problems such as process load and generation of baldness that the prior art has. The purpose is to propose.
[0007]
[Means for Solving the Problems]
Now, as a result of intensive studies to achieve the above object, the inventors have determined that the r value strongly depends on the composition state of oxide inclusions in the ferritic stainless steel, and accordingly, such oxide inclusions. The present inventors have found that it is extremely effective to appropriately control the composition and to add an appropriate amount of V to achieve the intended purpose.
The present invention is based on the above findings.
[0008]
That is, according to the present invention, in a ferritic stainless steel containing Cr: 15 to 20 wt%, V is contained in a range of 0.005 to 1.0 wt%, Al is 0.005 wt% or less, and O is 0. In the components of oxide inclusions in steel, Al 2 O 3 and Cr 2 O 3 are each in the range of 0.001 to 0.007 wt%, Al 2 O 3 : 5 wt% or less, Cr 2 O 3 : Ferritic stainless steel excellent in surface properties and press formability, characterized by being in the range of 10 to 50 wt%.
[0009]
In the present invention, for oxide inclusions in the steel, as described above, Al 2 O 3 and Cr 2 O 3, respectively Al 2 O 3: 5wt% or less, Cr 2 O 3: To range of 10 to 50 wt% In addition, it is more preferable that MnO 2 is 10 to 50 wt% and SiO 2 is 20 wt% or less.
[0010]
In addition, in this invention, an oxide inclusion includes both the deoxidation product produced | generated at a steelmaking process, and the oxide mixed from a raw material. Moreover, the deoxidation product produced | generated by a steelmaking process includes the composite form with which not only a simple oxide but sulfide etc. were mixed. Here, examples of the oxide-based inclusion include MgO and FeO 2 in addition to the above-described Al 2 O 3 , Cr 2 O 3 , MnO, and SiO 2 .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The experimental results that led to this invention will be described below.
C: 0.06 wt%, Cr: 16.4 wt%, O: 40 ppm fixed, Al and V are respectively Al: 0.0006-0.05 wt%, V: 0.001-3.0 wt% The steel having the composition changed in the range was melted in a vacuum melting furnace to obtain a small steel ingot (50 kg). At that time, the composition state of the oxide inclusions was variously changed by changing the melting conditions.
Next, after heating to 1180 ° C., hot-rolled sheets having a thickness of 4.0 mm are formed by hot rolling. Then, these hot-rolled sheets are annealed at 860 ° C. for 8 hours, and gradually cooled at a cooling rate of about 15 ° C./h. After the treatment, a cold-rolled sheet having a thickness of 0.5 mm was formed by cold rolling. Thereafter, the cold-rolled sheet was subjected to finish annealing at 810 ° C. for 30 seconds to obtain a product sheet.
[0012]
From the product plate thus obtained, JIS No. 13 B specimens were collected from the rolling direction (L direction), the direction forming 45 ° with the rolling direction (X direction), and the direction perpendicular to the rolling direction (C direction). The test was carried out to measure the r value (r L, r X, r C ) in each direction, and the average r value was obtained. Here, the average r value is defined by the following equation.
Average r value = (r L + 2r X + r C ) / 4
[0013]
FIG. 1 shows the results of investigation on the relationship between the V addition amount and the average r value.
As shown in the figure, it can be seen that a good average r value can be obtained when the amount of V is 0.005 wt% or more.
In addition, the upper limit of V amount needs to be 1.0 wt% from the viewpoint of manufacturing cost and hardening due to excessive addition.
[0014]
Next, FIG. 2 shows the results of investigating the relationship between the Al 2 O 3 concentration in the oxide inclusions and the average r value, and FIG. 3 shows the Cr 2 O 3 concentration in the oxide inclusions. The results of examining the relationship between the average r value and the average r value are shown below.
As shown in FIG. 2, it can be seen that if the Al 2 O 3 concentration in the oxide inclusions is 5 wt% or less, improvement of the average r value is expected.
In addition, as shown in FIG. 3, it can be seen that the average r value is remarkably improved when the Cr 2 O 3 concentration in the oxide inclusions satisfies the range of 10 to 50 wt%.
[0015]
Therefore, in the present invention, V is added to the ferritic stainless steel in the range of 0.005 to 1.0 wt%, and among the components of the oxide inclusions, particularly Al 2 O 3 and Cr 2 O 3 . These are limited to the ranges of Al 2 O 3 ≦ 5 wt% and Cr 2 O 3 : 10 to 50 wt%, respectively.
[0016]
As described above, among the components of oxide inclusions, the components that particularly affect the r value are Al 2 O 3 and Cr 2 O 3 , but in addition, MnO and the like also affect the r value. There was found.
FIG. 4 shows the results of examining the relationship between the MnO concentration in the oxide inclusions and the average r value.
As shown in the figure, it is understood that the MnO concentration in the oxide inclusions is preferably about 10 to 50 wt% in order to obtain a satisfactory average r value.
[0017]
Further, among oxide inclusions, SiO 2 also affects workability, and it has been found that it is advantageous to limit the SiO 2 concentration to 20 wt% or less from the viewpoint of workability.
Therefore, in order to obtain good workability, Al 2 O 3 and Cr 2 O 3 are contained in each component of the oxide inclusions in the steel, and Al 2 O 3 is 5 wt% or less, Cr 2 O 3 : It is preferable that the content is 10 to 50 wt%, MnO is 10 to 50 wt%, and SiO 2 is 20 wt% or less.
[0018]
Next, the raw material component of this invention is demonstrated.
If this invention contains Cr in the range of 15 to 20 wt%, Al is 0.005 wt% or less and the amount of O is limited to the range of 0.001 to 0.007 wt%, so-called ferritic stainless steel It can be applied to all types of steel.
Here, the reason why the Cr, Al and O contents are limited to the above range will be described together with the reason for limiting the V content.
Cr: 15-20 wt%
Cr is an indispensable element for ensuring the corrosion resistance as stainless steel. However, if the amount is less than 15 wt%, the corrosion resistance is insufficient. On the other hand, if it exceeds 20 wt%, the cold workability is deteriorated and the toughness is deteriorated, so the content is limited to the range of 15 to 20 wt%. More preferably, it is the range of 16-18 wt%.
[0019]
Al: 0.005 wt% or less When Al is added, the concentration of Al 2 O 3 in the oxide inclusions increases, which not only deteriorates the corrosion resistance but also causes the surface quality of the coil to deteriorate. In addition, when the Al 2 O 3 concentration in the oxide inclusions increases, the Cr 2 O 3 concentration in the oxide inclusions decreases, making it difficult for V carbonitrides to precipitate around and solidifying during finish annealing. Reduction of the amount of dissolved C and N cannot be expected. Accordingly, intentional addition of Al was avoided, and the upper limit was made 0.005 wt%. More preferably, it is 0.003 wt% or less.
[0020]
O: 0.001 to 0.007 wt%
O couple | bonds with Al and Mn in molten steel, and produces | generates an oxide type inclusion. As a result, the corrosion resistance is deteriorated and the surface of the steel sheet is damaged, so the upper limit of O is set to 0.007 wt%. On the other hand, in this invention, since it acts as a precipitation site for oxide inclusions and carbonitrides such as V and Cr, it does not contribute to the reduction of dissolved C and N unless it is less than 0.001 wt%. Therefore, in the present invention, the amount of O is limited to a range of 0.001 to 0.007 wt%. More preferably, it is in the range of 0.0015 to 0.006 wt%.
[0021]
V: 0.005 to 1.0 wt%
V precipitates around oxide inclusions as carbonitrides, effectively acts as a site for fixing C and N harmful to press formability, and is an extremely useful element for softening and improving the r value. It is. However, if the content is less than 0.005 wt%, these effects cannot be expected. On the other hand, the addition exceeding 1.0 wt% not only saturates the effect, but also causes a decrease in manufacturability and an increase in cost. Therefore, the addition amount of V is limited to the range of 0.005 to 1.0 wt%. More preferably, it is in the range of 0.01 to 0.5 wt%.
[0022]
Other components are not particularly limited, but particularly preferable component composition ranges are as follows.
C: 0.1 wt% or less C is an element that lowers the r value and elongation characteristics. In particular, when the amount exceeds 0.1 wt%, the effect becomes significant. Therefore, C is preferably set to 0.1 wt% or less. More preferably, it is 0.07 wt% or less.
[0023]
Si: 1.0 wt% or less Si is an effective element for deoxidation, but excessive addition causes hardening, so the addition amount is preferably 1.0 wt% or less. More preferably, it is 0.5 wt% or less.
[0024]
Mn: 1.0 wt% or less Mn is an element effective for precipitating and fixing S present in steel and maintaining hot rollability, but excessive addition causes a decrease in cold workability. The added amount is desirably 1.0 wt% or less. More preferably, it is 0.8 wt% or less.
[0025]
N: 0.1 wt% or less N, like C, is an element that decreases the r value and elongation characteristics. In particular, when the amount exceeds 0.1 wt%, the influence becomes significant. Therefore, N is preferably 0.1 wt% or less. More preferably, it is 0.07 wt% or less.
[0026]
In the present invention, it is possible to sufficiently obtain a predetermined material without particularly restricting P and S.
[0027]
The reason why the r value is improved by limiting the V addition amount and the Cr 2 O 3 concentration and the Al 2 O 3 concentration in the oxide inclusions to a predetermined range according to the present invention is still clearly elucidated. However, it seems that recrystallization behavior during cold-rolled sheet annealing is involved.
That is, if the Al 2 O 3 concentration in the oxide inclusions is 5 wt% or less, the Cr 2 O 3 concentration is 10 to 50 wt%, more preferably the MnO concentration is in the range of 10 to 50 wt%, V carbonitride precipitated around oxide inclusions by addition acts as a precipitation site, and Cr carbonitride precipitates around it, so that solid solution C and N can be reduced during finish annealing. As a result, in the subsequent recrystallization, the (111) texture effective for improving the r value can be preferentially developed.
On the other hand, when the Al 2 O 3 concentration exceeds 5 wt%, or the Cr 2 O 3 concentration is less than 10 wt% or more than 50 wt%, the effect as a precipitation site of the V carbonitride described above is small, and during finish annealing It is considered that the development of the (111) texture is suppressed because the reduction of the solid solution C and N cannot be expected.
[0028]
In the present invention, the composition state of the oxide inclusions as described above can be controlled as follows.
First, as a slag at the time of melting, a CaO—SiO 2 —Al 2 O 3 ternary system is used. Then, to control the concentration of Al 2 O 3 in the slag below 5 wt%, adjusted basicity (CaO / SiO 2) to 1.5 or less. In addition, it is necessary to suppress the amount of Al in molten steel to 0.005 wt% or less, and it is desirable to reduce the amount of O to 70 ppm or less.
By the above treatment, the Al 2 O 3 concentration and the Cr 2 O 3 concentration in the oxide inclusions can be controlled within a predetermined range.
It is also advantageous to set the cooling rate of the continuously cast slab to 30 ° C./s or less.
[0029]
The subsequent treatment may be performed according to a conventional method, for example, hot rolling at 1300 to 700 ° C., then cold rolling at a reduction ratio of about 50 to 90%, and then finish annealing at a temperature of about 700 to 1000 ° C. Should be applied.
In addition, this invention steel is applicable also to the hot rolled annealing thin steel plate, the cold rolled steel plate which performed the tandem rolling-sequential annealing, the bright annealing plate, etc.
[0030]
【Example】
Steels having the composition shown in Table 1 were melted and slabs having a thickness of 200 mm were obtained by continuous casting. At that time, the composition state of the oxide inclusions in the slab was changed by changing the deoxidation method and casting conditions.
At this time, when using MnO—SiO 2 inclusions, the basicity of the slag was set to 1.4, and the Al 2 O 3 concentration in the slag was reduced to 5 wt% or less. On the other hand, when Al 2 O 3 inclusions were used, the basicity was set to 2.0 or more, and the Al 2 O 3 concentration in the slag was set to 20% or more.
In this experiment, the time required for deoxidation was 30 minutes, and the amount of O was reduced to 40 ppm. Prior to casting, an inert gas was blown into the mold to promote the temperature control of molten steel and the floating removal of inclusions.
[0031]
At the time of casting, mold powder containing SiO 2 and CaO as main components is put on the surface of the slab in the mold and lubricated between the slab and the mold, and at the same time, inclusions floating from the inside of the slab during casting Was trapped and removed.
Next, this continuous cast slab is made into a hot-rolled sheet by ordinary hot rolling, and after hot-rolled sheet annealing, pickled, then cold-rolled to a 0.5 mm thick cold-rolled sheet, and then subjected to finish annealing. The product board.
[0032]
For the product plate thus obtained, the average r value was determined by the method described above.
In addition, the structure of each product plate was observed and identified for 200 fields of view with a scanning electron microscope, and the composition of oxide inclusions was investigated by extraction analysis.
Furthermore, the surface properties were observed over the entire length of the coil having a weight of about 20 t, and the balance was determined. Here, it was judged that the amount of lashes was 1 / coil or less.
These results are shown in Table 2.
[0033]
[Table 1]
[0034]
[Table 2]
[0035]
As shown in Table 2, according to the present invention, a predetermined amount of V is added, and Al 2 O 3 and Cr 2 O 3 are added to each of Al 2 O 3 ≦ 5 wt% and Cr 2 O 3 : 10 to 50 wt%. In all cases, the r value was excellent and almost no occurrence of baldness was observed.
[0036]
【The invention's effect】
Thus, according to the present invention, it is possible to obtain a ferritic stainless steel excellent in press formability at low cost without deterioration of the surface properties, and it can be said that it is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the V addition amount and the average r value.
FIG. 2 is a graph showing the relationship between the Al 2 O 3 concentration in oxide inclusions and the average r value.
FIG. 3 is a graph showing the relationship between the Cr 2 O 3 concentration in oxide inclusions and the average r value.
FIG. 4 is a graph showing the relationship between the MnO concentration in oxide inclusions and the average r value.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15466098A JP3608383B2 (en) | 1998-06-03 | 1998-06-03 | Ferritic stainless steel with excellent surface properties and press formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15466098A JP3608383B2 (en) | 1998-06-03 | 1998-06-03 | Ferritic stainless steel with excellent surface properties and press formability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11350077A JPH11350077A (en) | 1999-12-21 |
JP3608383B2 true JP3608383B2 (en) | 2005-01-12 |
Family
ID=15589110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15466098A Expired - Fee Related JP3608383B2 (en) | 1998-06-03 | 1998-06-03 | Ferritic stainless steel with excellent surface properties and press formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3608383B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106536777A (en) * | 2014-07-22 | 2017-03-22 | 新日铁住金不锈钢株式会社 | Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6530923B2 (en) * | 2015-02-17 | 2019-06-12 | 日鉄日新製鋼株式会社 | Stainless steel sheet excellent in corrosion resistance and method of manufacturing the same |
-
1998
- 1998-06-03 JP JP15466098A patent/JP3608383B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106536777A (en) * | 2014-07-22 | 2017-03-22 | 新日铁住金不锈钢株式会社 | Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member |
CN106536777B (en) * | 2014-07-22 | 2018-10-30 | 新日铁住金不锈钢株式会社 | Ferrite-group stainless steel and its manufacturing method and using ferrite-group stainless steel as the heat exchanger of component |
US11091824B2 (en) | 2014-07-22 | 2021-08-17 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member |
Also Published As
Publication number | Publication date |
---|---|
JPH11350077A (en) | 1999-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101561358B1 (en) | High-strength cold rolled steel sheet having excellent deep drawability and bake hardenability and method for manufacturing the same | |
EP2623622B1 (en) | High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same | |
EP2749665B1 (en) | High strength hot dip galvanized steel sheet having excellent deep- drawability, and method for producing same | |
JP5655475B2 (en) | High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof | |
CN111868282B (en) | Steel plate | |
JPWO2020148948A1 (en) | High-strength galvanized steel sheet and its manufacturing method | |
JPH08337840A (en) | Titanium-containing rolled steel sheet having high strength and excellent drawability and its production | |
JP3608383B2 (en) | Ferritic stainless steel with excellent surface properties and press formability | |
JP3965792B2 (en) | Manufacturing method of steel sheet with excellent surface properties | |
JP4010131B2 (en) | Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof | |
JP2000319730A (en) | Production of hot rolled steel sheet excellent in surface property and formability | |
JP4586648B2 (en) | Steel plate excellent in workability and method for producing the same | |
JP2007177303A (en) | Steel having excellent ductility and its production method | |
JP3466298B2 (en) | Manufacturing method of cold rolled steel sheet with excellent workability | |
JPS582248B2 (en) | Manufacturing method for hot-dip galvanized steel sheet with excellent workability | |
JP2830745B2 (en) | Manufacturing method of bake hardening type cold rolled steel sheet with excellent surface properties | |
JP3911075B2 (en) | Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability | |
JP2004204252A (en) | Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR | |
JP2001098327A (en) | Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance | |
KR100370579B1 (en) | Hot rolled steel sheet with excellent surface properties and workability and manufacturing method by mini mill process | |
JP3863803B2 (en) | High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue characteristics and method for producing the same | |
JP2001107149A (en) | Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JP2562964B2 (en) | Manufacturing method of hot rolled high strength steel sheet for heavy working | |
JPH1017994A (en) | High strength alloyed galvanized steel sheet for deep drawing excellent in secondary working embrittlement resistance | |
JP3975603B2 (en) | Non-oriented electrical steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040921 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041004 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |