JP3606120B2 - Garbage disposal equipment - Google Patents

Garbage disposal equipment Download PDF

Info

Publication number
JP3606120B2
JP3606120B2 JP20713899A JP20713899A JP3606120B2 JP 3606120 B2 JP3606120 B2 JP 3606120B2 JP 20713899 A JP20713899 A JP 20713899A JP 20713899 A JP20713899 A JP 20713899A JP 3606120 B2 JP3606120 B2 JP 3606120B2
Authority
JP
Japan
Prior art keywords
decomposition
decomposition tank
microorganisms
liquid
garbage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20713899A
Other languages
Japanese (ja)
Other versions
JP2001029929A (en
Inventor
博史 西田
弘美 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP20713899A priority Critical patent/JP3606120B2/en
Publication of JP2001029929A publication Critical patent/JP2001029929A/en
Application granted granted Critical
Publication of JP3606120B2 publication Critical patent/JP3606120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般家庭や飲食店などから排出される生ゴミを微生物的に分解処理する生ゴミ処理装置に関するものである。
【0002】
【従来の技術】
従来の生ゴミ処理装置には、生ゴミを粉砕して水とともにそのまま下水へ流すディスポーザや、生ゴミを焼却あるいは乾燥して減量化するもの、大鋸屑などと混合して微生物分解して減量化するもの等がある。
【0003】
【発明が解決しようとする課題】
このうち、ディスポーザが最も使い勝手がよい。ディスポーザは厨房の流しの排水口にあり、生ゴミの発生場所と処理する場所が非常に近接しており、生ゴミを運搬する必要は全く無い。さらに、処理物は下水へと流れてしまうので、その後のメンテナンスに気を配る必要がない。その他の装置は屋外に設置されているものがほとんどで、時には悪臭を放ち、湿潤した生ゴミを装置までわざわざ運搬しなければならない。また、焼却や乾燥処理するものは、その処理中に特有の臭いを発し、非常に不快である。さらに、処理残渣、つまり灰やかすが残り、それを廃棄するなどの始末をしなければならない。
【0004】
また、大鋸屑と混合して微生物分解するものは、特有の臭いを発するとともに、液体成分と固形分からなる生ゴミをそのまま装置に投入すると、酵素を出さずに液体成分だけを摂取する微生物群が先に出現し優勢となり、他の微生物を阻害させる物質を菌体外に放出するなどしてその優位性を保とうとするので、固形分を溶かして摂取するのに長けた微生物が出現しにくくなる。そして新たな生ゴミ供給され液体成分が加わるとますますその、酵素を出さずに液体成分だけを摂取する微生物群の優位性は強固のものとなり、固形分は微生物分解されないままになる等の問題がある。さらに、装置も大きく、数カ月毎に大鋸屑を交換するなどのメンテナンスを要するものである。
【0005】
このように、ディスポーザ以外の機器は非常に使い勝手の悪いものである。
【0006】
それにも関わらずディスポーザは、日本においてほとんど普及していない。なぜならディスポーザを使用した場合、粉砕された生ゴミによって排水の水質が著しく悪くなり、下水処理場に負担をかけるか、下水の完備されていないところでは、河川の環境を破壊してしまうからである。現在、多くの自治体、特に大都市ではディスポーザの使用、販売を禁止されているのである。
【0007】
そこで、ディスポーザの排水を処理すれば問題はないが、この処理には技術的に困難な点が多い。乾燥や焼却する場合は、前述のような問題に加え、ディスポーザ粉砕時に加える水分を乾燥させなければならず、エネルギー要求の高い手段といえる。微生物処理をする場合は、処理水を環境的に問題の少ないレベルに下げるには、処理に時間がかかるなどの理由で処理槽を大きいものにしなければならない。
【0008】
本発明は、この微生物処理を短時間で効率よく行え、使用勝手が良く、コンパクトな生ゴミ処理装置を実現させることを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するための本発明は、生ゴミを粉砕する粉砕部と、前記粉砕部で粉砕された生ゴミを液体成分と固形分とに分離する固液分離部と、前記固液分離部で分離した液体成分を供給してこれを微生物分解する第1分解槽と、前記固液分離部で分離した固形分と前記第1分解槽で分解処理した後の処理液を供給してこれを微生物分解する第2分解槽と、前記第2分解槽で微生物分解した固形分および処理液を供給して微生物分解する第3分解槽とを備えたもので、粉砕された生ゴミは固液分離部で固形分と液体成分が確実に分離され、第1分解槽では生ゴミの液体分、つまり水に溶解した有機物を摂取するだけの微生物群が優勢となり、第2分解槽では生ゴミの固分、つまり不溶性有機物を酵素で溶かしてから摂取する微生物群が優勢となり、第3分解槽ではすでに微生物分解処理された難生分解性の有機物をさらに分解できる微生物群が優勢となり、それぞれの微生物が干渉しあうことがなく多様な微生物分解が行われるので、効率よく生ゴミを分解することになり、排水は高度に浄化され、コンパクトな生物処理装置を実現させることができる。
【0010】
【発明の実施の形態】
本発明の請求項1記載の発明は、生ゴミを粉砕する粉砕部と、前記粉砕部で粉砕された生ゴミを液体成分と固形分とに分離する固液分離部と、前記固液分離部で分離した液体成分を供給してこれを微生物分解する第1分解槽と、前記固液分離部で分離した固形分と前記第1分解槽で分解処理した後の処理液を供給してこれを微生物分解する第2分解槽と、前記第2分解槽で微生物分解した固形分および処理液を供給して微生物分解する第3分解槽とを備えたものである。これにより、粉砕された生ゴミは固液分離部で固形分と液体成分が確実に分離され、第1分解槽では生ゴミの粉砕液の液体分、つまり水に溶解した有機物を摂取するだけの微生物が優勢となり、第2分解槽では生ゴミの粉砕液の固分、つまり不溶性有機物を酵素で溶かしてから摂取する微生物が優勢となり、第3分解槽ではすでに微生物分解処理された難生分解性の有機物をさらに分解できる微生物群が優勢となるので、生ゴミは効果的に微生物分解され、その廃棄される処理液の環境への負荷は小さいものとなる。
【0011】
本発明の請求項2記載の発明は、請求項1記載の構成に加えて、第2分解槽内の温度を、第1分解槽および第3分解槽内の温度と異なった温度で制御するようにしたもので、第2分解槽の温度が違えば、上流側の分解槽と下流側の分解槽が必ず違う温度となり、それぞれの槽には異種の微生物群が出現しやすくなるので、異種の微生物により多様な微生物処理が実現され効果的に生ゴミが分解され、その廃棄される処理液の環境への負荷は小さいものとなる。
【0012】
本発明の請求項3記載の発明は、第2分解槽内の温度を45℃以上に設定したもので、第2分解槽ではより効果的に不溶性有機物を溶かす微生物が出現し、生ゴミの固分や余剰の増殖した菌体成分が溶かされ、処理液は効果的に分解され、その廃棄される処理液の環境への負荷は小さいものとなる。
【0013】
本発明の請求項4記載の発明は、第3分解槽で分解した固形分と液体分のうち液体分のみ廃棄し、固形分は第3分解槽内に滞留させる構成としたもので、第2分解槽および第3分解槽において微生物分解されそれでも残留した固形分を第3分解槽内部にとどめて滞留させ徐々に分解させることによってより一層の生ゴミの分解進むことになる。
【0014】
【実施例1】
本発明の第1の実施例を図1により説明する。図1は本実施例の処理の流れを示すフローチャートである。
【0015】
生ゴミ1は、粉砕部2において水とともに細かく粉砕される。粉砕部2はいわゆる一般に知られたディスポーザであり、モータ(図示せず)とハンマーカッタ(図示せず)で構成され台所シンクの排水口に直結されている。粉砕された粉砕液は固液分離部3へ移される。
【0016】
粉砕液は、固液分離部3において液体成分と固形分とに分離される。固液分離部3は例えば、ふるいによって濾過するか、重力沈降によって分離するなどすればよい。分離された液体成分および固形分はそれぞれ第1分解槽4と第2分解槽5へ移され微生物分解を受ける。
【0017】
第1分解槽4は、生ゴミ1の液体成分の有機物を微生物分解する槽である。本発明では、その微生物分解の具体的な方式について限定するものではないが、例えば下水処理などに用いられる、活性汚泥槽や、回転ろ床や散水ろ床などの微生物膜酸化槽などが有効である。
【0018】
微生物は有機物を栄養として取り込む場合、水に溶けた形でしか取り込めず、でんぷんやタンパク質などの不溶性の有機物は、菌体外で酵素によって溶かし、それぞれグルコースやアミノ酸などの溶解性の有機物としてから摂取する。第1分解槽4では、その中に含まれる有機物のほとんどが溶解性の有機物である液体成分が主に供給されるので、溶解性有機物を素速く摂取するのに適した微生物群が出現しそれが優勢を占めるようになる。
【0019】
その微生物は不溶性有機物を酵素で溶かす能力は低いが、溶解性有機物を摂取する速度の速い微生物種が優勢を占める。つまり酵素産出のエネルギーを低く抑えている分、(溶解性有機物がある限り)溶解性有機物を速く摂取し速く増殖できるからである。このようにして第1分解槽4で生ゴミの粉砕液の液体成分が約半日から1日かけて分解され、その処理液は第2分解槽5へ移送される。
【0020】
第2分解槽5で分解されるのは、生ゴミの粉砕液の固分と第1分解槽4において分解された処理液であるが、両者は同じ生ゴミ由来ではなく、後者は半日から1日前に投入された生ゴミに由来するものとなる。第2分解槽5は生ゴミ1の固分の有機物を微生物分解する槽である。本発明では、その微生物分解の具体的な方式について限定するものではないが、例えば下水処理などに用いられる、活性汚泥槽や、回転ろ床や散水ろ床などの微生物膜酸化槽などが有効である。生ゴミ1の固体成分はここで微生物によってその有機成分が無機化され二酸化炭素や水などに酸化される。この第2分解槽5では、その中に含まれる有機物のほとんどが不溶性の有機物である固分が主に供給されるので、ここで優勢をしめるのは、第1分解槽4とは違い、不溶性有機物を酵素で溶かす能力の高い微生物となる。第1分解槽4内の微生物は不溶性有機物溶解酵素を産出する能力が低いのでその能力の高い微生物に負けてしまうからである。
【0021】
このように、生ゴミ1を液体成分と固分とに分離しそれぞれを別個の分解槽に供給した方が、それぞれの分解槽がそれぞれの成分を分解するのに適した微生物群が優勢となり、混在している場合よりも干渉しあうこともなく、競争しあうこともないので効率よく有機物の分解が進む。
【0022】
また、第1分解槽4で分解された処理液は第2分解槽5でpHが著しく低くなることを抑え、良好な微生物分解を促進させることができる。生ゴミのような有機物を水とともに微生物分解させるときpHに影響を与える要因として、糖の分解過程で発生する有機酸とたんぱく質の分解過程で発生するアンモニアやアミノ酸があり、前者はpHを低下させ後者はpHを上昇させる。また、有機酸の分解はアンモニアやアミノ酸が分解するより時間はかからない。よって第1分解槽4で分解された処理液には有機酸が少なく、アンモニアやアミノ酸が多いのでpH8前後の状態である。
【0023】
一方、第2分解槽5では固形分が多く、それだけ微生物と酸素の間に固形分が厚くさえぎりやすいので、微生物は酸素の少ない状態になりやすい。そこで有機物の微生物分解が始まると、無酸素でも反応の起こる糖から有機酸の生成だけがおこなわれやすい。このようにして有機酸が蓄積してpHが4前後まで低下してしまうと微生物自体の活性がなくなってしまう。いわゆる腐敗である。ここに、pHの高い第1分解槽4で分解された処理液が混在しているとpHの低下圧力を抑えることができ、有機酸が蓄積することなく良好な分解反応を維持することができるのである。
【0024】
また、第1分解槽4と第2分解槽5の温度は違う温度で調節するのがよい。微生物は種類によってその至適温度があり、異なった環境温度を別個の分解槽でコントロールしてやれば微生物群の種類の多様性が増し、生ゴミという多様な有機物を効果的に分解できるようになる。できれば第2分解槽5の温度を45℃以上にし、第1分解槽4をそれ以下にするのが望ましい。45℃以下はいわゆる常温域だが、45℃を越えればそこに出現する微生物はかなり特殊なもの、通常環境では見られない種類となるのである。その微生物は一般に不溶性有機物を溶解させる能力に優れており、第2分解槽5に必要な微生物の機能だからである。
【0025】
このようにして、約半日から1日かけて分解された固形分と処理液は第3分解槽6へ移送される。
【0026】
第3分解槽6で分解されるのは、微生物分解がかなり進んでおり、微生物にとっては摂取しにくい、分解しにくい成分である。よって、そこで出現する微生物はそのような難分解性の成分を摂取することのできる微生物群となる。このような微生物は通常摂取しやすいとされる栄養源のある中では他の微生物との競争に勝てずに優勢となることはないが、このように摂取しにくい難分解性の栄養だけを供給された場合、優勢となりそれらの成分を効果的に分解していく。本発明では、その微生物分解の具体的な方式について限定するものではないが、例えば活性汚泥槽や、回転ろ床や散水ろ床などの微生物膜酸化槽などが有効である。また、第3分解槽6内の温度は約35℃に設定し、第2分解槽5の温度より低くするのが望ましい。こうすることによって第2分解槽5で成育する微生物群と第3分解槽6で生育する微生物群の種類がかなり違うものとなる。45℃以上の第2分解槽5内の微生物にとって難分解性の成分が第3分解槽6内の微生物にとっては液分解性の成分になる場合もあるからである。
【0027】
このようにして、第2分解槽5の固形分と処理液を第3分解槽6に移してさらに分解させ、その後液体成分だけを下水などに廃棄する。この排水は非常に効果的に有機成分が分解されているので、その排水は下水道などの環境中に廃棄しても問題は少ない。固形分は第3分解槽6内にとどめ、廃棄せずに滞留させる。この固形分がもっとも分解しにくい成分なので滞留させて長い時間をかけてゆっくり微生物分解させる必要があるからである。固形分を滞留させて液体成分だけを廃棄する具体的な方法について本発明は限定するものではないが、重力沈降によって沈殿させて上澄み液を廃棄するか、ふるいなどで濾過するなどすればよい。
【0028】
【発明の効果】
本発明の請求項1記載の発明によれば、生ゴミを粉砕する粉砕部と、前記粉砕部で粉砕された生ゴミを液体成分と固形分とに分離する固液分離部と、前記固液分離部で分離した液体成分を供給してこれを微生物分解する第1分解槽と、前記固液分離部で分離した固形分と前記第1分解槽で分解処理した後の処理液を供給してこれを微生物分解する第2分解槽と、前記第2分解槽で微生物分解した固形分および処理液を供給して微生物分解する第3分解槽とを備えたことにより、液体、固形のそれぞれの成分を分解するのに適した微生物群が出現し、それぞれが干渉せず効率よく生ゴミを分解することが可能となり、さらに、第2分解槽で分解した処理液と固形分を、さらに分解する第3分解槽を設けているので、分解しにくい低分子有機物を摂取する微生物が第3分解槽で優勢となるので、さらなる生ゴミの分解が進む。
【0029】
請求項2記載の発明によれば、第2分解槽の温度と第1分解槽および第3分解槽の温度を異なった設定にしているので、それぞれの槽には異種の微生物群が出現しやすく、多様な微生物分解が実現できるので生ゴミの分解は促進される。
【0030】
また、請求項3記載の発明によれば、固形分を微生物分解する第2分解槽内の温度を45℃以上に設定しているので、より効果的に不溶性有機物を溶かす微生物が出現し生ゴミの分解がより一層進む。
【0031】
請求項4記載の発明によれば、分解しにくい固形分を滞留させているので、時間をかけて固形分を分解させることができ、生ゴミの分解がより一層進む。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す生ゴミ処理機の動作を示すフローチャート
【符号の説明】
1 生ゴミ
2 粉砕部
3 固液分離部
4 第1分解槽
5 第2分解槽
6 第3分解槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a garbage disposal apparatus that microbiologically decomposes garbage discharged from a general household or a restaurant.
[0002]
[Prior art]
In conventional garbage processing equipment, disposers that pulverize garbage and flow it into the sewage together with water, those that reduce the weight by incineration or drying of garbage, and mix with large saw dust to reduce the weight by microbial decomposition There are things.
[0003]
[Problems to be solved by the invention]
Of these, the disposer is the most convenient. The disposer is located at the drain of the kitchen sink, and the place where the garbage is generated is very close to the place where it is treated, so there is no need to transport the garbage. Furthermore, since the treated product flows into the sewage, there is no need to pay attention to subsequent maintenance. Most of the other devices are installed outdoors, sometimes producing a foul odor and having to transport moist garbage to the device. In addition, those that are incinerated or dried are given a characteristic odor during the treatment and are very uncomfortable. Furthermore, processing residue, that is, ash and residue remains, and must be cleaned up.
[0004]
In addition, the one that mixes with large sawdust and decomposes microorganisms emits a unique odor, and when you put raw garbage consisting of liquid components and solids into the device as it is, there is a group of microorganisms that ingest only liquid components without producing enzymes. Since it tries to maintain its superiority by releasing a substance that inhibits other microorganisms, such as by releasing it out of the cell body, it is difficult for the microorganisms that are good to dissolve and ingest solid matter to appear. . And when new garbage is supplied and liquid components are added, the advantage of the microorganism group that takes in only liquid components without producing enzymes becomes stronger, and the solid content remains undegraded by microorganisms. There is. Furthermore, the equipment is large and requires maintenance such as exchanging large sawdust every several months.
[0005]
In this way, devices other than the disposer are very inconvenient.
[0006]
Nevertheless, disposers are rarely used in Japan. This is because when the disposer is used, the quality of the wastewater is significantly deteriorated due to the crushed garbage, and it imposes a burden on the sewage treatment plant or destroys the river environment when the sewage is not fully equipped. . At present, the use and sale of disposers are prohibited in many municipalities, especially in large cities.
[0007]
Therefore, there is no problem if the waste water from the disposer is treated, but there are many technical difficulties in this treatment. In the case of drying or incineration, in addition to the above-mentioned problems, it is necessary to dry the water added at the time of disposer grinding. In the case of microbial treatment, in order to reduce the treated water to a level with less environmental problems, it is necessary to make the treatment tank large because the treatment takes time.
[0008]
An object of the present invention is to realize a compact garbage disposal apparatus that can perform this microorganism treatment efficiently in a short time, is easy to use, and is compact.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention includes a pulverizing unit for pulverizing raw garbage, a solid-liquid separation unit for separating the raw garbage pulverized in the pulverizing unit into a liquid component and a solid content, and the solid-liquid separation unit A first decomposition tank for supplying the liquid component separated in step 1 and microbially decomposing it; supplying a solid content separated in the solid-liquid separation part and a treatment liquid after being decomposed in the first decomposition tank; A second decomposition tank that decomposes microorganisms, and a third decomposition tank that supplies microorganisms with a solid content and a processing liquid decomposed in the second decomposition tank and decomposes the microorganisms are separated into solid and liquid. solid and liquid components are reliably separated in parts, liquid ingredients of garbage in the first decomposition vessel, i.e. microorganisms only ingest organic matter dissolved in water becomes superior, in the second decomposition vessel garbage solid content, i.e. the insoluble organic matter microorganisms ingested and dissolved in an enzyme In the third decomposition tank, a group of microorganisms that can further decompose the biodegradable organic substances that have already been decomposed by microorganisms will be dominant, and various microorganisms will be decomposed without interfering with each other. The garbage is often decomposed, and the wastewater is highly purified, and a compact biological treatment apparatus can be realized.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention includes a pulverizing unit that pulverizes garbage, a solid-liquid separation unit that separates the garbage crushed by the pulverizing unit into a liquid component and a solid content, and the solid-liquid separation unit. A first decomposition tank for supplying the liquid component separated in step 1 and microbially decomposing it; supplying a solid content separated in the solid-liquid separation part and a treatment liquid after being decomposed in the first decomposition tank; A second decomposing tank for decomposing microorganisms and a third decomposing tank for decomposing microorganisms by supplying a solid content and a processing solution which are decomposed in the second decomposing tank are provided . Only this way, garbage milled solids and liquid components in the solid-liquid separating section is reliably separated, in the first decomposition vessel liquid Ingredient grinding liquid garbage, ingest That organic matter dissolved in water microorganisms become dominant, solid content of the grinding liquid food waste in the second decomposition vessel, i.e. the insoluble organic matter microorganisms ingest becomes superior and dissolved in an enzyme, flame production in the third decomposition vessel which is already microbial degradation process Since a group of microorganisms capable of further decomposing degradable organic matter becomes dominant, garbage is effectively decomposed by microorganisms, and the environmental load of the processing liquid to be discarded becomes small.
[0011]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, the temperature in the second decomposition tank is controlled at a temperature different from the temperatures in the first decomposition tank and the third decomposition tank. If the temperature of the second decomposition tank is different, the upstream decomposition tank and the downstream decomposition tank will always have different temperatures, and different types of microorganisms are likely to appear in each tank. A variety of microbial treatments are realized by microorganisms, and garbage is effectively decomposed, and the environmental impact of the discarded treatment liquid is reduced.
[0012]
The invention according to claim 3 of the present invention is such that the temperature in the second decomposition tank is set to 45 ° C. or more, and microorganisms that dissolve insoluble organic substances more effectively appear in the second decomposition tank, so that the solid waste is solidified. The form and surplus microbial components are dissolved, the treatment liquid is effectively decomposed, and the environmental burden of the discarded treatment liquid becomes small.
[0013]
The invention of claim 4 wherein the present invention, solid and liquid Ingredients of liquid Ingredients decomposed in the third decomposition vessel only discarded, solids obtained by a configuration in which dwell in the third decomposition tank, The solid matter that has been microbially decomposed in the second decomposition tank and the third decomposition tank and still remains therein remains in the third decomposition tank and is gradually decomposed to further decompose the garbage.
[0014]
[Example 1]
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flowchart showing the flow of processing of this embodiment.
[0015]
The garbage 1 is finely pulverized together with water in the pulverizing unit 2. The pulverizing unit 2 is a so-called generally known disposer, which is composed of a motor (not shown) and a hammer cutter (not shown) and is directly connected to the drain of the kitchen sink. The pulverized pulverized liquid is transferred to the solid-liquid separator 3.
[0016]
The pulverized liquid is separated into a liquid component and a solid content in the solid-liquid separation unit 3. For example, the solid-liquid separation unit 3 may be filtered by a sieve or separated by gravity sedimentation. The separated liquid component and solid content are transferred to the first decomposition tank 4 and the second decomposition tank 5, respectively, and undergo microbial decomposition.
[0017]
The first decomposition tank 4 is a tank for decomposing microorganisms of liquid organic components of the garbage 1. In the present invention, although the specific method of microbial decomposition is not limited, for example, an activated sludge tank used for sewage treatment or the like, a microbial membrane oxidation tank such as a rotating filter bed or a trickling filter bed, etc. are effective. .
[0018]
When microorganisms take in organic matter as nutrients, they can only be taken up in a form dissolved in water. Insoluble organic matter such as starch and protein is dissolved outside the cell by enzymes and then ingested as soluble organic matter such as glucose and amino acids. To do. In the first decomposition tank 4, a liquid component in which most of the organic substances contained therein are soluble organic substances is mainly supplied, so that a group of microorganisms suitable for quickly ingesting soluble organic substances appears. Will dominate.
[0019]
Although the microorganisms have a low ability to dissolve insoluble organic substances with enzymes, microbial species having a high rate of ingesting soluble organic substances dominate. In other words, as long as the energy of enzyme production is kept low, as long as there is soluble organic matter, soluble organic matter can be ingested quickly and proliferated. In this way, the liquid component of the garbage pulverized liquid is decomposed in the first decomposition tank 4 over about half a day to one day, and the treatment liquid is transferred to the second decomposition tank 5.
[0020]
Being decomposed in second decomposition vessel 5 is a is a processing liquid decomposition in solid content in the first decomposition vessel 4 of the grinding liquid garbage, they are not from the same garbage, the latter half a day It comes from the garbage thrown in one day ago. The second decomposition tank 5 is degrading microorganisms tank solid content of organic garbage 1. In the present invention, although the specific method of microbial decomposition is not limited, for example, an activated sludge tank used for sewage treatment or the like, a microbial membrane oxidation tank such as a rotating filter bed or a trickling filter bed, etc. are effective. . The solid component of the garbage 1 is mineralized by microorganisms and oxidized to carbon dioxide or water. In the second decomposition vessel 5, since most of the organic substances contained therein are solid content is an organic substance insoluble is mainly supplied, wherein the dominate, unlike the first decomposition vessel 4, It becomes a microorganism with high ability to dissolve insoluble organic substances with enzymes. This is because the microorganisms in the first decomposition tank 4 have a low ability to produce an insoluble organic substance-dissolving enzyme, and thus lose the microorganisms having a high ability.
[0021]
Thus, those who garbage 1 was supplied respectively separated into a liquid component and a solid content in a separate decomposition vessel, microorganisms become dominant suitable for each degradation tank to decompose the respective components Because there is no interference and no competition than in the case of coexistence, decomposition of organic matter proceeds efficiently.
[0022]
Moreover, the process liquid decomposed | disassembled in the 1st decomposition tank 4 can suppress that pH falls remarkably in the 2nd decomposition tank 5, and can promote favorable microbial decomposition | disassembly. Factors that affect the pH when organic matter such as garbage is microbially decomposed together with water include ammonia and amino acids that are generated during the decomposition of sugar and organic acids and proteins that are decomposed during sugar decomposition. The latter raises the pH. In addition, the decomposition of the organic acid takes less time than the decomposition of ammonia and amino acids. Therefore, the treatment liquid decomposed in the first decomposition tank 4 has a small amount of organic acid, and a large amount of ammonia and amino acids, so that the pH is around 8.
[0023]
The second decomposition vessel number 5 in solid content, so easy correspondingly intercepting thick solids between the microorganisms and the oxygen, the microorganisms tends to be less state oxygen. Therefore, when microbial decomposition of organic substances begins, only organic acids are easily generated from sugars that react even without oxygen. If the organic acid accumulates in this way and the pH is lowered to around 4, the activity of the microorganism itself is lost. This is so-called corruption. Here, when the treatment liquid decomposed in the first decomposition tank 4 having a high pH is mixed, the pressure for lowering the pH can be suppressed, and a good decomposition reaction can be maintained without accumulating organic acids. It is.
[0024]
Further, the temperatures of the first decomposition tank 4 and the second decomposition tank 5 are preferably adjusted at different temperatures. Microorganisms have their optimum temperature depending on the type. If different environmental temperatures are controlled by separate decomposition tanks, the variety of types of microorganisms increases and various organic substances such as garbage can be effectively decomposed. If possible, it is desirable that the temperature of the second decomposition tank 5 be 45 ° C. or higher and the first decomposition tank 4 be lower than that. The temperature below 45 ° C is the so-called normal temperature range, but if it exceeds 45 ° C, the microorganisms that appear there are quite special and become a kind that cannot be seen in the normal environment. This is because the microorganisms are generally excellent in the ability to dissolve insoluble organic substances, and are the functions of microorganisms necessary for the second decomposition tank 5.
[0025]
In this way, the solid content and the treatment liquid decomposed over about half a day to one day are transferred to the third decomposition tank 6.
[0026]
Decomposition in the third decomposition tank 6 is a component that has undergone considerable microbial decomposition and is difficult for microorganisms to ingest and decompose. Therefore, the microorganisms that appear there become a group of microorganisms that can ingest such hardly decomposable components. These microorganisms are not easily prevailing without competing with other microorganisms in the sources of nutrients that are usually considered to be easy to consume, but supply only persistent nutrients that are difficult to consume. When it is done, it becomes dominant and effectively decomposes those components. In the present invention, although the specific method of microbial decomposition is not limited, for example, an activated sludge tank, a microbial membrane oxidation tank such as a rotating filter bed or a sprinkling filter bed, and the like are effective. The temperature in the third decomposition tank 6 is preferably set to about 35 ° C. and lower than the temperature in the second decomposition tank 5. By doing so, the type of microorganism group growing in the second decomposition tank 5 and the type of microorganism group growing in the third decomposition tank 6 are considerably different. This is because a component that is hardly decomposable for the microorganism in the second decomposition tank 5 at 45 ° C. or higher may be a liquid decomposable component for the microorganism in the third decomposition tank 6.
[0027]
In this way, the solid content and the treatment liquid in the second decomposition tank 5 are transferred to the third decomposition tank 6 for further decomposition, and then only the liquid component is discarded in sewage or the like. Since the wastewater is very effectively decomposed with organic components, there is little problem even if the wastewater is disposed in an environment such as a sewer. The solid content remains in the third decomposition tank 6 and is retained without being discarded. This is because the solid content is the most difficult component to decompose, and it is necessary to make it stay and slowly decompose microorganisms over a long period of time. Although the present invention is not limited to a specific method for retaining the liquid component and retaining only the liquid component, the supernatant may be discarded by gravity sedimentation or filtered with a sieve or the like.
[0028]
【The invention's effect】
According to the first aspect of the present invention, a pulverizing unit for pulverizing raw garbage, a solid-liquid separation unit for separating the raw garbage pulverized in the pulverizing unit into a liquid component and a solid content, and the solid liquid A first decomposition tank for supplying a liquid component separated in the separation unit and microbially decomposing it, supplying a solid content separated in the solid-liquid separation unit and a treatment liquid after being decomposed in the first decomposition tank; By providing a second decomposition tank for microbial decomposition of this, and a third decomposition tank for supplying microorganisms with the solid content and treatment liquid microbially decomposed in the second decomposition tank , the liquid and solid components respectively. A group of microorganisms suitable for decomposing the soil has emerged, each of which can efficiently decompose garbage without interfering with each other, and further, the treatment liquid and solid content decomposed in the second decomposition tank can be further decomposed. 3 Since there is a decomposition tank, low molecular organic substances that are difficult to decompose Since the microorganisms collected becomes dominant in the third decomposition tank, it proceeds decomposition of further garbage.
[0029]
According to the invention described in claim 2, since the temperature of the second decomposition tank and the temperature of the first decomposition tank and the third decomposition tank are set differently, different types of microorganisms easily appear in each tank. Since various microbial decomposition can be realized, the decomposition of garbage is promoted.
[0030]
According to the invention described in claim 3, since the temperature in the second decomposition tank for microbial decomposition of the solid content is set to 45 ° C. or more, microorganisms that dissolve insoluble organic substances more effectively appear and garbage Decomposition further proceeds.
[0031]
According to the fourth aspect of the invention, since the allowed to stay the pile solids decomposed, it is possible to decompose the solids Placing a time, degradation of garbage is advanced further.
[Brief description of the drawings]
FIG. 1 is a flowchart showing the operation of a garbage disposal machine according to a first embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Raw garbage 2 Crushing part 3 Solid-liquid separation part 4 1st decomposition tank 5 2nd decomposition tank 6 3rd decomposition tank

Claims (4)

生ゴミを粉砕する粉砕部と、前記粉砕部で粉砕された生ゴミを液体成分と固形分とに分離する固液分離部と、前記固液分離部で分離した液体成分を供給してこれを微生物分解する第1分解槽と、前記固液分離部で分離した固形分と前記第1分解槽で分解処理した後の処理液を供給してこれを微生物分解する第2分解槽と、前記第2分解槽で微生物分解した固形分および処理液を供給して微生物分解する第3分解槽とを備えた生ゴミ処理装置。A pulverization unit for pulverizing raw garbage, a solid-liquid separation unit for separating the raw garbage crushed by the pulverization unit into a liquid component and a solid content, and a liquid component separated by the solid-liquid separation unit A first decomposition tank for microbial decomposition, a solid content separated in the solid-liquid separation unit, a second decomposition tank for supplying a treatment liquid after decomposition treatment in the first decomposition tank and microbially decomposing it, A garbage processing apparatus comprising: a solid decomposition part decomposed by microorganisms in a two decomposition tank; and a third decomposition tank for supplying microorganisms to decompose the microorganisms . 第2分解槽内の温度を、第1分解槽および第3分解槽内の温度と異なった設定とした請求項1記載の生ゴミ処理装置。The garbage processing apparatus of Claim 1 which made the temperature in a 2nd decomposition tank the setting different from the temperature in a 1st decomposition tank and a 3rd decomposition tank. 第2分解槽内の温度を45℃以上に設定した請求項1または2記載の生ゴミ処理装置。The garbage processing apparatus of Claim 1 or 2 which set the temperature in a 2nd decomposition tank to 45 degreeC or more. 第3分解槽で分解した固形分と液体成分は、液体成分のみ廃棄し、固形分は第3分解槽内に滞留させる構成とした請求項1から3いずれか1項記載の生ゴミ処理装置。The garbage processing apparatus according to any one of claims 1 to 3, wherein the solid content and the liquid component decomposed in the third decomposition tank are configured to discard only the liquid component and to retain the solid content in the third decomposition tank.
JP20713899A 1999-07-22 1999-07-22 Garbage disposal equipment Expired - Fee Related JP3606120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20713899A JP3606120B2 (en) 1999-07-22 1999-07-22 Garbage disposal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20713899A JP3606120B2 (en) 1999-07-22 1999-07-22 Garbage disposal equipment

Publications (2)

Publication Number Publication Date
JP2001029929A JP2001029929A (en) 2001-02-06
JP3606120B2 true JP3606120B2 (en) 2005-01-05

Family

ID=16534839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20713899A Expired - Fee Related JP3606120B2 (en) 1999-07-22 1999-07-22 Garbage disposal equipment

Country Status (1)

Country Link
JP (1) JP3606120B2 (en)

Also Published As

Publication number Publication date
JP2001029929A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
CN101306867B (en) High-efficiency purifier of biological enzyme
US4487697A (en) Biological waste-water-treatment method
EP1157972A1 (en) A method of processing oil-plant wastes
WO1996031439A1 (en) Sewage and contamination remediation and materials for effecting same
CN104801528B (en) Domestic waste organic treatment method
JP3442288B2 (en) Methane fermentation method for organic waste
JPH07503178A (en) Exhaust treatment method
US20070056902A1 (en) Process for treating septage to extract a bio-fuel
JP3554689B2 (en) Waste disposal method
JP3752603B2 (en) Biofilm treatment method for wastewater
JP3400292B2 (en) Waste treatment method
JP3835927B2 (en) Organic waste treatment methods
JP3606120B2 (en) Garbage disposal equipment
JP3643287B2 (en) Food waste disposal method
JPH1170400A (en) Sludge treatment method
JP2000015230A (en) Method for removing ammonia
JP2005144361A (en) Organic waste treating method
JP3775670B2 (en) Method and apparatus for treating cellulose-containing organic waste
JP5712505B2 (en) Waste treatment equipment containing biodegradable resin
JP2012239972A (en) Apparatus and method for biologically treating organic waste
KR100246955B1 (en) Waste water treatment apparatus
Awad et al. Olive oil waste treatment
KR101665058B1 (en) Method of Treatment for Food Waste
JP2001029930A (en) Garbage treatment apparatus
JPS6242678B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees