JP3605846B2 - Capacitive acceleration sensor and capacitive pressure sensor - Google Patents

Capacitive acceleration sensor and capacitive pressure sensor Download PDF

Info

Publication number
JP3605846B2
JP3605846B2 JP06033394A JP6033394A JP3605846B2 JP 3605846 B2 JP3605846 B2 JP 3605846B2 JP 06033394 A JP06033394 A JP 06033394A JP 6033394 A JP6033394 A JP 6033394A JP 3605846 B2 JP3605846 B2 JP 3605846B2
Authority
JP
Japan
Prior art keywords
connection hole
fixed
electrode
support portion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06033394A
Other languages
Japanese (ja)
Other versions
JPH07245417A (en
Inventor
正利 大場
隆之 春山
正和 椎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP06033394A priority Critical patent/JP3605846B2/en
Publication of JPH07245417A publication Critical patent/JPH07245417A/en
Application granted granted Critical
Publication of JP3605846B2 publication Critical patent/JP3605846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)
  • Weting (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、容量型加速度センサ及び容量型圧力センサに関する。具体的にいうと、本発明は、加速度や振動によって生じる重り部の変位を加速度の変化として検出する容量型の加速度センサに係るものである。また、本発明は、空気等の圧力によって生じる感圧ダイアフラムの変位を圧力の変化として検知する容量型の圧力センサに係るものである。
【0002】
【従来の技術】
図23に従来の容量型の加速度センサWの断面図を示す。この加速度センサWは、例えば自動車の加速度や振動、衝撃を検出する用途に用いることができるものであって、シリコン半導体基板101よりなる角枠状をした支持部102の開口部分の中央に重り部103が配設されており、重り部103は2本の梁部104によって片持ち状に支持部102に支持されている。重り部103は、梁部104の弾性変形によって重り部103の厚さ方向に自由に微小変形できるようになっており、重り部103の上下両面はそれぞれ可動電極105となっている。
【0003】
支持部102の上面及び下面にはそれぞれガラス基板106a,106bが重ねられ、ガラス基板106a,106bの周辺部は陽極接合法により、支持部102に接合されている。支持部102の上面及び下面のガラス基板106a,106bの内面には、重り部103の可動電極105と微小なギャップを隔てて固定電極107が設けられており、重り部103の可動電極105と固定電極107との間に静電容量部が形成されている。
【0004】
さらに、支持部102の上下のガラス基板106a,106bの外側には、シリコン半導体基板108a,108bが重ねられている。上下のガラス基板106a,106bにはそれぞれ接続孔109が設けられ、接続孔109に封入された導電性樹脂によって電極接続部110が形成され、電極接続部110は固定電極107と電気的に接続されている。また、シリコン半導体基板108a,108bには予めエッチングにより接続孔109の開口径より大きな開口径を有するエッチング孔111が設けられており、このエッチング孔111の内周面に金属薄膜により導電材料部112を形成して導電材料部112を電極接続部110に導通させることで、固定電極107を外部に引き出す構造となっている。
【0005】
ところで、この加速度センサWを作製するにあたっては、まずガラス基板106a,106bに接続孔109を形成し、この接続孔109に導電性樹脂を充填して電極接続部110を形成し、ガラス基板106a,106bに形成された固定電極107を電極接続部110と接続する。ついで、エッチング孔111を形成したシリコン半導体基板108a,108bとガラス基板106a,106bとを陽極接合法にて接合した後に、これを支持部102の表面に接合し、最後にエッチング孔111内に金属薄膜等からなる導電材料部112を形成し、電極接続部110及び導電材料部112を介して固定電極107を導電材料部112へ電気的に接続し、固定電極107を外部に引き出すようにしている。一方、可動電極105を形成されたシリコン半導体基板101はガラス基板106a,106bによってシリコン半導体基板108a,108bと電気的に絶縁されている。
【0006】
ここで、一体に接合されたガラス基板106a,106b及びシリコン半導体基板108a,108bを支持部102に陽極接合する場合、エッチング孔111に導電材料部112を形成して固定電極107と導通させた後に支持部102及びシリコン半導体基板108a,108b間に電圧を加えて陽極接合すると、小さなギャップを隔てて対向している可動電極105と固定電極107が静電吸引力によって電気的に短絡してしまい、加速度センサWの歩留りが低下してしまう。そこで、上述のようにシリコン半導体基板108a,108bにエッチング孔111を開口することで、電極接続部110とシリコン半導体基板101とが接触しないようにし、シリコン半導体基板108a,108bから固定電極107に至る電気的な経路を断った状態で、支持部102にガラス基板106a,106b及びシリコン半導体基板101を陽極接合し、接合し終えた後にエッチング孔111内に導電材料部112を設けてシリコン半導体基板101を固定電極107に導通させ、可動電極105と固定電極107とが短絡して歩留りが低下するのを防いでいる。
【0007】
【発明が解決しようとする課題】
この従来の加速度センサWの構造のように、導電性樹脂により接続孔109を封止して形成された電極接続部110では、ゴミ等の外部からの異物の侵入を防ぐことができるが、その導電性樹脂の劣化のため、重り部103が形成されたセンサ内部を完全に、しかも、長期にわたりその気密性を保持することができない。このため、センサ内部の気密を保ちながら内部の固定電極107を外部へ取り出すことが困難となっており、腐食ガス雰囲気中で使用された場合には、重り部103や梁部104に変質や劣化が生じ、加速度センサWの安定性に問題があった。さらに、電極接続部110の樹脂からアウトガスが発生する不都合もあった。
【0008】
また、この加速度センサWの作製にあたっては、シリコン半導体基板108a,108bにエッチング孔111を開口し、陽極接合後に再びエッチング孔111に導電材料部112を形成しなければならず、固定電極107を外部に引き出すための工程に手間が掛かっていた。
【0009】
本発明は叙上の従来例の欠点に鑑みてなされたものであり、その目的とするところは、センサ内部を完全に密封しながら内部の電極を外部へ引き出すことができると同時に、その製造工程が簡単で、しかも、回路基板当への実装が容易な容量型の加速度センサと圧力センサを提供することにある。
【0010】
【課題を解決するための手段】
本発明の容量型加速度センサは、半導体基板をエッチング加工して支持部と重り部と当該重り部を支持部に連結する梁部とを形成し、前記半導体基板の両面にそれぞれ固定基板を接合して前記重り部及び梁部を密閉空間内に封止し、前記重り部を可動電極とし、当該可動電極と対向させて少なくとも一方の固定基板に固定電極を形成し、前記可動電極と前記固定電極間の容量変化を加速度の変化として検出する容量型加速度センサにおいて、前記半導体基板の支持部から電気的に分離された独立領域を支持部内に設け、前記支持部の表面に前記密閉空間と前記独立領域とを結ぶ溝条を形成し、前記固定電極から延出させたリード部を支持部に接触させることなく当該溝条に挿通させることによって当該リード部を前記独立領域に電気的に接続し、前記固定基板に前記独立領域と対向させて接続孔を貫通させ、当該接続孔を封止する位置で独立領域を固定基板に接合させ、前記接続孔に導電体処理を施すことにより独立領域を介して前記固定電極を前記接続孔から電気的に外部へ取り出すようにしたことを特徴としている。
【0011】
本発明の容量型加速度センサの一実施態様は、前記支持部に対向させて固定基板に第2の接続孔を開口し、当該第2の接続孔を封止する箇所で前記支持部を固定基板に接合させ、当該第2の接続孔に導電体処理を施すことにより前記支持部を介して前記可動電極を当該第2の接続孔から電気的に外部へ取り出すようにしたことを特徴としている。
【0012】
本発明の容量型圧力センサは、半導体基板をエッチング加工して支持部と弾性を有する感圧ダイアフラム部を形成し、前記半導体基板の両面に固定基板を接合して前記感圧ダイアフラム部の少なくとも片側の面を密閉空間内に封止し、前記感圧ダイアフラム部を可動電極とし、前記密閉空間内で前記可動電極と対向させて少なくとも一方の固定基板に固定電極を形成し、前記可動電極と前記固定電極間の容量変化を圧力の変化として検出する容量型圧力センサにおいて、前記半導体基板の支持部から電気的に分離された独立領域を支持部内に設け、前記支持部の表面に前記密閉空間と前記独立領域とを結ぶ溝条を形成し、前記固定電極から延出させたリード部を支持部に接触させることなく当該溝条に挿通させることによって当該リード部を前記独立領域に電気的に接続し、前記固定基板に前記独立領域と対向させて接続孔を貫通させ、当該接続孔を封止する位置で独立領域を固定基板に接合させ、前記接続孔に導電体処理を施すことにより独立領域を介して前記固定電極を前記接続孔から電気的に外部へ取り出すようにしたことを特徴としている。
【0013】
本発明の容量型圧力センサの一実施態様は、前記支持部に対向させて固定基板に第2の接続孔を開口し、当該第2の接続孔を封止する箇所で前記支持部を固定基板に接合させ、当該第2の接続孔に導電体処理を施すことにより前記支持部を介して前記可動電極を当該第2の接続孔から電気的に外部へ取り出すようにしたことを特徴としている。
【0029】
【作用】
本発明の容量型加速度センサ又は容量型圧力センサにあっては、半導体基板内に形成した独立領域に固定電極を電気的に接続し、固定基板に貫通させた接続孔に導電体処理を施し、接続孔の位置で独立領域を固定基板に接合させているので、独立領域を介して固定電極を固定基板の表面側から外部へ取り出すことができる。また、固定基板に固定電極を引き出すための接続孔を貫通させたにも拘らず、接続孔を封止する位置で独立領域を固定基板に接合させているので、接続孔を独立領域によって確実に塞ぐことができ、重り部や梁部を密閉空間内に高い密閉精度で封止させることができる。
【0030】
しかも、本発明の容量型加速度センサ及び容量型圧力センサにあっては、固定電極と電気的に接続されている独立領域は重り部や感圧ダイアフラムを支持している支持部と独立して形成されているので、重り部や感圧ダイアフラムを形成されている半導体基板を用いて接続孔を塞ぐようにしたにも拘らず、独立領域を介して固定電極と可動電極とが短絡することがない構造となっている。さらに、支持部の表面に密閉空間と独立領域とを結ぶ溝条を形成しているので、固定電極から延出させたリード部を支持部に接触させることなく当該溝条に挿通させることができ、固定電極と可動電極の短絡を防止することができる。また、固定電極を固定基板と半導体基板との接合面の端部から外部へ引き出すのでなく、固定基板に貫通させた接続孔から固定基板の表面側へ引き出すことができるので、固定基板と半導体基板の接合面の周囲領域に固定電極引き出しのための電極が介在することがなく、重り部や感圧ダイアフラム等を密閉空間内に高い密閉精度で封止することができる。
【0031】
本発明の容量型加速度センサ又は容量型圧力センサのそれぞれの実施態様にあっては、支持部に対向させて固定基板に第2の接続孔を開口し、第2の接続孔を封止する箇所で前記支持部を固定基板に接合させ、第2の接続孔に導電体処理を施すことにより前記支持部を介して可動電極を第2の接続孔から電気的に外部へ取り出すようにしているので、重り部や感圧ダイアフラム部を密閉空間内に封止したままで、可動電極を固定基板の表面側から外部へ引き出すことができる。
【0047】
【実施例】
図1に示すものは本発明の一実施例による容量型加速度センサAであって、図1(a)は当該加速度センサAの断面図、図1(b)はシリコン半導体基板1の下面図、図1(c)は下の固定基板2bを示す上面図、図1(d)は上の固定基板2aの下面図である。この加速度センサAにおいては、シリコン半導体基板1をエッチング加工することによってフレーム状の支持部3、重り部4、梁部5及び一対の独立領域6a,6bが形成されている。重り部4は変位可能となるように支持部3よりも薄くなっており、弾性を有する一対の梁部5を介して支持部3の内周部中央で上下方向に変位可能に弾性的に支持されている。また、独立領域6a,6bは図示例では逆角錐台状に形成されており、同じく支持部3に角錐台状に開口された分離用孔7内に位置しており、独立領域6a,6bと支持部3とは電気的に互いに分離独立している。このシリコン半導体基板1の上下両面にはそれぞれ陽極接合法によってガラス基板等の絶縁性を有する固定基板2a,2bが接合されており、特に両固定基板2a,2bと支持部3とが外周部全周にわたってくまなく陽極接合されているので、重り部4及び梁部5は支持部3と両固定基板2a,2bによって囲まれた密閉空間8内に完全に封止されている。しかも、支持部3の上下両面と独立領域6a,6bの上下両面が各固定基板2a,2bに陽極接合されており、それによって支持部3と独立領域6a、6bとは互いの機械的関係を保ちながら互いに電気的に絶縁されている。
【0048】
重り部4はシリコン半導体基板1によって形成されているため、その導電性によって重り部4の上下両面は可動電極(可動電極面)9となっている。この可動電極9は、図中には示していないが、梁部5及び支持部3を介して例えばシリコン半導体基板1(すなわち、支持部3)の外周側面等から外部へ電気的に取り出される。また、この可動電極9と対向させて上下の固定基板2a,2bの内面にはそれぞれ固定電極10が設けられており、可動電極9と固定電極10とによって加速度検出用の静電容量部が構成されている。
【0049】
図1(b)に示すように支持部3の下面には密閉空間8から一方の独立領域6bに向けて溝条11が凹設されており、図1(c)に示すように下面側の固定電極10から延出されたリード部12はこの溝条11を通過して独立領域6bと電気的に接続されている。また、支持部3の上面にも密閉空間8から他方の独立領域6aに向けて溝条11が凹設されており、図1(d)に示すように上面側の固定電極10から延出されたリード部12は溝条11を通過して独立領域6aと電気的に接続されている。図2にはリード部12と独立領域6a,6bの電気的接続構造の一例を示してあり、リード部12の端部を独立領域6a,6bの端面と固定基板2a,2bとの間に挟み込むようにしてリード部12と独立領域6a,6bとを電気的に接続している。なお、図2には独立領域6aだけを示すが、独立領域6bも同様な構造である。但し、リード部12は溝条11との間にギャップを隔てていて支持部3に接触することのないようにしてあり、これによって可動電極9と固定電極10との短絡を防止している。さらに、下の固定基板2bには一方の独立領域6bと対向させて円柱状の接続孔13を貫通させてある。独立領域6bの端面はこの接続孔13の周囲で固定基板2bの上面に陽極接合されていて、接続孔13の全周を完全に封止しており、密閉空間8の気密性が接続孔13から漏れることのないようにしている。さらに、この接続孔13の内面及び固定基板2bの下面全面に導電性被膜(金属被膜)14を蒸着により形成し、接続孔13内面の導電性被膜14を独立領域6bの端面と電気的に接続している。同じく、上の固定基板2aには他方の独立領域6aと対向させて円柱状の接続孔13を貫通させてあり、この接続孔13の内面及び固定基板2aの上面全面には導電性被膜14を形成してある。独立領域6aの端面は接続孔13の周囲で固定電極2aの下面に陽極接合されていて、接続孔13の全周を完全に封止しており、密閉空間8の気密性が接続孔13から漏れることのないようにしており、さらに、接続孔13内の導電性被膜14は独立領域6aの端面と電気的に接合されている。よって、上面側の固定電極10は上の固定基板2aの上面へ引き出されており、下面側の固定電極10は下の固定基板2bの下面へ引き出されている。なお、リード部12と独立領域6a,6bとの接合箇所においては、図1及び図2に示すように、リード部12の先端が接続孔13に達しないようにしている。これはリード部12が接続孔13に接すると、その部分で固定基板2a,2bと独立領域6a,6bとの接合が妨げられ、接続孔13の全周にわたって接続孔13を封止できなくなって接続孔13における気密性が損われるためである。
【0050】
上記密閉空間8内は、真空状態に保持してもよく、減圧状態としてもよい。あるいは、密閉空間8内にガス(好ましくは、窒素等の不活性なガス)を充填しておいてもよい。
【0051】
しかして、この容量型加速度センサAにおいては、加速度や振動を検出すると、重り部4が加速度の大きさに応じて変位し、可動電極9と固定電極10との間の静電容量が変化するので、信号処理回路等によってこの静電容量の変化を検出することにより加速度の大きさを知ることができる。
【0052】
この加速度センサAにあっては、支持部3と分離して形成した独立領域6a,6bに固定電極10を電気的に接続し、固定基板2a,2bに貫通させた接続孔13に導電性被膜14を形成し、接続孔13の周囲で独立領域6a,6bを固定基板2a,2bに接合させているので、独立領域6a,6b及び導電性被膜14を介して固定電極10を固定基板2a,2bの表面へ取り出すことができる。また、固定基板2a,2bに固定電極10を引き出すための接続孔13を貫通させたにも拘らず、接続孔13を封止する位置で独立領域6a,6bを固定基板2a,2bに陽極接合させているので、接続孔13を独立領域6a,6bによって確実に塞ぐことができ、重り部4や梁部5を密閉空間8内に高い密閉精度で封止することができ、内部にゴミや腐食性のガス等が侵入するのを防止できる。
【0053】
しかも、固定電極10と電気的に接続されている独立領域6a,6bは重り部4を支持している支持部3と独立して形成されているので、重り部4等を形成されているシリコン半導体基板1を用いて接続孔13を塞ぐようにしたにも拘らず、独立領域6a,6bを介して固定電極10と可動電極9とが短絡することがない構造となっている。また、固定電極10を固定基板2a,2bとシリコン半導体基板1との接合面の端部から外部へ引き出すのでなく、固定基板2a,2bに貫通させた接続孔13から固定基板2a,2bの表面側へ引き出すことができるので、固定基板2a,2bとシリコン半導体基板1の接合面の周囲領域に固定電極10を引き出すための電極構造が介在することがなく、重り部4や梁部5を密閉空間8内に高い精度で封止することができる。
【0054】
また、図3は独立領域6a,6bとリード部12との間の別な構成を示す部分拡大断面図である。図3に示すように(独立領域6aだけを示すが、独立領域6bも同様な構造となっている)、独立領域6a,6bの端部ないし全体には、不純物拡散もしくはイオン打込みによって導電率の高い高濃度不純物層16を形成してある。導電率の高い高濃度不純物層16を設けることにより独立領域6a,6bとリード部12との導通を確実にすると共に固定電極10の引き出し抵抗を小さくすることができる。また、同じく図3の実施例では、独立領域6a,6bの端面外周部にはリード部12の端部が納まるような凹溝17を形成しておいてもよい。但し、この凹溝17は固定基板2a,2bの接合孔と接しないよう離れた位置に設けてある。また、凹溝17を形成しておけば、リード部12の厚みによって独立領域6a,6bと固定基板2a,2bとの接合が妨げられにくくなる。もっとも、リード部12と独立領域6a,6bとが圧接する必要もあるので、凹溝17の深さはリード部12の厚みよりも浅いことが好ましい。
【0055】
また、図4は独立領域6a,6bとリード部12との間のまた別な構成を示す部分拡大断面図である。この実施例においては、独立領域6a,6bの端面に設けた凹溝17の内面に蒸着法等によって電極膜18を形成してある。このような構成によれば、当該電極膜18とリード部12の端部とが圧接することによってリード部12と独立領域6a,6bとの電気的接続を確実にさせることができる。
【0056】
図5及び図6は本発明のさらに別な実施例による容量型加速度センサBを示す斜視図及び分解斜視図である。この加速度センサBにあっては、支持部3の独立領域6a,6bの中間領域に対向させて上の固定基板2aに円錐状の接続孔19を開口してあり、固定基板2a下面の接続孔19全周は固定基板2aとシリコン半導体基板1とを陽極接合する際に支持部3に接合されており、これによって接続孔19の下面周囲が気密的に封止されている。さらに、この接続孔19の内面にも導電性被膜20が形成されている。従って、可動電極9は、密閉空間8を完全に封止したままで支持部3及び導電性被膜20を介して固定基板2aの上面へ電気的に引き出されている。
【0057】
また、下の固定基板2bの下面には、接続孔13の導電性被膜14と連続的に外部電極パッド15を設けてある。そして、加速度センサAは回路基板21上に載置され、下面の外部電極パッド15を回路基板21の接続パッド22に電気的及び機械的に接合される。回路基板21には接続パッド22とつながったボンディングパッド23が設けられている。この結果、両固定電極10及び可動電極9が加速度センサBの上面ないし回路基板21の上面へ取り出され、信号処理回路等との接続を容易にすることができる。
【0058】
図7は本発明のさらに別な実施例による容量型加速度センサCを示す分解斜視図である。この加速度センサCにおいては、上の固定基板2aに設けた接続孔13,19の周囲に各導電性被膜14,20と導通した外部電極パッド15を設けている。また、下の固定基板2bに設けた接続孔13の周囲にも導電性被膜14と導通した外部電極パッド15を設けている。この実施例では、全ての接続孔13,19に外部電極パッド15を設けているから、ワイヤボンディング等による回路基板21の電極パッドや信号処理回路(図示せず)等との接合をより一層容易にすることができる。例えば、下面の外部電極パッド15は回路基板21の接続パッド22に半田接合し、上面の外部電極パッド15と信号処理回路とをワイヤボンディングによって接続することができる。
【0059】
図8は本発明のさらに別な実施例による容量型加速度センサDを示す分解斜視図である。この実施例では、上の固定基板2aに設けられた2つの接続孔13,19のうち一方の接続孔、例えば13の周囲にのみ外部電極パッド15を設けたものである。外部電極パッドを有していない接続孔19では、例えば導電性接着剤を用いてボンディングワイヤの端部を導電性被膜20に結線することができる。
【0060】
図9は本発明のさらに別な実施例による容量型加速度センサEを示す分解斜視図である。この加速度センサEにおいては、上の固定基板2aが支持部3よりも短くなっており、支持部3と固定基板2a,2bを重ねて接合した状態で支持部3の端部が上の固定基板2aからはみ出すようになっている。この支持部3上面の露出部分には蒸着金属膜等によって可動電極パッド24が設けられている。この加速度センサEにあっても、可動電極パッド24によって固定基板2aと支持部3との陽極接合が妨げられないので、密閉空間8の気密性を損うことなく、上面側に配置した可動電極パッド24へ可動電極9を電気的に引き出すことができる。しかも、図6〜図8の実施例のように固定基板2aに接続孔19や導電体被膜20等を形成する必要がなく、センサ製作プロセスを簡単にすることができる。また、上下の固定基板2a,2bの接続孔13の周囲に導電性被膜14と導通した外部電極パッド15を設けている。
【0061】
図10は本発明のさらに別な実施例による容量型加速度センサFを示す断面図である。この加速度センサFにあっては、導電性被膜14を形成された接続孔13の内部にエポキシ樹脂等の封止部材25を充填している。このように接続孔13の内部に封止部材25を充填することにより接続孔13での封止性を向上させることができ、また、封止部材25によって導電性被膜14の浮き上がりを防止できるので、導電性被膜14が独立領域6a,6bから剥離して導通不良となることを防げる。
【0062】
図11は本発明のさらに別な実施例による容量型加速度センサGにおける独立領域6a,6bの構造を示す拡大断面図である。このように独立領域6a,6bの接続孔13と対向する端面に、不純物拡散やイオン打込み等によって接続孔13よりも小さな面積で高濃度不純物層16を形成すれば、接続孔13内の導電性被膜14との電気的な接続を向上させることができ、導電性被膜14との間における電気的な断線を確実に防止することができる。
【0063】
図12は本発明のさらに別な実施例による容量型加速度センサHにおける独立領域6a,6bの構造を示す拡大断面図である。この実施例では、独立領域6a,6bの接続孔13と対向する端面に接続孔13よりも小さな面積で高濃度不純物層16を形成し、さらに、高濃度不純物層16の上に接続孔13の開口面積よりも小さな金属薄膜パッド26を形成している。従って、接続孔13内の導電性被膜14との電気的な接続をより向上させ、導電性被膜14との間における電気的な断線をなくすことができる。
【0064】
図13は本発明のさらに別な実施例による容量型加速度センサJの分解斜視図である。この実施例では、下の固定基板2bに3つの接続孔13,19,13を開口してある。上面側の固定電極10と上面を導通させられた一方の独立領域6aは下面を一つの接続孔13の周囲に接合されて接続孔13を封止しており、その接続孔13内の導電性被膜14に導通している。また、下面側の固定電極10と下面を導通させられた別な独立領域6bは同じく下面で別な接続孔13の周囲に接合されて当該接続孔13を封止しており、その接続孔13内の導電性被膜14と導通している。さらに、接続孔19の周囲には支持部3が接合されて接続孔19が封止されており、当該接続孔19内の導電性被膜20には可動電極9が導通している。これら下の固定電極2bに設けられた各接続孔13,19,13の下面周囲にはそれぞれ外部電極パッド15が設けられており、これらの外部電極パッド15を回路基板21の接続パッド22に半田接合することにより加速度センサAを回路基板21上に機械的に固定すると共に各固定電極10及び可動電極9を回路基板21のボンディングパッド23に電気的に接続している。このような構造によれば、全ての外部電極パッド15を下面に配置して回路基板21の接続パッド22に半田接合させることができ、ワイヤボンディングによる接合を無くすことができる。
【0065】
図14(a)(b)(c)は本発明による容量型加速度センサKの製造方法を示す断面図である。なお、図14では図1の容量型加速度センサAと同様な構造を例にとって説明しているが、他の実施例の加速度センサであってもよいことはいうまでもない(以下同じ)。まず、シリコン半導体基板1の重り部4下面及び溝条11となる領域(また、不要部分27となる領域を含んでいてもよい)を浅くエッチングした後、支持部3、重り部4及び独立領域6a,6bとなる領域の下面をエッチング用マスクで覆い、電気化学エッチングによって下面側からシリコン半導体基板1を深くエッチングして梁部5及び不要部分27の各下面を形成する。ついで、支持部3及び独立領域6a,6bとなる領域の上面をエッチング用マスクで覆って上面側からシリコン半導体基板1をウエットエッチング法又はドライエッチング法(例えば、RIE法)によってエッチングして重り部4、梁部5及び不要部分27の各上面と溝条11を形成し、重り部4、梁部5、独立領域6a,6b及び支持部3が薄い不要部分27でつながったシリコン半導体基板1を作製する。ここで、不要部分27全体及び梁部5の厚みは同じ厚み(一定厚み)となっている。ついで、固定電極10と接続孔13を設けた固定基板2bの上面に当該シリコン半導体基板1を載置し、図14(a)に示すように支持部3及び独立領域6a,6bの下面を固定基板2bに陽極接合法で接合し、固定電極10のリード部12を独立領域6bの下面に導通させ、接続孔13を独立領域6bの下面で封止すると同時に各独立領域6a,6bの周囲の分離用孔7の下面を固定基板2bによって封止し、さらに接続孔13の内面及び固定基板2bの下面に導電性被膜14と外部電極パターン15を形成する。この後、図14(a)に示すように支持部3、重り部4及び梁部5の上面をエッチング用マスク28で覆い、シリコン半導体基板1の不要部分27をエッチングによって除去し、図14(b)のように重り部4及び梁部5を上下方向に弾性的に変位可能にすると同時に、独立領域6a,6bを支持部3から電気的に分離する。ここで、不要部分27を除去するエッチングは、ウエットエッチング法でもドライエッチング法(例えば、RIE法)でもよい。ついで、図14(c)に示すように、固定電極10と接続孔13を形成された上の固定基板2aをシリコン半導体基板1の上面に陽極接合法によって接合し、その固定電極10のリード部12を独立領域6aの上面に導通させ、その接続孔13を独立領域6aの上面によって封止すると同時に各独立領域6a,6bの周囲の分離用孔7の上面を固定基板2aで封止し、さらに接続孔13の内面及び固定基板2aの上面に導電性被膜14と外部電極パターン15を形成し、加速度センサKを完成する。
【0066】
このようにして加速度センサKを作製すれば、独立領域6a,6bがまだ支持部3から完全に分離されていない状態で支持部3及び独立領域6a,6bを固定基板2bに接合させ、その後独立領域6a,6bを支持部3から分離させているので、支持部3と独立領域6a,6bとの位置関係を精度よく一定位置に保ちながら独立領域6a,6bを支持部3から島状に分離させることができ、センサ製造プロセスを簡便にすることができる。また、シリコン半導体基板1の下面を電気化学エッチングによって深くエッチングすれば、そのエッチング深さをシリコン半導体基板1に印加した電位によって制御することができるので、梁部5の厚み精度を得ることができ、この結果重り部4も梁部5も厚み精度を得ることができ、センサ製造の歩留りが向上する。さらに、不要部分27と梁部5の厚みを均一にしているので、シリコン半導体基板1の上面側からのエッチング加工を一度で行なうことができる。
【0067】
図15(a)(b)(c)は本発明による容量型加速度センサKの別な製造方法を示す図である。シリコン半導体基板1を固定基板2bに接合した後、不要部分27をエッチングによって除去する際、エッチング槽内は真空ないし減圧されているので、重り部4及び梁部5の周囲の不要部分27を除去した瞬間に重り部4と固定基板2bの間の空間に密閉されていた空気が瞬間的に外部へ噴出し、その衝撃が重り部4に加わって梁部5が破損する恐れがある。この実施例はこのような不都合を防止し、加速度センサKの歩留りを向上させるものである。すなわち、この実施例では、不要部分27と梁部5とが同じ厚みのシリコン半導体基板1を作製した後、もう一度シリコン半導体基板1をエッチングして独立領域6a,6bの周囲の不要部分27の少なくとも一部領域27aの厚みを薄くしている。図15(a)のように当該シリコン半導体基板1を固定基板2aに接合した後、当該シリコン半導体基板1をエッチングすると、まず独立領域6a,6b周囲の不要部分27のうち比較的厚みの薄い領域27aがエッチング除去され、図15(b)に示すように重り部4と固定基板2bの間の空間に密閉されていた空気は溝条11を通じて独立領域6a,6bの周囲の開口から排気され、重り部4と固定基板2bの間の空間が外部と同じ真空ないし減圧状態となる。従って、遅れて残りの厚みの比較的厚い不要部分27が除去された時に空気の噴出によって梁部5等が破損されるのを防止することができる。この後、図15(c)のようにシリコン半導体基板1の上面には固定基板2aが接合される。
【0068】
図14の構成でも、2種のエッチング用マスクを用いてエッチングによる不要部分27の除去工程を2度に分けることによってエア噴き出しによる梁部5等の破損を防止できるが、図15の方法によればエッチング工程は1度で済み、エッチング時のエッチング用マスクが1種で足りることになる。
【0069】
図16(a)(b)(c)は本発明のさらに別な製造方法を示す断面図である。この実施例では、不要部分27と梁部5とが同じ厚みのシリコン半導体基板1を作製した後、もう一度シリコン半導体基板1をエッチングして重り部4又は梁部5の周囲の不要部分27の一部を開口している。図16(a)のように当該シリコン半導体基板1を固定基板2aに接合した後、これをエッチング槽に入れてエッチング槽内を減圧した時点で既に重り部4と固定基板2bの間の空間は真空ないし減圧状態となるので、図16(b)のように当該シリコン半導体基板1をエッチングして不要部分27を除去しても、空気の噴出によって梁部5等が破損することがない。こうしてエッチングによって全ての不要部分27を除去して重り部4及び梁部5を可動状態とした後、支持部3の上面に固定基板2aを陽極接合する(図16(c))。
【0070】
上記実施例ではいずれも容量型加速度センサの場合について説明したが、上記各実施例はそれぞれ容量型圧力センサにも適用することができる。
【0071】
図17(a)は本発明のさらに別な実施例による容量型圧力センサLを示す断面図、図17(b)はシリコン半導体基板31の下面図、図17(c)は上の固定基板32aの下面図、図17(d)は下の固定基板32bの平面図である。この圧力センサLにあっては、シリコン半導体基板31によって支持部33、感圧ダイアフラム34及び独立領域36を形成してあり、薄膜状の感圧ダイアフラム34は支持部33に支持されており、独立領域36は分離用孔37によって支持部33と電気的に分離されている。すなわち、独立領域36は支持部33に開口された分離用孔37内に島状に配置されている。また、シリコン半導体基板31の上面及び下面には固定基板32a,32bが陽極接合法によって接合されている。感圧ダイアフラム34の上面は可動電極39となっており、可動電極39と対向させて固定基板32aの内面には固定電極40が設けられ、可動電極39及び固定電極40によって圧力検出用の静電容量部が形成されている。支持部33上面の固定基板32aから露出した領域には、可動電極39を電気的に外部へ引き出すための可動電極パッド47が設けられている。また、固定電極40から延出されたリード部42は、支持部33と接触することなく支持部33の上面に凹設された溝条41を通過して独立領域36と導通させられている。固定基板32aの独立領域36と対向する位置には円柱状の接続孔43が開口されており、接続孔43周囲の固定基板32a下面には独立領域36の上端面が陽極接合されており、独立領域36によって接続孔43が完全に封止されている。この場合も、リード部42は接続孔43の位置まで達しないようにしている(図3参照)。また、独立領域36には高濃度不純物層を形成したり、リード部42の納まる凹溝を設けたりしても差し支えない。さらに、接続孔43の内面及び固定基板32aの上面には導電性被膜44が形成されており、接続孔43内の導電性被膜44は独立領域36と電気的に接合されており、したがって固定電極40と電気的に導通している。こうして、固定電極40と感圧ダイアフラム34の間の密閉空間38は完全密閉されており、この密閉空間38は真空にしたり、減圧したり、ガスを封入して一定圧力に保ち、基準圧力を得られるようにしている。下面側の固定基板32bには圧力導入口35が開口されている。しかして、圧力導入口35の内側の圧力導入室46へ流体が導かれると、感圧ダイアフラム34がその圧力によって撓み、それによって可動電極39と固定電極40との間の静電容量が変化するので、その静電容量値を検出することによって流体の圧力を知ることができる。また、密閉空間38の周囲は支持部33と固定基板32a,32bの陽極接合と独立領域36による接続孔43の封止によって完全に密閉されており、真空漏れやガス漏れ、あるいはゴミ等の侵入を確実に防止することができる。なお、上記実施例では、固定電極40は一方の固定基板32aにのみ設けたが、他方の固定基板32bの内面にも感圧ダイアフラム34と対向させて固定電極を設けても差し支えない。また、下面側の固定基板32bは少なくとも独立領域36の周囲の分離用孔37を密閉できるだけあれば差し支えない。
【0072】
図18は本発明のさらに別な実施例による容量型圧力センサMを示す分解斜視図である。これは図5及び図6の加速度センサBに対応するものであって、固定基板32aに開口した円錐状の接続孔48の下面に支持部33を陽極接合して接続孔48を封止し、接続孔48の内面に導電性被膜49を形成して支持部33と接続し、この導電性被膜49を可動電極39と導通させて可動電極39を固定基板32aの上面へ引き出している。
【0073】
図19は本発明のさらに別な実施例による容量型圧力センサNを示す分解斜視図である。これは図7の加速度センサCに対応するものであって、固定基板32a上面の接続孔43,48の周囲にそれぞれ外部電極パッド45を設け、各外部電極パッド45を導電性被膜44,49に電気的に接続させ、固定電極40及び可動電極39を固定基板32aの表面の各外部電極パッド45へ引き出すようにしている。
【0074】
図20は本発明のさらに別な実施例による容量型圧力センサPを示す分解斜視図である。これは図9の加速度センサEに対応するものであって、固定基板32aよりもシリコン半導体基板31の長さを長くして支持部33の端部上面を固定基板32aから露出させ、当該露出部分に可動電極39を外部へ引き出すための可動電極パッド47を設けたものである。
【0075】
図21は本発明のさらに別な実施例による容量型圧力センサQを示す分解斜視図である。これは図13の加速度センサJに対応するものであって、下の固定基板32bに2つの接続孔43,48を開口し、独立領域36の上面を固定電極40のリード部42に接続すると共に独立領域36の下面で接続孔43を封止し、当該接続孔43の内面に導電性被膜44を形成し、その周囲に外部電極パッド45を形成している。また、もう一方の接続孔48を支持部33の陽極接合によって封止し、接続孔48の導電性被膜49を可動電極39に導通させると共にその周囲に外部電極パッド45を形成している。しかして、この下面の外部電極パッド45を回路基板51上面の接続パッド52に半田接合させることにより回路基板51上に圧力センサQを機械的に固定すると共に固定電極40及び可動電極39を回路基板51のボンディングパッド53へ引き出すことができる。
【0076】
図22(a)(b)(c)は上記圧力センサRの製造方法の一例を示すものであって、シリコン半導体基板31の下面を電気化学エッチングして感圧ダイアフラム34と、不要部分54により支持部33につながった独立領域36とを形成し、さらにシリコン半導体基板31をエッチングして不要部分54の厚みを感圧ダイアフラム34よりも薄くした後、図22(a)に示すように当該シリコン半導体基板31を固定基板32bに陽極接合する。ついで、シリコン半導体基板31をエッチングすると、独立領域36の周囲の不要部分54が除去され、図22(b)に示すように独立領域36が支持部33から分離される。この後、真空中、減圧雰囲気下もしくはガス雰囲気中において図22(c)のようにシリコン半導体基板31の上面に固定基板32aを接合する。
【0077】
このようにして不要部分54の厚みを感圧ダイアフラム34よりも薄くしておいてエッチングを行なえば、エッチング用マスクを用いることなくエッチングを行なうことができる。
【0078】
【発明の効果】
本発明の容量型加速度センサ又は容量型圧力センサにあっては、固定基板に設けた導電体処理された接続孔によって固定電極等を外部へ取り出すことができるが、この接続孔は独立領域を接合させることによって封止されているので、接続孔を独立領域によって確実に塞ぐことができる。そして、固定電極を固定基板に貫通させた接続孔から外部へ引き出しているので、固定基板と半導体基板の接合面の周囲領域に固定電極引き出しのための電極が介在することがなく、固定基板と半導体基板とを隙間なく確実に接合させることができる。従って、固定電極や重り部等を空間内に高い密閉精度で封止することができ、ゴミや腐食性ガスなどが内部に侵入することがなく、センサの耐久性を向上させることができる。
【0079】
しかも、固定電極と電気的に接続されている独立領域は重り部や感圧ダイアフラムを支持している支持部と独立して形成されているので、重り部や感圧ダイアフラムを形成されている半導体基板を用いて接続孔を塞ぐようにしたにも拘らず、独立領域を介して固定電極と可動電極とが短絡することがない。さらに、支持部の表面に密閉空間と独立領域とを結ぶ溝条を形成しているので、固定電極から延出させたリード部を支持部に接触させることなく当該溝条に挿通させることができ、固定電極と可動電極の短絡を防止することができる。
【図面の簡単な説明】
【図1】(a)は本発明の一実施例による容量型加速度センサを示す断面図である。(b)はそのシリコン半導体基板の構造を示す下面図、(c)は下の固定基板を示す上面図、(d)は上の固定基板を示す下面図である。
【図2】同上の独立領域の近傍の構造を示す拡大断面図である。
【図3】独立領域の近傍の別な構造を示す拡大断面図である。
【図4】独立領域の近傍のさらに別な構造を示す拡大断面図である。
【図5】本発明の別な実施例による容量型加速度センサを示す斜視図である。
【図6】同上の分解斜視図である。
【図7】本発明のさらに別な実施例による容量型加速度センサを示す分解斜視図である。
【図8】本発明のさらに別な実施例による容量型加速度センサを示す分解斜視図である。
【図9】本発明のさらに別な実施例による容量型加速度センサを示す分解斜視図である。
【図10】本発明のさらに別な実施例による容量型加速度センサを示す断面図である。
【図11】本発明のさらに別な実施例による容量型加速度センサの独立領域の近傍の構造を示す部分拡大断面図である。
【図12】本発明のさらに別な実施例による容量型加速度センサの独立領域の近傍の構造を示す部分拡大断面図である。
【図13】本発明のさらに別な実施例による容量型加速度センサを示す分解斜視図である。
【図14】(a)(b)(c)は本発明による容量型加速度センサの製造方法を示す断面図である。
【図15】(a)(b)(c)は本発明による容量型加速度センサの別な製造方法を示す断面図である。
【図16】(a)(b)(c)は本発明による容量型加速度センサのさらに別な製造方法を示す断面図である。
【図17】(a)は本発明の一実施例による容量型圧力センサを示す断面図である。(b)はそのシリコン半導体基板の構造を示す下面図、(c)は上の固定基板を示す下面図、(d)は下の固定基板を示す平面図である。
【図18】本発明のさらに別な実施例による容量型圧力センサを示す分解斜視図である。
【図19】本発明のさらに別な実施例による容量型圧力センサを示す分解斜視図である。
【図20】本発明のさらに別な実施例による容量型圧力センサを示す分解斜視図である。
【図21】本発明のさらに別な実施例による容量型圧力センサを示す分解斜視図である。
【図22】(a)(b)(c)は本発明のさらに別な実施例による容量型圧力センサの製造方法を示す断面図である。
【図23】従来の加速度センサを示す断面図である。
【符号の説明】
1 シリコン半導体基板
2a,2b 固定基板
3 支持部
4 重り部
5 梁部
6a、6b 独立領域
8 密閉空間
9 可動電極
10 固定電極
11 溝条
12 固定電極のリード部
13 接続孔
14 導電性薄膜
16 高濃度不純物層
31 シリコン半導体基板
32a,32b 固定基板
33 支持部
34 感圧ダイアフラム
36a,36b 独立領域
38 密閉空間
[0001]
[Industrial applications]
The present invention relates to a capacitive acceleration sensor andCapacitive pressure sensorAbout. Specifically,The present inventionThe present invention relates to a capacitive acceleration sensor that detects displacement of a weight portion caused by acceleration or vibration as a change in acceleration. Also, the present invention,SkyThe present invention relates to a capacitive pressure sensor that detects displacement of a pressure-sensitive diaphragm caused by pressure of air or the like as a change in pressure.
[0002]
[Prior art]
FIG. 23 shows a cross-sectional view of a conventional capacitive acceleration sensor W. This acceleration sensor W can be used, for example, for detecting the acceleration, vibration, and shock of an automobile, and has a weight portion at the center of the opening of a square frame-shaped support portion 102 made of a silicon semiconductor substrate 101. The weight portion 103 is supported by the support portion 102 in a cantilever manner by two beam portions 104. The weight portion 103 can be freely and minutely deformed in the thickness direction of the weight portion 103 by elastic deformation of the beam portion 104, and upper and lower surfaces of the weight portion 103 are movable electrodes 105, respectively.
[0003]
Glass substrates 106a and 106b are respectively superposed on the upper surface and the lower surface of the support portion 102, and peripheral portions of the glass substrates 106a and 106b are joined to the support portion 102 by an anodic bonding method. On the inner surfaces of the glass substrates 106a and 106b on the upper and lower surfaces of the support portion 102, fixed electrodes 107 are provided with a small gap from the movable electrode 105 of the weight portion 103, and fixed to the movable electrode 105 of the weight portion 103. A capacitance part is formed between the electrode 107 and the electrode 107.
[0004]
Furthermore, silicon semiconductor substrates 108a and 108b are overlaid outside the glass substrates 106a and 106b above and below the support 102. A connection hole 109 is provided in each of the upper and lower glass substrates 106a and 106b, and an electrode connection portion 110 is formed by a conductive resin sealed in the connection hole 109. The electrode connection portion 110 is electrically connected to the fixed electrode 107. ing. An etching hole 111 having an opening diameter larger than the opening diameter of the connection hole 109 is provided in advance in the silicon semiconductor substrates 108a and 108b by etching, and a conductive material portion 112 is formed on the inner peripheral surface of the etching hole 111 by a metal thin film. Is formed, and the conductive material portion 112 is electrically connected to the electrode connection portion 110, so that the fixed electrode 107 is drawn out.
[0005]
In manufacturing the acceleration sensor W, first, a connection hole 109 is formed in the glass substrates 106a and 106b, and the connection hole 109 is filled with a conductive resin to form an electrode connection portion 110. The fixed electrode 107 formed on the electrode 106b is connected to the electrode connection part 110. Next, the silicon semiconductor substrates 108a, 108b having the etching holes 111 formed thereon and the glass substrates 106a, 106b are bonded by an anodic bonding method, and then bonded to the surface of the support portion 102. A conductive material portion 112 made of a thin film or the like is formed, and the fixed electrode 107 is electrically connected to the conductive material portion 112 via the electrode connection portion 110 and the conductive material portion 112, so that the fixed electrode 107 is drawn out. . On the other hand, the silicon semiconductor substrate 101 on which the movable electrode 105 is formed is electrically insulated from the silicon semiconductor substrates 108a and 108b by the glass substrates 106a and 106b.
[0006]
Here, when the glass substrates 106a and 106b and the silicon semiconductor substrates 108a and 108b integrally bonded to each other are anodically bonded to the supporting portion 102, the conductive material portion 112 is formed in the etching hole 111 so as to be electrically connected to the fixed electrode 107. When a voltage is applied between the support portion 102 and the silicon semiconductor substrates 108a and 108b to perform anodic bonding, the movable electrode 105 and the fixed electrode 107 facing each other with a small gap therebetween are electrically short-circuited due to electrostatic attraction. The yield of the acceleration sensor W is reduced. Therefore, by opening the etching holes 111 in the silicon semiconductor substrates 108a and 108b as described above, the electrode connecting portions 110 and the silicon semiconductor substrate 101 are prevented from contacting each other, and the silicon semiconductor substrates 108a and 108b reach the fixed electrodes 107. In a state where the electric path is cut off, the glass substrates 106a and 106b and the silicon semiconductor substrate 101 are anodically bonded to the support portion 102, and after the bonding is completed, a conductive material portion 112 is provided in the etching hole 111 to form the silicon semiconductor substrate 101. Is conducted to the fixed electrode 107 to prevent the movable electrode 105 and the fixed electrode 107 from short-circuiting, thereby preventing the yield from lowering.
[0007]
[Problems to be solved by the invention]
As in the structure of the conventional acceleration sensor W, the electrode connection portion 110 formed by sealing the connection hole 109 with a conductive resin can prevent foreign matter such as dust from entering from outside. Due to the deterioration of the conductive resin, the inside of the sensor where the weight portion 103 is formed cannot be completely maintained for a long period of time. For this reason, it is difficult to take out the fixed electrode 107 inside while maintaining the airtightness inside the sensor, and when used in a corrosive gas atmosphere, the weight 103 and the beam 104 are deteriorated or deteriorated. This causes a problem in the stability of the acceleration sensor W. Further, there is also a disadvantage that outgas is generated from the resin of the electrode connecting portion 110.
[0008]
In manufacturing the acceleration sensor W, an etching hole 111 must be opened in the silicon semiconductor substrates 108a and 108b, and after the anodic bonding, the conductive material portion 112 must be formed in the etching hole 111 again. It took time and effort for the process to draw out to.
[0009]
The present invention has been made in view of the above-mentioned drawbacks of the conventional example, and an object of the present invention is to make it possible to draw out internal electrodes to the outside while completely sealing the inside of the sensor, and at the same time, to manufacture the sensor. And a pressure sensor that is easy to mount on a circuit board.SaTo provide.
[0010]
[Means for Solving the Problems]
In the capacitive acceleration sensor of the present invention, a semiconductor substrate is etched to form a support portion, a weight portion, and a beam portion connecting the weight portion to the support portion, and a fixed substrate is bonded to both surfaces of the semiconductor substrate. The weight part and the beam part are sealed in an enclosed space, the weight part is used as a movable electrode, and a fixed electrode is formed on at least one fixed substrate so as to face the movable electrode. In a capacitive acceleration sensor that detects a change in capacitance between the two as an acceleration change, an independent region electrically separated from the support of the semiconductor substrate is provided in the support,A groove is formed on the surface of the support portion to connect the closed space and the independent region, and the lead portion extended from the fixed electrode is inserted into the groove without contacting the support portion. Part electrically connected to said independent area,The connection hole is made to pass through the fixed substrate so as to face the independent region, the independent region is bonded to the fixed substrate at a position where the connection hole is sealed, and the connection hole is subjected to a conductor treatment so as to pass through the independent region. Thus, the fixed electrode is electrically taken out of the connection hole to the outside.
[0011]
One embodiment of the capacitive acceleration sensor according to the present invention is such that a second connection hole is opened in the fixed substrate so as to face the support portion, and the support portion is fixed at a position where the second connection hole is sealed. The movable electrode is electrically extracted to the outside from the second connection hole via the support by subjecting the second connection hole to a conductor treatment.
[0012]
The capacitive pressure sensor according to the present invention is configured such that a semiconductor substrate is etched to form a supporting portion and a pressure-sensitive diaphragm portion having elasticity, and a fixed substrate is joined to both surfaces of the semiconductor substrate to at least one side of the pressure-sensitive diaphragm portion. Is sealed in a closed space, the pressure-sensitive diaphragm portion is a movable electrode, and a fixed electrode is formed on at least one fixed substrate in the closed space so as to face the movable electrode. In a capacitive pressure sensor that detects a change in capacitance between fixed electrodes as a change in pressure, an independent region electrically separated from a support portion of the semiconductor substrate is provided in the support portion, and the sealed space and the surface of the support portion are provided. A groove connecting the independent region is formed, and the lead portion extending from the fixed electrode is inserted into the groove without contacting the support portion with the support portion, thereby forming the lead portion. The independent region is electrically connected to the independent region, the connection hole is made to pass through the fixed substrate so as to face the independent region, and the independent region is bonded to the fixed substrate at a position where the connection hole is sealed, and the conductive hole is electrically connected to the fixed hole. The present invention is characterized in that the fixed electrode is electrically taken out of the connection hole through the independent region by performing body treatment.
[0013]
One embodiment of the capacitive pressure sensor according to the present invention is such that a second connection hole is opened in the fixed substrate so as to face the support portion, and the support portion is fixed at a position where the second connection hole is sealed. The movable electrode is electrically extracted to the outside from the second connection hole via the support by subjecting the second connection hole to a conductor treatment.
[0029]
[Action]
In the capacitive acceleration sensor or the capacitive pressure sensor of the present invention, a fixed electrode is electrically connected to an independent region formed in the semiconductor substrate, and a conductor treatment is performed on a connection hole penetrated through the fixed substrate, Since the independent region is joined to the fixed substrate at the position of the connection hole, the fixed electrode can be taken out from the surface side of the fixed substrate to the outside via the independent region. In addition, despite the fact that the connection holes through which the fixed electrodes are drawn through the fixed substrate penetrate, the independent regions are joined to the fixed substrate at the positions where the connection holes are sealed, so the connection holes are reliably formed by the independent regions. It can be closed, and the weight portion and the beam portion can be sealed in the sealed space with high sealing accuracy.
[0030]
Moreover,In the capacitive acceleration sensor and the capacitive pressure sensor of the present invention,Since the independent region electrically connected to the fixed electrode is formed independently of the weight and the support that supports the pressure-sensitive diaphragm, the semiconductor substrate on which the weight and the pressure-sensitive diaphragm are formed can be used. Although the connection hole is used to close the connection hole, the fixed electrode and the movable electrode are not short-circuited via the independent region.Furthermore, since the groove connecting the closed space and the independent region is formed on the surface of the support, the lead extending from the fixed electrode can be inserted into the groove without contacting the support. In addition, a short circuit between the fixed electrode and the movable electrode can be prevented.Also, the fixed electrode can be drawn out to the front side of the fixed substrate from the connection hole penetrated through the fixed substrate, instead of being drawn out from the end of the joint surface between the fixed substrate and the semiconductor substrate. An electrode for extracting a fixed electrode does not intervene in the peripheral area of the joint surface of (1), and the weight portion, the pressure-sensitive diaphragm, and the like can be sealed in the closed space with high sealing accuracy.
[0031]
In each of the embodiments of the capacitive acceleration sensor or the capacitive pressure sensor according to the present invention, a portion where a second connection hole is opened in the fixed substrate so as to face the support portion and the second connection hole is sealed. Since the supporting portion is joined to the fixed substrate and the second connection hole is subjected to the conductor treatment, the movable electrode is electrically extracted to the outside from the second connection hole via the supporting portion. The movable electrode can be pulled out from the surface side of the fixed substrate while the weight portion and the pressure-sensitive diaphragm portion are sealed in the closed space.
[0047]
【Example】
FIG. 1 shows a capacitive acceleration sensor A according to an embodiment of the present invention. FIG. 1A is a cross-sectional view of the acceleration sensor A, FIG. 1B is a bottom view of a silicon semiconductor substrate 1, FIG. 1C is a top view showing the lower fixed substrate 2b, and FIG. 1D is a bottom view of the upper fixed substrate 2a. In the acceleration sensor A, a frame-shaped support portion 3, a weight portion 4, a beam portion 5, and a pair of independent regions 6a and 6b are formed by etching the silicon semiconductor substrate 1. The weight portion 4 is thinner than the support portion 3 so as to be displaceable, and is elastically supported so as to be vertically displaceable in the center of the inner peripheral portion of the support portion 3 through a pair of elastic beams 5. Have been. In addition, the independent regions 6a and 6b are formed in a truncated pyramid shape in the illustrated example, and are located in the separation hole 7 similarly opened in the support portion 3 in a truncated pyramid shape. The support part 3 is electrically separated from and independent of each other. On the upper and lower surfaces of the silicon semiconductor substrate 1, fixed substrates 2a and 2b having an insulating property, such as glass substrates, are respectively bonded by an anodic bonding method. In particular, both the fixed substrates 2a and 2b and the support portion 3 are formed on the entire outer peripheral portion. Since the anodic bonding is performed throughout the circumference, the weight portion 4 and the beam portion 5 are completely sealed in the closed space 8 surrounded by the support portion 3 and the fixed substrates 2a and 2b. Moreover, the upper and lower surfaces of the support portion 3 and the upper and lower surfaces of the independent regions 6a and 6b are anodically bonded to the fixed substrates 2a and 2b, so that the support portion 3 and the independent regions 6a and 6b have a mechanical relationship with each other. It is electrically insulated from each other while maintaining.
[0048]
Since the weight portion 4 is formed by the silicon semiconductor substrate 1, both upper and lower surfaces of the weight portion 4 are movable electrodes (movable electrode surfaces) 9 due to its conductivity. Although not shown in the drawing, the movable electrode 9 is electrically extracted to the outside from the outer peripheral side surface of the silicon semiconductor substrate 1 (that is, the support portion 3) through the beam portion 5 and the support portion 3. Further, fixed electrodes 10 are provided on the inner surfaces of the upper and lower fixed substrates 2a and 2b so as to face the movable electrodes 9, respectively. The movable electrodes 9 and the fixed electrodes 10 constitute an electrostatic capacitance unit for acceleration detection. Have been.
[0049]
As shown in FIG. 1B, a groove 11 is formed in the lower surface of the support portion 3 from the closed space 8 toward one of the independent regions 6b, and as shown in FIG. The lead portion 12 extending from the fixed electrode 10 passes through the groove 11 and is electrically connected to the independent region 6b. A groove 11 is also formed on the upper surface of the support portion 3 from the closed space 8 toward the other independent region 6a, and extends from the fixed electrode 10 on the upper surface side as shown in FIG. The lead portion 12 passes through the groove 11 and is electrically connected to the independent region 6a. FIG. 2 shows an example of an electrical connection structure between the lead portion 12 and the independent regions 6a and 6b. The end of the lead portion 12 is sandwiched between the end surfaces of the independent regions 6a and 6b and the fixed substrates 2a and 2b. Thus, the lead portion 12 and the independent regions 6a and 6b are electrically connected. Although FIG. 2 shows only the independent region 6a, the independent region 6b has the same structure. However, the lead portion 12 is separated from the groove 11 by a gap so as not to contact the support portion 3, thereby preventing a short circuit between the movable electrode 9 and the fixed electrode 10. Further, a cylindrical connection hole 13 penetrates through the lower fixed substrate 2b so as to face one of the independent regions 6b. The end face of the independent region 6b is anodically bonded to the upper surface of the fixed substrate 2b around the connection hole 13 to completely seal the entire periphery of the connection hole 13, and the airtightness of the sealed space 8 is reduced by the connection hole 13 So that it does not leak from Further, a conductive film (metal film) 14 is formed on the inner surface of the connection hole 13 and the entire lower surface of the fixed substrate 2b by vapor deposition, and the conductive film 14 on the inner surface of the connection hole 13 is electrically connected to the end surface of the independent region 6b. are doing. Similarly, a columnar connection hole 13 is formed in the upper fixed substrate 2a so as to face the other independent region 6a, and a conductive film 14 is coated on the inner surface of the connection hole 13 and the entire upper surface of the fixed substrate 2a. It is formed. The end face of the independent region 6a is anodically bonded to the lower surface of the fixed electrode 2a around the connection hole 13 to completely seal the entire periphery of the connection hole 13 so that the airtightness of the sealed space 8 is reduced from the connection hole 13. The conductive film 14 in the connection hole 13 is electrically connected to the end face of the independent region 6a. Therefore, the fixed electrode 10 on the upper surface is drawn to the upper surface of the upper fixed substrate 2a, and the fixed electrode 10 on the lower surface is drawn to the lower surface of the lower fixed substrate 2b. In addition, at the junction between the lead portion 12 and the independent regions 6a and 6b, as shown in FIGS. 1 and 2, the tip of the lead portion 12 is prevented from reaching the connection hole 13. This is because when the lead portion 12 contacts the connection hole 13, the connection between the fixed substrates 2 a and 2 b and the independent regions 6 a and 6 b is prevented at that portion, and the connection hole 13 cannot be sealed over the entire circumference of the connection hole 13. This is because the airtightness of the connection hole 13 is impaired.
[0050]
The inside of the closed space 8 may be maintained in a vacuum state or may be in a reduced pressure state. Alternatively, the closed space 8 may be filled with a gas (preferably, an inert gas such as nitrogen).
[0051]
In the capacitive acceleration sensor A, when acceleration or vibration is detected, the weight 4 is displaced according to the magnitude of the acceleration, and the capacitance between the movable electrode 9 and the fixed electrode 10 changes. Therefore, the magnitude of the acceleration can be known by detecting the change in the capacitance by a signal processing circuit or the like.
[0052]
In the acceleration sensor A, the fixed electrode 10 is electrically connected to the independent regions 6a and 6b formed separately from the support portion 3, and the conductive film is formed on the connection hole 13 penetrated through the fixed substrates 2a and 2b. 14, the independent regions 6a, 6b are joined to the fixed substrates 2a, 2b around the connection holes 13, so that the fixed electrodes 10 are connected to the fixed substrates 2a, 6b via the independent regions 6a, 6b and the conductive film 14. 2b. In addition, independent regions 6a and 6b are anodically bonded to the fixed substrates 2a and 2b at positions where the connection holes 13 are sealed, though the connection holes 13 for leading out the fixed electrodes 10 are passed through the fixed substrates 2a and 2b. As a result, the connection hole 13 can be reliably closed by the independent regions 6a and 6b, the weight 4 and the beam 5 can be sealed in the closed space 8 with high sealing accuracy, and dust and dirt can be contained inside. Corrosive gas or the like can be prevented from entering.
[0053]
In addition, since the independent regions 6a and 6b electrically connected to the fixed electrode 10 are formed independently of the support portion 3 supporting the weight portion 4, the silicon having the weight portion 4 and the like is formed. Although the connection hole 13 is closed by using the semiconductor substrate 1, the fixed electrode 10 and the movable electrode 9 are not short-circuited via the independent regions 6a and 6b. Also, instead of pulling out the fixed electrode 10 from the end of the joint surface between the fixed substrates 2a, 2b and the silicon semiconductor substrate 1, the fixed electrodes 10 are connected to the surfaces of the fixed substrates 2a, 2b through connection holes 13 penetrating the fixed substrates 2a, 2b. Side, the electrode structure for extracting the fixed electrode 10 does not intervene in the peripheral region of the joint surface between the fixed substrates 2a and 2b and the silicon semiconductor substrate 1, and the weight portion 4 and the beam portion 5 are sealed. It is possible to seal the space 8 with high accuracy.
[0054]
FIG. 3 is a partially enlarged cross-sectional view showing another configuration between the independent regions 6a and 6b and the lead portion 12. As shown in FIG. 3 (only the independent region 6a is shown, but the independent region 6b also has the same structure), the end portions or the entirety of the independent regions 6a and 6b have conductivity by impurity diffusion or ion implantation. A high high-concentration impurity layer 16 is formed. By providing the high-concentration impurity layer 16 having high conductivity, conduction between the independent regions 6a and 6b and the lead portion 12 is ensured, and the extraction resistance of the fixed electrode 10 can be reduced. Also, in the embodiment of FIG. 3, a concave groove 17 for accommodating the end of the lead portion 12 may be formed in the outer peripheral portion of the end surface of the independent regions 6a and 6b. However, the concave groove 17 is provided at a remote position so as not to be in contact with the joint holes of the fixed substrates 2a and 2b. In addition, if the concave groove 17 is formed, the joining between the independent regions 6a and 6b and the fixed substrates 2a and 2b is hardly hindered by the thickness of the lead portion 12. However, since the lead portion 12 and the independent regions 6a and 6b need to be pressed against each other, the depth of the concave groove 17 is preferably smaller than the thickness of the lead portion 12.
[0055]
FIG. 4 is a partially enlarged cross-sectional view showing another configuration between the independent regions 6a and 6b and the lead portion 12. In this embodiment, an electrode film 18 is formed on the inner surface of the concave groove 17 provided on the end surface of the independent regions 6a and 6b by a vapor deposition method or the like. According to such a configuration, the electrical connection between the lead portion 12 and the independent regions 6a and 6b can be ensured by the pressure contact between the electrode film 18 and the end of the lead portion 12.
[0056]
5 and 6 are a perspective view and an exploded perspective view showing a capacitive acceleration sensor B according to still another embodiment of the present invention. In this acceleration sensor B, a conical connection hole 19 is opened in the upper fixed substrate 2a so as to face the intermediate region between the independent regions 6a and 6b of the support portion 3, and the connection hole on the lower surface of the fixed substrate 2a. The entire periphery of the connection hole 19 is joined to the support portion 3 when the fixed substrate 2a and the silicon semiconductor substrate 1 are anodically joined, whereby the periphery of the lower surface of the connection hole 19 is hermetically sealed. Further, a conductive coating 20 is also formed on the inner surface of the connection hole 19. Therefore, the movable electrode 9 is electrically drawn out to the upper surface of the fixed substrate 2a via the support portion 3 and the conductive film 20 while the sealed space 8 is completely sealed.
[0057]
On the lower surface of the lower fixed substrate 2b, an external electrode pad 15 is provided continuously with the conductive film 14 of the connection hole 13. Then, the acceleration sensor A is mounted on the circuit board 21, and the external electrode pads 15 on the lower surface are electrically and mechanically joined to the connection pads 22 of the circuit board 21. The circuit board 21 is provided with bonding pads 23 connected to the connection pads 22. As a result, both the fixed electrode 10 and the movable electrode 9 are taken out to the upper surface of the acceleration sensor B or the upper surface of the circuit board 21, and the connection with the signal processing circuit or the like can be facilitated.
[0058]
FIG. 7 is an exploded perspective view showing a capacitive acceleration sensor C according to still another embodiment of the present invention. In the acceleration sensor C, external electrode pads 15 that are electrically connected to the conductive films 14 and 20 are provided around connection holes 13 and 19 provided in the upper fixed substrate 2a. Further, external electrode pads 15 that are electrically connected to the conductive film 14 are also provided around the connection holes 13 provided in the lower fixed substrate 2b. In this embodiment, since the external electrode pads 15 are provided in all the connection holes 13 and 19, the connection with the electrode pads of the circuit board 21 or a signal processing circuit (not shown) by wire bonding or the like is further facilitated. Can be For example, the lower external electrode pads 15 can be soldered to the connection pads 22 of the circuit board 21, and the upper external electrode pads 15 can be connected to the signal processing circuit by wire bonding.
[0059]
FIG. 8 is an exploded perspective view showing a capacitive acceleration sensor D according to still another embodiment of the present invention. In this embodiment, the external electrode pad 15 is provided only in one of the two connection holes 13 and 19 provided in the upper fixed substrate 2a, for example, around the connection hole 13. In the connection hole 19 having no external electrode pad, the end of the bonding wire can be connected to the conductive film 20 using, for example, a conductive adhesive.
[0060]
FIG. 9 is an exploded perspective view showing a capacitive acceleration sensor E according to still another embodiment of the present invention. In this acceleration sensor E, the upper fixed substrate 2a is shorter than the support portion 3, and when the support portion 3 and the fixed substrates 2a and 2b are overlapped and joined, the end of the support portion 3 is positioned on the upper fixed substrate. 2a. A movable electrode pad 24 is provided on an exposed portion of the upper surface of the support portion 3 by using a deposited metal film or the like. Even in the acceleration sensor E, since the anodic bonding between the fixed substrate 2a and the support portion 3 is not hindered by the movable electrode pad 24, the movable electrode disposed on the upper surface side without impairing the airtightness of the sealed space 8 The movable electrode 9 can be electrically drawn to the pad 24. Moreover, there is no need to form the connection holes 19 and the conductor coatings 20 in the fixed substrate 2a as in the embodiment shown in FIGS. 6 to 8, and the sensor manufacturing process can be simplified. Further, external electrode pads 15 which are electrically connected to the conductive coating 14 are provided around the connection holes 13 of the upper and lower fixed substrates 2a and 2b.
[0061]
FIG. 10 is a sectional view showing a capacitive acceleration sensor F according to still another embodiment of the present invention. In the acceleration sensor F, a sealing member 25 such as an epoxy resin is filled in the connection hole 13 in which the conductive film 14 is formed. By filling the inside of the connection hole 13 with the sealing member 25 in this manner, the sealing property in the connection hole 13 can be improved, and the floating of the conductive film 14 can be prevented by the sealing member 25. In addition, it is possible to prevent the conductive film 14 from peeling off from the independent regions 6a and 6b to cause a conduction failure.
[0062]
FIG. 11 is an enlarged sectional view showing the structure of the independent regions 6a and 6b in the capacitive acceleration sensor G according to still another embodiment of the present invention. By forming the high-concentration impurity layer 16 in an area smaller than the connection hole 13 on the end face of the independent regions 6a and 6b facing the connection hole 13 by impurity diffusion, ion implantation, or the like, the conductivity in the connection hole 13 is reduced. Electrical connection with the coating 14 can be improved, and electrical disconnection with the conductive coating 14 can be reliably prevented.
[0063]
FIG. 12 is an enlarged sectional view showing the structure of the independent regions 6a and 6b in the capacitive acceleration sensor H according to still another embodiment of the present invention. In this embodiment, a high-concentration impurity layer 16 is formed on an end face of each of the independent regions 6a and 6b facing the connection hole 13 with a smaller area than the connection hole 13. Further, the connection hole 13 is formed on the high-concentration impurity layer 16. A metal thin film pad 26 smaller than the opening area is formed. Therefore, the electrical connection with the conductive film 14 in the connection hole 13 can be further improved, and the electrical disconnection with the conductive film 14 can be eliminated.
[0064]
FIG. 13 is an exploded perspective view of a capacitive acceleration sensor J according to still another embodiment of the present invention. In this embodiment, three connection holes 13, 19, and 13 are opened in the lower fixed substrate 2b. One of the independent regions 6a whose upper surface is electrically connected to the fixed electrode 10 on the upper surface has its lower surface joined to the periphery of one connection hole 13 to seal the connection hole 13, and the conductivity in the connection hole 13 is reduced. It is electrically connected to the coating 14. In addition, another independent region 6b in which the lower surface side of the fixed electrode 10 is electrically connected to the lower surface is also joined to the periphery of another connection hole 13 on the lower surface to seal the connection hole 13. The conductive film 14 is electrically connected to the inside. Further, the support portion 3 is joined around the connection hole 19 to seal the connection hole 19, and the movable electrode 9 is electrically connected to the conductive film 20 in the connection hole 19. External electrode pads 15 are provided around the lower surfaces of the connection holes 13, 19, and 13 provided in the lower fixed electrode 2b, respectively. These external electrode pads 15 are soldered to the connection pads 22 of the circuit board 21. By joining, the acceleration sensor A is mechanically fixed on the circuit board 21, and the fixed electrodes 10 and the movable electrodes 9 are electrically connected to the bonding pads 23 of the circuit board 21. According to such a structure, all the external electrode pads 15 are arranged on the lower surface and can be soldered to the connection pads 22 of the circuit board 21, so that bonding by wire bonding can be eliminated.
[0065]
14A, 14B, and 14C are cross-sectional views illustrating a method of manufacturing the capacitive acceleration sensor K according to the present invention. Although FIG. 14 illustrates a structure similar to that of the capacitive acceleration sensor A of FIG. 1 as an example, it goes without saying that the acceleration sensor of another embodiment may be used (the same applies hereinafter). First, the lower surface of the weight portion 4 of the silicon semiconductor substrate 1 and a region to be the groove 11 (and may include a region to become the unnecessary portion 27) are etched shallowly, and then the support portion 3, the weight portion 4, and the independent region are formed. The lower surfaces of the regions to be 6a and 6b are covered with an etching mask, and the silicon semiconductor substrate 1 is deeply etched from the lower surface side by electrochemical etching to form the lower surfaces of the beam portions 5 and the unnecessary portions 27. Next, the upper surface of the support portion 3 and the regions that become the independent regions 6a and 6b are covered with an etching mask, and the silicon semiconductor substrate 1 is etched from the upper surface side by a wet etching method or a dry etching method (for example, RIE method). 4, the upper surface of the beam portion 5 and the unnecessary portion 27 and the groove 11 are formed, and the silicon semiconductor substrate 1 in which the weight portion 4, the beam portion 5, the independent regions 6a and 6b, and the support portion 3 are connected by the thin unnecessary portion 27. Make it. Here, the entire unnecessary portion 27 and the thickness of the beam portion 5 have the same thickness (constant thickness). Next, the silicon semiconductor substrate 1 is placed on the upper surface of the fixed substrate 2b provided with the fixed electrode 10 and the connection hole 13, and the support portion 3 and the lower surfaces of the independent regions 6a and 6b are fixed as shown in FIG. Bonded to the substrate 2b by an anodic bonding method, the lead portion 12 of the fixed electrode 10 is made conductive to the lower surface of the independent region 6b, and the connection hole 13 is sealed at the lower surface of the independent region 6b, and at the same time, the periphery The lower surface of the separation hole 7 is sealed with the fixed substrate 2b, and the conductive film 14 and the external electrode pattern 15 are formed on the inner surface of the connection hole 13 and the lower surface of the fixed substrate 2b. Thereafter, as shown in FIG. 14A, the upper surfaces of the support portion 3, the weight portion 4 and the beam portion 5 are covered with an etching mask 28, and the unnecessary portion 27 of the silicon semiconductor substrate 1 is removed by etching. As shown in b), the weight portion 4 and the beam portion 5 can be elastically displaced in the vertical direction, and at the same time, the independent regions 6a and 6b are electrically separated from the support portion 3. Here, the etching for removing the unnecessary portion 27 may be a wet etching method or a dry etching method (for example, RIE method). Next, as shown in FIG. 14 (c), the fixed substrate 2a on which the fixed electrode 10 and the connection hole 13 are formed is joined to the upper surface of the silicon semiconductor substrate 1 by anodic bonding, and the lead portion of the fixed electrode 10 is formed. 12 is electrically connected to the upper surface of the independent region 6a, the connection hole 13 is sealed by the upper surface of the independent region 6a, and at the same time, the upper surface of the separation hole 7 around each of the independent regions 6a and 6b is sealed by the fixed substrate 2a. Further, a conductive film 14 and an external electrode pattern 15 are formed on the inner surface of the connection hole 13 and the upper surface of the fixed substrate 2a, thereby completing the acceleration sensor K.
[0066]
When the acceleration sensor K is manufactured in this manner, the support portion 3 and the independent regions 6a and 6b are joined to the fixed substrate 2b in a state where the independent regions 6a and 6b are not yet completely separated from the support portion 3, and then the independent portions are independent. Since the regions 6a and 6b are separated from the support portion 3, the independent regions 6a and 6b are separated from the support portion 3 in an island shape while the positional relationship between the support portion 3 and the independent regions 6a and 6b is accurately maintained at a fixed position. And the sensor manufacturing process can be simplified. Further, if the lower surface of the silicon semiconductor substrate 1 is deeply etched by electrochemical etching, the etching depth can be controlled by the potential applied to the silicon semiconductor substrate 1, so that the thickness accuracy of the beam portion 5 can be obtained. As a result, the thickness accuracy of both the weight portion 4 and the beam portion 5 can be obtained, and the production yield of the sensor is improved. Further, since the thickness of the unnecessary portion 27 and the beam portion 5 is made uniform, the etching process from the upper surface side of the silicon semiconductor substrate 1 can be performed at one time.
[0067]
FIGS. 15A, 15B, and 15C are views showing another method of manufacturing the capacitive acceleration sensor K according to the present invention. When the unnecessary portion 27 is removed by etching after the silicon semiconductor substrate 1 is bonded to the fixed substrate 2b, the unnecessary portion 27 around the weight portion 4 and the beam portion 5 is removed because the inside of the etching tank is evacuated or depressurized. At this moment, the air sealed in the space between the weight portion 4 and the fixed substrate 2b instantaneously blows out, and the impact may be applied to the weight portion 4 to damage the beam portion 5. This embodiment is to prevent such inconvenience and improve the yield of the acceleration sensor K. That is, in this embodiment, after manufacturing the silicon semiconductor substrate 1 in which the unnecessary portion 27 and the beam portion 5 have the same thickness, the silicon semiconductor substrate 1 is etched again to remove at least the unnecessary portion 27 around the independent regions 6a and 6b. The thickness of the partial region 27a is reduced. After the silicon semiconductor substrate 1 is bonded to the fixed substrate 2a as shown in FIG. 15A, the silicon semiconductor substrate 1 is etched, and first, an unnecessary portion 27 around the independent regions 6a and 6b has a relatively thin region. 27a is removed by etching, and the air sealed in the space between the weight portion 4 and the fixed substrate 2b is exhausted from the openings around the independent regions 6a and 6b through the groove 11 as shown in FIG. The space between the weight 4 and the fixed substrate 2b is in the same vacuum or reduced pressure as the outside. Therefore, it is possible to prevent the beams 5 and the like from being damaged by the ejection of air when the remaining unnecessary portion 27 having a relatively large thickness is removed later. Thereafter, the fixed substrate 2a is bonded to the upper surface of the silicon semiconductor substrate 1 as shown in FIG.
[0068]
In the configuration of FIG. 14 as well, breakage of the beam portion 5 and the like due to air blowing can be prevented by dividing the step of removing the unnecessary portion 27 by etching twice using two types of etching masks. For example, only one etching step is required, and only one kind of etching mask is required for etching.
[0069]
16 (a), 16 (b) and 16 (c) are cross-sectional views showing still another manufacturing method of the present invention. In this embodiment, after preparing the silicon semiconductor substrate 1 in which the unnecessary portion 27 and the beam portion 5 have the same thickness, the silicon semiconductor substrate 1 is etched again to remove the unnecessary portion 27 around the weight portion 4 or the beam portion 5. The part is open. After bonding the silicon semiconductor substrate 1 to the fixed substrate 2a as shown in FIG. 16 (a), putting the silicon semiconductor substrate 1 into the etching bath and depressurizing the etching bath, the space between the weight portion 4 and the fixed substrate 2b has already been reduced. Since the vacuum or reduced pressure state is achieved, even if the unnecessary portion 27 is removed by etching the silicon semiconductor substrate 1 as shown in FIG. 16B, the beam 5 and the like are not damaged by the ejection of air. After the unnecessary portion 27 is removed by etching to make the weight portion 4 and the beam portion 5 movable, the fixed substrate 2a is anodically bonded to the upper surface of the support portion 3 (FIG. 16C).
[0070]
In each of the above embodiments, the case of the capacitive acceleration sensor has been described. However, each of the above embodiments can also be applied to a capacitive pressure sensor.
[0071]
17A is a sectional view showing a capacitive pressure sensor L according to still another embodiment of the present invention, FIG. 17B is a bottom view of the silicon semiconductor substrate 31, and FIG. 17C is an upper fixed board 32a. 17D is a plan view of the lower fixed substrate 32b. In the pressure sensor L, a support portion 33, a pressure-sensitive diaphragm 34, and an independent region 36 are formed by the silicon semiconductor substrate 31, and the thin film-shaped pressure-sensitive diaphragm 34 is supported by the support portion 33. The region 36 is electrically separated from the support portion 33 by a separation hole 37. That is, the independent region 36 is arranged in an island shape in the separation hole 37 opened in the support portion 33. Fixed substrates 32a and 32b are bonded to the upper and lower surfaces of the silicon semiconductor substrate 31 by an anodic bonding method. A movable electrode 39 is provided on the upper surface of the pressure-sensitive diaphragm 34, and a fixed electrode 40 is provided on the inner surface of the fixed substrate 32 a so as to face the movable electrode 39. A capacitance section is formed. A movable electrode pad 47 for electrically extracting the movable electrode 39 to the outside is provided in a region of the upper surface of the support portion 33 exposed from the fixed substrate 32a. The lead portion 42 extending from the fixed electrode 40 passes through the groove 41 formed on the upper surface of the support portion 33 without being in contact with the support portion 33 and is electrically connected to the independent region 36. A columnar connection hole 43 is opened at a position facing the independent region 36 of the fixed substrate 32a, and the upper end surface of the independent region 36 is anodically bonded to the lower surface of the fixed substrate 32a around the connection hole 43, so that the The connection hole 43 is completely sealed by the region 36. Also in this case, the lead portion 42 is prevented from reaching the position of the connection hole 43 (see FIG. 3). Further, a high-concentration impurity layer may be formed in the independent region 36, or a concave groove for accommodating the lead portion 42 may be provided. Further, a conductive film 44 is formed on the inner surface of the connection hole 43 and the upper surface of the fixed substrate 32a, and the conductive film 44 in the connection hole 43 is electrically connected to the independent region 36, and thus the fixed electrode 40 and is electrically connected to it. Thus, the sealed space 38 between the fixed electrode 40 and the pressure-sensitive diaphragm 34 is completely sealed, and the sealed space 38 is kept at a constant pressure by evacuating, depressurizing, or sealing gas to obtain a reference pressure. I am trying to be. A pressure inlet 35 is opened in the fixed substrate 32b on the lower surface side. Thus, when the fluid is introduced into the pressure introduction chamber 46 inside the pressure introduction port 35, the pressure-sensitive diaphragm 34 bends due to the pressure, whereby the capacitance between the movable electrode 39 and the fixed electrode 40 changes. Therefore, the pressure of the fluid can be known by detecting the capacitance value. Further, the periphery of the sealed space 38 is completely sealed by anodic bonding of the support portion 33 and the fixed substrates 32a and 32b and sealing of the connection hole 43 by the independent region 36, so that vacuum leakage, gas leakage, or intrusion of dust or the like is achieved. Can be reliably prevented. In the above embodiment, the fixed electrode 40 is provided only on one fixed substrate 32a. However, the fixed electrode may be provided on the inner surface of the other fixed substrate 32b so as to face the pressure-sensitive diaphragm 34. Further, the fixed substrate 32b on the lower surface side may be at least capable of sealing the separation hole 37 around the independent region 36.
[0072]
FIG. 18 is an exploded perspective view showing a capacitive pressure sensor M according to still another embodiment of the present invention. This corresponds to the acceleration sensor B of FIGS. 5 and 6, wherein the support portion 33 is anodically bonded to the lower surface of the conical connection hole 48 opened in the fixed substrate 32 a to seal the connection hole 48, A conductive film 49 is formed on the inner surface of the connection hole 48 and connected to the support 33. The conductive film 49 is electrically connected to the movable electrode 39 to draw the movable electrode 39 to the upper surface of the fixed substrate 32a.
[0073]
FIG. 19 is an exploded perspective view showing a capacitive pressure sensor N according to still another embodiment of the present invention. This corresponds to the acceleration sensor C of FIG. 7, in which external electrode pads 45 are provided around the connection holes 43 and 48 on the upper surface of the fixed substrate 32a, respectively, and each external electrode pad 45 is connected to the conductive coatings 44 and 49. Electrical connection is made so that the fixed electrode 40 and the movable electrode 39 are drawn out to the respective external electrode pads 45 on the surface of the fixed substrate 32a.
[0074]
FIG. 20 is an exploded perspective view showing a capacitive pressure sensor P according to still another embodiment of the present invention. This corresponds to the acceleration sensor E in FIG. 9, in which the length of the silicon semiconductor substrate 31 is made longer than the fixed substrate 32 a to expose the upper surface of the end of the support portion 33 from the fixed substrate 32 a, and And a movable electrode pad 47 for extracting the movable electrode 39 to the outside.
[0075]
FIG. 21 is an exploded perspective view showing a capacitive pressure sensor Q according to still another embodiment of the present invention. This corresponds to the acceleration sensor J in FIG. 13. Two connection holes 43 and 48 are opened in the lower fixed substrate 32 b, and the upper surface of the independent region 36 is connected to the lead portion 42 of the fixed electrode 40. The connection hole 43 is sealed at the lower surface of the independent region 36, a conductive film 44 is formed on the inner surface of the connection hole 43, and an external electrode pad 45 is formed around the conductive film 44. Further, the other connection hole 48 is sealed by anodic bonding of the support portion 33, and the conductive film 49 of the connection hole 48 is conducted to the movable electrode 39, and the external electrode pad 45 is formed around the periphery. The pressure sensor Q is mechanically fixed on the circuit board 51 by soldering the external electrode pad 45 on the lower surface to the connection pad 52 on the upper surface of the circuit board 51, and the fixed electrode 40 and the movable electrode 39 are connected to the circuit board 51. 51 can be drawn out to the bonding pad 53.
[0076]
FIGS. 22A, 22B, and 22C show an example of a method of manufacturing the pressure sensor R. The lower surface of the silicon semiconductor substrate 31 is electrochemically etched to form a pressure-sensitive diaphragm 34 and an unnecessary portion 54. After forming the independent region 36 connected to the support portion 33 and further etching the silicon semiconductor substrate 31 to make the thickness of the unnecessary portion 54 thinner than the pressure-sensitive diaphragm 34, as shown in FIG. The semiconductor substrate 31 is anodically bonded to the fixed substrate 32b. Next, when the silicon semiconductor substrate 31 is etched, the unnecessary portion 54 around the independent region 36 is removed, and the independent region 36 is separated from the support 33 as shown in FIG. Thereafter, the fixed substrate 32a is bonded to the upper surface of the silicon semiconductor substrate 31 in a vacuum, a reduced pressure atmosphere, or a gas atmosphere as shown in FIG.
[0077]
If the unnecessary portion 54 is etched with the thickness of the unnecessary portion 54 made smaller than that of the pressure-sensitive diaphragm 34 in this manner, the etching can be performed without using an etching mask.
[0078]
【The invention's effect】
In the capacitive acceleration sensor or the capacitive pressure sensor according to the present invention, the fixed electrodes and the like can be taken out to the outside by the conductor-treated connection holes provided in the fixed substrate. The connection hole can be reliably closed by the independent region since the connection hole is sealed. And since the fixed electrode is drawn out from the connection hole penetrating the fixed substrate, no electrode for drawing the fixed electrode is interposed in the peripheral region of the joint surface between the fixed substrate and the semiconductor substrate, and the fixed substrate is connected to the fixed substrate. The semiconductor substrate and the semiconductor substrate can be securely joined without any gap. Therefore, the fixed electrode, the weight portion, and the like can be sealed in the space with high sealing accuracy, and dust and corrosive gas do not enter the inside, so that the durability of the sensor can be improved.
[0079]
In addition, since the independent region electrically connected to the fixed electrode is formed independently of the weight and the supporting portion supporting the pressure-sensitive diaphragm, the semiconductor in which the weight and the pressure-sensitive diaphragm are formed is formed. In spite of using the substrate to close the connection hole, there is no short circuit between the fixed electrode and the movable electrode via the independent region.Furthermore, since the groove connecting the closed space and the independent region is formed on the surface of the support, the lead extending from the fixed electrode can be inserted into the groove without contacting the support. In addition, a short circuit between the fixed electrode and the movable electrode can be prevented.
[Brief description of the drawings]
FIG. 1A is a sectional view showing a capacitive acceleration sensor according to one embodiment of the present invention. (B) is a bottom view showing the structure of the silicon semiconductor substrate, (c) is a top view showing the lower fixed substrate, and (d) is a bottom view showing the upper fixed substrate.
FIG. 2 is an enlarged sectional view showing a structure near an independent region according to the first embodiment;
FIG. 3 is an enlarged sectional view showing another structure near an independent region.
FIG. 4 is an enlarged sectional view showing still another structure near an independent region.
FIG. 5 is a perspective view showing a capacitive acceleration sensor according to another embodiment of the present invention.
FIG. 6 is an exploded perspective view of the same.
FIG. 7 is an exploded perspective view showing a capacitive acceleration sensor according to still another embodiment of the present invention.
FIG. 8 is an exploded perspective view showing a capacitive acceleration sensor according to still another embodiment of the present invention.
FIG. 9 is an exploded perspective view showing a capacitive acceleration sensor according to still another embodiment of the present invention.
FIG. 10 is a sectional view showing a capacitive acceleration sensor according to still another embodiment of the present invention.
FIG. 11 is a partially enlarged sectional view showing a structure near an independent region of a capacitive acceleration sensor according to still another embodiment of the present invention.
FIG. 12 is a partially enlarged sectional view showing a structure near an independent region of a capacitive acceleration sensor according to still another embodiment of the present invention.
FIG. 13 is an exploded perspective view showing a capacitive acceleration sensor according to still another embodiment of the present invention.
FIGS. 14A, 14B, and 14C are cross-sectional views illustrating a method of manufacturing a capacitive acceleration sensor according to the present invention.
FIGS. 15A, 15B, and 15C are cross-sectional views showing another method of manufacturing the capacitive acceleration sensor according to the present invention.
16 (a), (b), and (c) are cross-sectional views showing still another method of manufacturing the capacitive acceleration sensor according to the present invention.
FIG. 17A is a sectional view showing a capacitive pressure sensor according to an embodiment of the present invention. (B) is a bottom view showing the structure of the silicon semiconductor substrate, (c) is a bottom view showing the upper fixed substrate, and (d) is a plan view showing the lower fixed substrate.
FIG. 18 is an exploded perspective view showing a capacitive pressure sensor according to still another embodiment of the present invention.
FIG. 19 is an exploded perspective view showing a capacitive pressure sensor according to still another embodiment of the present invention.
FIG. 20 is an exploded perspective view showing a capacitive pressure sensor according to still another embodiment of the present invention.
FIG. 21 is an exploded perspective view showing a capacitive pressure sensor according to still another embodiment of the present invention.
FIGS. 22A, 22B and 22C are cross-sectional views illustrating a method of manufacturing a capacitive pressure sensor according to still another embodiment of the present invention.
FIG. 23 is a sectional view showing a conventional acceleration sensor.
[Explanation of symbols]
1 Silicon semiconductor substrate
2a, 2b Fixed substrate
3 support
4 Weight
5 beams
6a, 6b independent area
8 enclosed space
9 movable electrode
10 Fixed electrode
11 groove
12 Fixed electrode lead
13 Connection hole
14 Conductive thin film
16 High concentration impurity layer
31 Silicon semiconductor substrate
32a, 32b Fixed board
33 Support
34 pressure sensitive diaphragm
36a, 36b Independent area
38 Closed space

Claims (4)

半導体基板をエッチング加工して支持部と重り部と当該重り部を支持部に連結する梁部とを形成し、前記半導体基板の両面にそれぞれ固定基板を接合して前記重り部及び梁部を密閉空間内に封止し、前記重り部を可動電極とし、当該可動電極と対向させて少なくとも一方の固定基板に固定電極を形成し、前記可動電極と前記固定電極間の容量変化を加速度の変化として検出する容量型加速度センサにおいて、
前記半導体基板の支持部から電気的に分離された独立領域を支持部内に設け、
前記支持部の表面に前記密閉空間と前記独立領域とを結ぶ溝条を形成し、
前記固定電極から延出させたリード部を支持部に接触させることなく当該溝条に挿通させることによって当該リード部を前記独立領域に電気的に接続し、
前記固定基板に前記独立領域と対向させて接続孔を貫通させ、
当該接続孔を封止する位置で独立領域を固定基板に接合させ、
前記接続孔に導電体処理を施すことにより独立領域を介して前記固定電極を前記接続孔から電気的に外部へ取り出すようにしたことを特徴とする容量型加速度センサ。
The semiconductor substrate is etched to form a support portion, a weight portion, and a beam portion connecting the weight portion to the support portion, and a fixed substrate is bonded to both surfaces of the semiconductor substrate to seal the weight portion and the beam portion. Sealed in a space, the weight portion is a movable electrode, a fixed electrode is formed on at least one fixed substrate facing the movable electrode, and a change in capacitance between the movable electrode and the fixed electrode is defined as a change in acceleration. In the capacitive acceleration sensor to detect,
An independent area electrically separated from the support of the semiconductor substrate is provided in the support,
Forming a groove connecting the closed space and the independent region on the surface of the support portion,
By electrically connecting the lead portion to the independent region by inserting the lead portion extended from the fixed electrode into the groove without contacting the support portion,
A connection hole is made to pass through the fixed substrate so as to face the independent region,
At the position where the connection hole is sealed, the independent region is joined to the fixed substrate,
A capacitive acceleration sensor wherein the connection hole is subjected to a conductor treatment so that the fixed electrode is electrically taken out of the connection hole through an independent region.
前記支持部に対向させて固定基板に第2の接続孔を開口し、
当該第2の接続孔を封止する箇所で前記支持部を固定基板に接合させ、
当該第2の接続孔に導電体処理を施すことにより前記支持部を介して前記可動電極を当該第2の接続孔から電気的に外部へ取り出すようにした
ことを特徴とする請求項に記載の容量型加速度センサ。
A second connection hole is opened in the fixed substrate so as to face the support portion,
The support portion is bonded to the fixed substrate at a location where the second connection hole is sealed,
Claim, characterized in that the movable electrode via the supporting portion Ri by the applying a conductive process to the second connection hole they were taken out to electrically outside from the second connection hole 1 4. The capacitive acceleration sensor according to 1.
半導体基板をエッチング加工して支持部と弾性を有する感圧ダイアフラム部を形成し、前記半導体基板の両面に固定基板を接合して前記感圧ダイアフラム部の少なくとも片側の面を密閉空間内に封止し、前記感圧ダイアフラム部を可動電極とし、前記密閉空間内で前記可動電極と対向させて少なくとも一方の固定基板に固定電極を形成し、前記可動電極と前記固定電極間の容量変化を圧力の変化として検出する容量型圧力センサにおいて、
前記半導体基板の支持部から電気的に分離された独立領域を支持部内に設け
前記支持部の表面に前記密閉空間と前記独立領域とを結ぶ溝条を形成し、
前記固定電極から延出させたリード部を支持部に接触させることなく当該溝条に挿通させることによって当該リード部を前記独立領域に電気的に接続し、
前記固定基板に前記独立領域と対向させて接続孔を貫通させ、
当該接続孔を封止する位置で独立領域を固定基板に接合させ、
前記接続孔に導電体処理を施すことにより独立領域を介して前記固定電極を前記接続孔から電気的に外部へ取り出すようにした
ことを特徴とする容量型圧力センサ。
A semiconductor substrate is etched to form a supporting portion and a pressure-sensitive diaphragm having elasticity, and a fixed substrate is joined to both surfaces of the semiconductor substrate to seal at least one surface of the pressure-sensitive diaphragm in an enclosed space. The pressure-sensitive diaphragm portion is a movable electrode, and a fixed electrode is formed on at least one of the fixed substrates in the closed space so as to face the movable electrode. In a capacitive pressure sensor that detects a change,
An independent area electrically separated from the support of the semiconductor substrate is provided in the support ,
Forming a groove connecting the closed space and the independent region on the surface of the support portion,
By electrically connecting the lead portion to the independent region by inserting the lead portion extended from the fixed electrode into the groove without contacting the support portion,
A connection hole is made to pass through the fixed substrate so as to face the independent region,
At the position where the connection hole is sealed, the independent region is joined to the fixed substrate,
A capacitive pressure sensor, wherein the fixed electrode is electrically taken out of the connection hole through an independent region by performing a conductor treatment on the connection hole.
前記支持部に対向させて固定基板に第2の接続孔を開口し、A second connection hole is opened in the fixed substrate so as to face the support portion,
当該第2の接続孔を封止する箇所で前記支持部を固定基板に接合させ、The support portion is bonded to the fixed substrate at a location where the second connection hole is sealed,
当該第2の接続孔に導電体処理を施すことにより前記支持部を介して前記可動電極を当該第2の接続孔から電気的に外部へ取り出すようにしたBy performing a conductor treatment on the second connection hole, the movable electrode is electrically extracted to the outside from the second connection hole via the support portion.
ことを特徴とする請求項3に記載の容量型圧力センサ。The capacitive pressure sensor according to claim 3, wherein:
JP06033394A 1994-03-04 1994-03-04 Capacitive acceleration sensor and capacitive pressure sensor Expired - Fee Related JP3605846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06033394A JP3605846B2 (en) 1994-03-04 1994-03-04 Capacitive acceleration sensor and capacitive pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06033394A JP3605846B2 (en) 1994-03-04 1994-03-04 Capacitive acceleration sensor and capacitive pressure sensor

Publications (2)

Publication Number Publication Date
JPH07245417A JPH07245417A (en) 1995-09-19
JP3605846B2 true JP3605846B2 (en) 2004-12-22

Family

ID=13139147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06033394A Expired - Fee Related JP3605846B2 (en) 1994-03-04 1994-03-04 Capacitive acceleration sensor and capacitive pressure sensor

Country Status (1)

Country Link
JP (1) JP3605846B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802399B2 (en) * 2001-06-12 2011-10-26 株式会社村田製作所 Manufacturing method of electronic parts
JP4766932B2 (en) * 2005-06-21 2011-09-07 株式会社ワコー Manufacturing method of sensor using capacitive element
JP5095930B2 (en) * 2005-08-12 2012-12-12 パナソニック株式会社 MEMS device and manufacturing method thereof
SE533992C2 (en) * 2008-12-23 2011-03-22 Silex Microsystems Ab Electrical connection in a structure with insulating and conductive bearings
JP5864332B2 (en) 2012-03-29 2016-02-17 曙ブレーキ工業株式会社 Capacitance type acceleration sensor manufacturing method, manufacturing apparatus, and capacitance type acceleration sensor
JP5598515B2 (en) * 2012-08-30 2014-10-01 大日本印刷株式会社 Physical quantity sensor and manufacturing method thereof
CN114459666B (en) * 2022-02-14 2023-03-17 北京航空航天大学 Capacitive differential pressure sensor, manufacturing method and application thereof

Also Published As

Publication number Publication date
JPH07245417A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
EP1860417B1 (en) A pressure sensor having a chamber and a method for fabricating the same
JP2610464B2 (en) Capacitor type pressure sensor and pressure sensor group
JP2008008888A (en) Method for manufacturing pressure sensor using soi wafer
KR102217083B1 (en) Pressure sensor
US8098870B2 (en) Silicon microphone
JP4839747B2 (en) Capacitance type acceleration sensor
US5656781A (en) Capacitive pressure transducer structure with a sealed vacuum chamber formed by two bonded silicon wafers
JP2005201818A (en) Pressure sensor
JP3605846B2 (en) Capacitive acceleration sensor and capacitive pressure sensor
US8148792B2 (en) Pressure sensor and method for manufacturing the pressure sensor
JP2009272477A (en) Mems sensor and its manufacturing method
JP3205414B2 (en) Pressure micro sensor
JP4539413B2 (en) Structure of capacitive sensor
CN109060229B (en) Capacitive pressure sensor and manufacturing method thereof
KR20010074906A (en) Micromechanical component and its production method
KR20000028948A (en) Method for manufacturing an angular rate sensor
JP2009270961A (en) Mems sensor and its method for manufacturign
JP5095930B2 (en) MEMS device and manufacturing method thereof
JP3550467B2 (en) Pressure sensor and method of manufacturing the same
JPH06273442A (en) Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor
JP2007057455A (en) Pressure sensor and manufacturing method thereof
JPS63175482A (en) Pressure sensor
JP2006208135A (en) Pressure sensor and its manufacturing method
JP2000261002A (en) Small-sized electronic component and its manufacture
JPH07218365A (en) Semiconductor pressure sensor and manufacture thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees