JP3605714B2 - Activated carbon fiber molded body - Google Patents
Activated carbon fiber molded body Download PDFInfo
- Publication number
- JP3605714B2 JP3605714B2 JP07033899A JP7033899A JP3605714B2 JP 3605714 B2 JP3605714 B2 JP 3605714B2 JP 07033899 A JP07033899 A JP 07033899A JP 7033899 A JP7033899 A JP 7033899A JP 3605714 B2 JP3605714 B2 JP 3605714B2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- carbon fiber
- sheet
- fiber
- molded article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 93
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 34
- 239000000835 fiber Substances 0.000 claims description 29
- 239000011162 core material Substances 0.000 claims description 26
- 239000011230 binding agent Substances 0.000 claims description 18
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 15
- 239000003546 flue gas Substances 0.000 claims description 15
- -1 polyethylene Polymers 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 10
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 7
- 229920000690 Tyvek Polymers 0.000 claims description 6
- 239000003365 glass fiber Substances 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 5
- 229920000573 polyethylene Polymers 0.000 claims description 5
- 229920001155 polypropylene Polymers 0.000 claims description 5
- 238000001179 sorption measurement Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000010030 laminating Methods 0.000 claims description 3
- 229920000728 polyester Polymers 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 3
- 230000004927 fusion Effects 0.000 claims description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 24
- 239000010410 layer Substances 0.000 description 16
- 239000007789 gas Substances 0.000 description 13
- 238000006477 desulfuration reaction Methods 0.000 description 11
- 230000023556 desulfurization Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 229920005594 polymer fiber Polymers 0.000 description 8
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 8
- 229910052815 sulfur oxide Inorganic materials 0.000 description 8
- 239000012784 inorganic fiber Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000000779 smoke Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
- Manufacturing Of Multi-Layer Textile Fabrics (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Laminated Bodies (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ボイラー等の排煙中の窒素酸化物、硫黄酸化物等の有害物質の除去用として好適な活性炭素繊維成型体に関する。
【0002】
【従来の技術】
従来、活性炭法による排煙処理として、例えば、特開昭55−8880号には、粒状活性炭及びペレット状活性炭に処理ガスを透過接触させ、窒素酸化物、硫黄酸化物等の有害成分を吸着除去する方法が記載されている。しかしながら、このような方法では、活性炭層を処理ガスが透過流通する際に、過大な圧力損失を生じ、それを補う大量の通風機動力を必要とし、その結果として設備の大型化・複雑化も避けられない。
【0003】
また、特開昭64−11626号には、圧力損失を低減する目的で活性炭素繊維を用いハニカム状の成型体を作り、これを用いて排煙中の窒素酸化物、硫黄酸化物等を処理する方法が提案されているが、活性炭素繊椎の通常の抄紙シートをそのまま用いるために、機械的強度が不十分で、耐熱性に乏しく、排煙中の水分の付着に弱い、等の問題点があった。さらに、この活性炭素繊維抄紙成型体には、ハニカムの内面に並行に処理ガスを流す場合、ハニカムを形成する活性炭素繊維の抄紙シートの極表面近傍のみしか吸着反応に寄与せず、高価な活性炭素繊維の大部分が利用されていないという問題点もあり、この場合、活性炭素繊維の有効利用度を向上させるべく、抄紙シートを薄くすると、機械的強度が低下し、抄紙や成型加工ができなかった。
【0004】
一方、特開平8−103632号には、ハニカム状の成型活性炭を用い、窒素酸化物、硫黄酸化物等の有害物質を除去する方法が記載されている。しかしながら、ここに記載の成型体は、粉末活性炭と結合剤を練合し、ハニカム状に成型し、炭化、賦活するために、成型後の機械的強度が弱く、又排煙処理に大量に用いるには高価な成型体であるという欠点がある。
【0005】
【発明が解決しようとする課題】
本発明の主な目的は、活性炭素繊維の有効ガス接触面積が増大しており、且つ機械的強度が向上している活性炭素繊維成型体を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、上記従来技術の問題点に鑑みて鋭意研究を重ねた結果、活性炭素繊維の抄紙シートと他材料の芯材シートとを組み合わせた特定構造の成型体が、活性炭素繊維の有効ガス接触面積が増大していること、機械的強度が向上していること、排煙処理において効率的な触媒ないし吸着体として機能すること、比較的容易に製作可能であること等を見出し、これに基づいて本発明を完成するに至った。
【0007】
即ち、本発明は、下記の活性炭素繊維成型体に係るものである。
【0008】
1.無機繊維及び高分子繊維の少なくとも一種からなる芯材シートと、該芯材シートの両面に密着せしめてなる活性炭素繊維抄紙シートとからなる三層積層構造であることを特徴とする活性炭素繊維成型体。
【0009】
2.活性炭素繊維抄紙シート中の活性炭素繊維が、繊維直径8〜20μm、繊維長0.1〜50mm、窒素吸着によるBET比表面積700〜2,500m2/gの範囲のものである上記1に記載の活性炭素繊維成型体。
【0010】
3.芯材シートが、ガラス繊維と高密度ポリエチレン繊維との複合シートであって、その密度が0.1〜0.8g/mlで、厚みが0.05〜3mmである上記1に記載の活性炭素繊維成型体。
【0011】
4.活性炭素繊維抄紙シートが、活性炭素繊維50〜95重量部と、ポリエチレン繊維、ポリエステル繊維及びポリプロピレン繊維の少なくとも一種のバインダー成分5〜50重量部とからなり、その密度が0.05〜0.3g/mlで、厚みが0.1〜2mmである上記1に記載の活性炭素繊維成型体。
【0012】
5.芯材シートと活性炭素繊維抄紙シートとを、加熱下で加圧プレスして、バインダー成分を熱融着させることにより密着せしめてなり、その厚みが0.25〜5mmである上記1に記載の活性炭素繊維成型体。
【0013】
6.芯材シート中の高分子繊維と活性炭素繊維シート中のバインダー成分とが、同一の高分子材料である上記5に記載の活性炭素繊維成型体。
【0014】
7.上記1に記載の活性炭素繊維成型体をコルゲート加工した波板状の成型体と平板状の成型体とを交互に積層させて多層構造としたことを特徴とする活性炭素繊維成型体。
【0015】
また、本発明は、上記1〜7のいずれかに記載の活性炭素繊維成型体を用いることを特徴とする排煙中の有害物質の除去方法にも係る。
【0016】
【発明の実施の形態】
以下、本発明について、更に詳細に説明する。
【0017】
本発明活性炭素繊維成型体における芯材シートは、無機繊維及び高分子繊維の少なくとも一種からなるものである。該シートは、無機繊維と高分子繊維の複合シートであるのが好ましいが、これらのいずれか一方からなるシートも使用可能である。
【0018】
原料として用いる無機繊雑と高分子繊維の種類には、特に制限が無く、排煙処理時の耐熱性、耐酸化性、機械的強度等を満たすものであれば良い。好適な無機繊維としては、シリカ繊維、アルミナ繊維、ガラスチョップドストランド等のガラス繊維等を挙げることができるが、価格の面でガラス繊維が最も好適である。また、好適な高分子繊維としては、高密度ポリエチレン繊維、ポリスチレン繊維、ポリプロピレン繊維等を挙げることができるが、機械的強度等の点から高密度ポリエチレン繊維が最も好適である。特に、上記ガラス繊維と高密度ポリエチレン繊維との複合シートを用いると、機械的強度、耐酸化性等の優れた芯材シートとなることから、好ましい。
【0019】
芯材シートは、常法に従って、成型して得ることができ、通常、その密度を0.1〜0.8g/ml程度に、厚みを0.05〜3mm程度にするのが好ましい。
【0020】
本発明活性炭素繊維成型体における活性炭素繊維抄紙シートは、通常、活性炭素繊維にバインダー成分を混合して抄紙することにより、得られる。
【0021】
原料として用いる活性炭素繊維の種類としては、特に制限はなく、ピッチ系、ポリアクリロニトリル系、フェノール系、セルロース系等の公知の活性炭素繊維をいずれも用いることができる。また、市販品を用いることができる。更に、活性炭素繊維には、必要に応じて、Ti、Cr、Mn、Fe、Co、Ni、Cu、V、Mo、W等の金属元素を担持させても良い。
【0022】
抄紙原料としての活性炭素繊維は、繊推直径が8〜20μm、繊維長が0.1〜50mm、窒素吸着によるBET比表面積が700〜2,500m2/gの範囲のものが適している。
【0023】
上記の活性炭素繊維は、通常、単独ではシート状に抄紙できないので、バインダー成分と混抄する。活性炭素繊推とバインダー成分との抄紙配合比は、通常、該繊維が50〜95重量部、バインダー成分が5〜50重量部の範囲内であるのが好ましい。バインダー成分としては、熱可塑性を有する高分子繊維のポリエチレン繊維、ポリエステル繊維、ポリプロピレン繊維等から選ばれる一種の繊維又は二種以上を含有する複合繊維等が好適である。無機質繊維を少量配合することも強度増加の観点から有効である。
【0024】
活性炭素繊維抄紙シートは、常法に従って、抄紙することによって、得ることができる。抄紙後の密度が0.05〜0.3g/ml程度、厚みが0.1〜2mm程度であれば、市販の抄紙機で製作可能である。
【0025】
本発明の活性炭素繊維成型体は、無機繊維及び高分子繊維の少なくとも一種からなる芯材シートと、該芯材シートの両面に密着せしめてなる活性炭素繊維抄紙シートとからなる三層積層構造とすることに最大の特徴を有しており、かかる積層構造に基づいて、活性炭素繊維の有効ガス接触面積の増大や、機械的強度の向上等の効果が得られる。
【0026】
図1に、本発明活性炭素繊維成型体の断面図を示す。図1に示される通り、本発明成型体は、芯材シートの表裏両面に活性炭素繊維抄紙シートを密着せしめてなる三層積層構造を有している。
【0027】
本発明活性炭素繊維成型体は、通常、上記芯材シートを上記活性炭素繊維抄紙シートで挟み、加熱下で加圧プレスして、バインダー成分を熱融着させ、密着させることにより、容易に製造でき、目的の三層積層構造とすることができる。
【0028】
ここで、芯材シート中の高分子繊維と活性炭素繊維抄紙シート中のバインダー成分とを同一の高分子材料とすることにより、三層積層時に同一材科の熱融着が起こり、強度をより高めた活性炭素繊維成型体を得ることができる。
【0029】
上記加熱温度は、バインダー成分の種類により変動するが、通常、120〜200℃程度であるのが適当である。また、圧力は、通常、2〜10kgf/cm2程度とするのが適当である。
【0030】
本発明成型体の全体の厚みは、通常、0.25〜5mm程度とするのが適当である。また、中間層の芯材シートの厚みは、0.05〜3mm程度であり、外面層の活性炭素繊維抄紙シートの厚みは0.1〜2mm程度であるのが適当である。
【0031】
本発明の上記三層積層構造の活性炭素繊維成型体は、段ボール紙を製造するコルゲート加工機により、波板状にコルゲート加工することができ、その加工後に波板形状を強固に保持することができる。また、このコルゲート加工した波板状成型体と加工していない平板状成型体を、交互に積層させることにより、多層構造の活性炭素繊維成型体とすることができる。かかる多層構造活性炭素繊維成型体は、排煙等の各種ガス処理用として極めて好適に使用できる。
【0032】
図2に、多層構造活性炭素繊維成型体の斜視図を示す。図2に示される通り、多層構造活性炭素繊維成型体は、本発明の三層積層構造の活性炭素繊維成型体をコルゲート加工した波板状成型体と平板状成型体とが交互に積層されてなっている。
【0033】
本発明の活性炭素繊維成型体は、芯材シートの表裏両面に活性炭素繊維抄紙シートを密着せしめてなる三層積層構造を有することにより、活性炭素繊維抄紙シートのみの成型体よりも機械的強度が飛躍的に向上しており、又耐熱性、耐酸化性等も向上している。更に、コルゲート等の形状加工後の形状保持性も大幅に向上している。
【0034】
本発明活性炭素繊維成型体、特に多層構造の成型体は、有効ガス接触面積が大きく増大しており、しかも機械的強度が高いので、高効率で排煙中の窒素酸化物、硫黄酸化物等の有害物質を除去することができる。従って、重油、石炭等の燃焼機器(ボイラー、火力発電所等)、化学品製造プラント、金属処理工場、焼結工場、製紙工場等から発生する排煙中の窒素酸化物、硫黄酸化物等の有害物質の除去に好適に利用することができる。ここで、処理する排煙が水分を含んでいても構わない。また、この際の反応処理温度は、特に限定されないが、例えば大気温度〜150℃程度の広い温度範囲が適用できる。
【0035】
【実施例】
以下、実施例及び比較例を挙げて、本発明をより一層具体的に説明する。
【0036】
実施例1〜3
活性炭素繊維としてピッチ系活性炭素繊維(「品名:15A」、アドール(株)製、繊維直径15μm、繊維長50〜500mm、窒素吸着によるBET比表面積1,500m2/g)を用い、これを長さ3mmのチョップにカットしたものを、各50、80、95重量部、これに対応するバインダー成分として、ポリエチレンとポリプロピレンの複合繊維を各50、20、5重量部混合し、湿式抄紙機を用い、厚みが0.3mm、密度0.2g/mlの抄紙シート3種を製作した。
【0037】
また、ガラス繊維50重量部、ポリエチレン繊維50重量部から成り、厚み0.45mm、密度0.50g/mlの複合繊維シートを製作し、芯材シートとした。前記活性炭素繊維抄紙シートをこの芯材シートの表裏に張り合わす形で、温度170℃下で圧力5kgf/cm2でプレスし、厚みが1.0mmの三層積層活性炭素繊維成型体3種を得た。これらの成型体の引張強度と曲げ強度を測定した。
【0038】
比較例1〜3
実施例1〜3と同じ活性炭素繊維チョッブを用い、バインダー成分も同一のものを同混合比率で用い、厚み1.0mm、密度0.2g/mlの抄紙シート3種を製作した。これらのシートである成型体の引張強度と曲げ強度を測定した。
【0039】
表1に実施例1〜3と比較例1〜3の強度試験結果を示す。
【0040】
【表1】
【0041】
表1に示す通り、実施例1〜3の芯材シートを中間層とする本発明活性炭素繊維成型体は、芯材シートを欠く従来品に相当する比較品に比べ、機械的強度が大幅に向上していることが判る。
【0042】
また、実施例1〜3の成型体により、表面層である抄紙シートの活性炭素繊維の混合比が95%まで高められた成型体を実用に供し得ることが判る。
【0043】
更に、これらの成型体を、段ボール加工に用いるコルゲート加工機に通し、A段と呼ばれるピッチ7mm、山高さ5mmの波板状に加工した際に、実施例1〜3の成型体はその形状を強固に保持したのに対し、比較例1〜3のシートは時間が経つとその形状が崩れた。
【0044】
実施例4〜6
実施例1〜3で得られた活性炭素繊維成型体を模凝排煙脱硫反応に用い、各々の脱硫性能を調べた。脱硫反応は、入口組成でSO2=1,000ppm、02=5vol%、水分10vol%及び残部N2からなるガスを用いた。また、装置として内径20mmの固定床流通式装置を用い、成型体中の活性炭素重量当たり0.0025g・min/mlとなるように上記ガスを流通させた。反応温度は30℃とした。装置出口ガス中のSO2濃度を非分散赤外式SO2計により測定し、脱硫率を求めた。脱硫反応開始72時間後の結果を表2に示す。
【0045】
比較例4〜6
比較例1〜3の活性炭素繊維シートを上記と同様の方法で脱硫反応に用い、脱硫率を求めた。脱硫反応開始72時問後の結果を表2に示す。
【0046】
【表2】
【0047】
表2に示す通り、成型体中の活性炭素繊維の重量を一定とし、脱硫反応試験を行った場合、実施例1〜3の本発明活性炭素繊維成型体の方が、比較例4〜6の従来品の抄紙シートに比べ、脱硫性能が向上していることが判る。
【0048】
これは、従来品の抄紙シートではその極表面近傍のみしか脱硫反応に寄与せず、シート厚み方向内部の活性炭素繊維が無駄になっており、一方本発明の活性炭素繊椎成型体ではその表面のみに薄い活性炭素繊椎層が積層しており、活性炭素繊維の有効利用度が大きく向上していることによる。従って、本発明成型体によれば、活性炭素繊維単位重量当たりの処理ガス量が大きくとれ、効率的な排煙処理が行える。
【0049】
【発明の効果】
本発明の活性炭素繊維抄紙成型体によれば、芯材シートの両面に活性炭素繊維抄紙シートを密着せしめた特定の三層積層構造であることに基づいて、活性炭素繊維の有効ガス接触面積が増大していること、機械的強度が向上していること、排煙処理において効率的な触媒ないし吸着体として機能すること、比較的容易に製作可能であること等の顕著な効果が得られる。
【0050】
従って、本発明の成型体においては、ボイラー等の排煙中の窒素酸化物、硫黄酸化物等の有害物質を除去する過酷な条件において必要とされる機械的強度、耐熱性、耐酸化性等が従来技術に比べ大きく改善されており、高効率で排煙中の窒素酸化物、硫黄酸化物等の有害物質を除去することができる。また、コルゲート等の形状加工後の形状保持性も大幅に向上している。
【0051】
また、本発明の活性炭素繊維抄紙成型体は、成型体の表面層のみに薄く活性炭素繊維を積層していることにより、従来の活性炭素繊維抄紙成型体に比して、高価な活性炭素繊維の有効利用度が大きく向上しており、又機械的強度が十分であり成型加工も容易なため、少量の活性炭素繊維で効率的な排煙処理が行える。特に、多層構造活性炭素繊維成型体とすることにより、排煙中の有害物質を極めて高い効率で除去することができる。
【図面の簡単な説明】
【図1】図1は、本発明の活性炭素繊維成型体の断面図を示すものである。
【図2】図2は、本発明の多層構造活性炭素繊維成型体の斜視図を示すものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an activated carbon fiber molded product suitable for removing harmful substances such as nitrogen oxides and sulfur oxides in flue gas from boilers and the like.
[0002]
[Prior art]
Conventionally, as a flue gas treatment by the activated carbon method, for example, Japanese Patent Application Laid-Open No. 55-8880 discloses a method in which a treated gas is permeated into granular activated carbon and pelletized activated carbon to adsorb and remove harmful components such as nitrogen oxides and sulfur oxides. A method is described. However, in such a method, when the processing gas permeates and flows through the activated carbon layer, an excessive pressure loss is generated, and a large amount of ventilator power is required to compensate for the pressure loss. As a result, the equipment becomes larger and more complicated. Inevitable.
[0003]
Japanese Patent Application Laid-Open No. 64-11626 discloses a honeycomb-shaped molded body made of activated carbon fibers for the purpose of reducing pressure loss, which is used to treat nitrogen oxides, sulfur oxides and the like in flue gas. However, since a normal paper sheet made of activated carbon fiber is used as it is, problems such as insufficient mechanical strength, poor heat resistance, and weak adhesion of moisture during flue gas are required. There was a point. Furthermore, when a processing gas is flown in parallel with the inner surface of the honeycomb into the activated carbon fiber paper molded article, only the vicinity of the very surface of the paper sheet of the activated carbon fiber forming the honeycomb contributes to the adsorption reaction, and expensive activated carbon fiber is formed. There is also a problem that most of the carbon fiber is not used.In this case, if the papermaking sheet is made thinner in order to improve the effective utilization of the activated carbon fiber, the mechanical strength is reduced, and the papermaking or molding process can be performed. Did not.
[0004]
On the other hand, JP-A-8-103632 describes a method for removing harmful substances such as nitrogen oxides and sulfur oxides by using a honeycomb-shaped molded activated carbon. However, the molded body described here is obtained by kneading powdered activated carbon and a binder, molding into a honeycomb shape, and carbonizing and activating the material. Has the disadvantage of being an expensive molded body.
[0005]
[Problems to be solved by the invention]
A main object of the present invention is to provide an activated carbon fiber molded article having an increased effective gas contact area of activated carbon fibers and improved mechanical strength.
[0006]
[Means for Solving the Problems]
The inventor of the present invention has conducted intensive studies in view of the above-mentioned problems of the prior art, and as a result, a molded product having a specific structure in which a papermaking sheet of activated carbon fiber and a core material sheet of another material are combined is effective for activated carbon fiber. It has been found that the gas contact area is increased, the mechanical strength is improved, that it functions as an efficient catalyst or adsorbent in flue gas treatment, and that it can be manufactured relatively easily. Based on the above, the present invention has been completed.
[0007]
That is, the present invention relates to the following activated carbon fiber molded article.
[0008]
1. Activated carbon fiber molding characterized by a three-layer laminated structure comprising a core sheet made of at least one of inorganic fibers and polymer fibers and an activated carbon fiber papermaking sheet adhered to both sides of the core sheet. body.
[0009]
2. The activated carbon fiber in the activated carbon fiber papermaking sheet has a fiber diameter of 8 to 20 μm, a fiber length of 0.1 to 50 mm, and a BET specific surface area of 700 to 2,500 m 2 / g by nitrogen adsorption as described in 1 above. Activated carbon fiber molding.
[0010]
3. The activated carbon according to 1 above, wherein the core sheet is a composite sheet of glass fiber and high-density polyethylene fiber, the density of which is 0.1 to 0.8 g / ml, and the thickness of which is 0.05 to 3 mm. Fiber molding.
[0011]
4. The activated carbon fiber papermaking sheet is composed of 50 to 95 parts by weight of activated carbon fiber and 5 to 50 parts by weight of at least one kind of binder component of polyethylene fiber, polyester fiber and polypropylene fiber, and has a density of 0.05 to 0.3 g. The activated carbon fiber molded article according to the above item 1, wherein the thickness is 0.1 to 2 mm / ml.
[0012]
5. The core material sheet and the activated carbon fiber papermaking sheet are pressure-pressed under heating, and the binder component is adhered by heat-sealing, and the thickness thereof is 0.25 to 5 mm. Activated carbon fiber molded body.
[0013]
6. 6. The activated carbon fiber molded article according to the above item 5, wherein the polymer fiber in the core material sheet and the binder component in the activated carbon fiber sheet are the same polymer material.
[0014]
7. An activated carbon fiber molded article characterized in that a corrugated molded article obtained by corrugating the activated carbon fiber molded article described in 1 above and a flat molded article are alternately laminated to form a multilayer structure.
[0015]
The present invention also relates to a method for removing harmful substances in flue gas, characterized by using the activated carbon fiber molded product according to any one of the above 1 to 7.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0017]
The core sheet in the activated carbon fiber molded article of the present invention is made of at least one of inorganic fibers and polymer fibers. The sheet is preferably a composite sheet of inorganic fibers and polymer fibers, but a sheet composed of any one of them can also be used.
[0018]
There are no particular restrictions on the types of inorganic fibers and polymer fibers used as raw materials, and any materials may be used as long as they satisfy heat resistance, oxidation resistance, mechanical strength, and the like during smoke exhaust treatment. Examples of suitable inorganic fibers include silica fibers, alumina fibers, glass fibers such as glass chopped strands, and the like, and glass fibers are most preferable in terms of price. Suitable polymer fibers include high-density polyethylene fibers, polystyrene fibers, polypropylene fibers, and the like, and high-density polyethylene fibers are most preferable from the viewpoint of mechanical strength and the like. In particular, it is preferable to use a composite sheet of the above glass fibers and high-density polyethylene fibers, since a core material sheet having excellent mechanical strength, oxidation resistance and the like is obtained.
[0019]
The core material sheet can be obtained by molding according to a conventional method. Usually, it is preferable that the density is about 0.1 to 0.8 g / ml and the thickness is about 0.05 to 3 mm.
[0020]
The activated carbon fiber papermaking sheet in the activated carbon fiber molded article of the present invention is usually obtained by mixing an activated carbon fiber with a binder component and papermaking.
[0021]
The type of activated carbon fiber used as a raw material is not particularly limited, and any known activated carbon fiber such as pitch-based, polyacrylonitrile-based, phenol-based, and cellulose-based can be used. In addition, commercially available products can be used. Further, the activated carbon fiber may support a metal element such as Ti, Cr, Mn, Fe, Co, Ni, Cu, V, Mo, and W as needed.
[0022]
As the activated carbon fiber as a papermaking raw material, one having a fiber diameter of 8 to 20 μm, a fiber length of 0.1 to 50 mm, and a BET specific surface area by nitrogen adsorption of 700 to 2,500 m 2 / g is suitable.
[0023]
Since the above-mentioned activated carbon fiber cannot usually be made into a sheet by itself, it is mixed with a binder component. Generally, the papermaking compounding ratio of the activated carbon fiber to the binder component is preferably 50 to 95 parts by weight of the fiber and 5 to 50 parts by weight of the binder component. As the binder component, one kind of fiber selected from thermoplastic polymer polyethylene fiber, polyester fiber, polypropylene fiber and the like, or a composite fiber containing two or more kinds thereof is suitable. Mixing a small amount of inorganic fibers is also effective from the viewpoint of increasing strength.
[0024]
The activated carbon fiber papermaking sheet can be obtained by papermaking according to a conventional method. If the density after papermaking is about 0.05 to 0.3 g / ml and the thickness is about 0.1 to 2 mm, it can be manufactured with a commercially available paper machine.
[0025]
The activated carbon fiber molded article of the present invention has a three-layer laminated structure including a core sheet made of at least one of inorganic fibers and polymer fibers, and an activated carbon fiber papermaking sheet adhered to both sides of the core sheet. The most significant feature is that, based on such a laminated structure, effects such as an increase in the effective gas contact area of the activated carbon fiber and an improvement in mechanical strength can be obtained.
[0026]
FIG. 1 shows a sectional view of the activated carbon fiber molded article of the present invention. As shown in FIG. 1, the molded article of the present invention has a three-layer laminated structure in which activated carbon fiber papermaking sheets are adhered to both front and back surfaces of a core sheet.
[0027]
The activated carbon fiber molded article of the present invention is usually easily manufactured by sandwiching the core material sheet between the activated carbon fiber papermaking sheets, press-pressing under heating, heat-fusing the binder component, and bringing the binder component into close contact. Thus, a desired three-layer structure can be obtained.
[0028]
Here, by using the same polymer material as the polymer fiber in the core material sheet and the binder component in the activated carbon fiber papermaking sheet, heat fusion of the same material occurs at the time of three-layer lamination, thereby increasing the strength. An enhanced activated carbon fiber molded article can be obtained.
[0029]
The heating temperature varies depending on the type of the binder component, but is usually preferably about 120 to 200 ° C. Further, the pressure is usually suitably about 2 to 10 kgf / cm 2 .
[0030]
Usually, the overall thickness of the molded article of the present invention is suitably about 0.25 to 5 mm. The thickness of the core sheet of the intermediate layer is suitably about 0.05 to 3 mm, and the thickness of the activated carbon fiber papermaking sheet of the outer layer is suitably about 0.1 to 2 mm.
[0031]
The activated carbon fiber molded body of the three-layer laminated structure of the present invention can be corrugated into a corrugated sheet shape by a corrugating machine for producing corrugated paper, and the corrugated sheet shape can be firmly held after the processing. it can. In addition, by alternately laminating the corrugated corrugated molded body and the unprocessed flat molded body, an activated carbon fiber molded body having a multilayer structure can be obtained. Such a multilayer activated carbon fiber molded article can be used very suitably for treating various gases such as smoke exhaust.
[0032]
FIG. 2 shows a perspective view of a multilayered activated carbon fiber molded article. As shown in FIG. 2, the activated carbon fiber molded article having a multilayer structure is formed by alternately laminating a corrugated molded article and a flat molded article obtained by corrugating the activated carbon fiber molded article having a three-layer laminated structure of the present invention. Has become.
[0033]
The activated carbon fiber molded article of the present invention has a three-layer laminated structure in which the activated carbon fiber papermaking sheets are brought into close contact with both the front and back surfaces of the core material sheet, so that the mechanical strength is higher than that of the activated carbon fiber papermaking sheet alone. Are dramatically improved, and heat resistance, oxidation resistance, etc. are also improved. Furthermore, the shape retention after shape processing of a corrugate or the like is greatly improved.
[0034]
The activated carbon fiber molded article of the present invention, particularly a molded article having a multilayer structure, has a large effective gas contact area and a high mechanical strength, so that nitrogen oxides and sulfur oxides in flue gas can be produced with high efficiency. Harmful substances can be removed. Therefore, nitrogen oxides, sulfur oxides, etc. in flue gas generated from combustion equipment (boilers, thermal power plants, etc.) for heavy oil, coal, etc., chemical manufacturing plants, metal processing plants, sintering plants, paper mills, etc. It can be suitably used for removing harmful substances. Here, the flue gas to be treated may contain moisture. The reaction temperature at this time is not particularly limited, but a wide temperature range from, for example, atmospheric temperature to about 150 ° C. can be applied.
[0035]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0036]
Examples 1-3
A pitch-based activated carbon fiber (“Product name: 15A”, manufactured by Adol Co., Ltd., fiber diameter 15 μm, fiber length 50 to 500 mm, BET specific surface area by nitrogen adsorption 1,500 m 2 / g) was used as the activated carbon fiber. 50, 80, and 95 parts by weight of chopped pieces each having a length of 3 mm were mixed with 50, 20, and 5 parts by weight of a composite fiber of polyethylene and polypropylene as a corresponding binder component, and a wet paper machine was prepared. Three types of papermaking sheets having a thickness of 0.3 mm and a density of 0.2 g / ml were produced.
[0037]
Further, a composite fiber sheet composed of 50 parts by weight of glass fiber and 50 parts by weight of polyethylene fiber and having a thickness of 0.45 mm and a density of 0.50 g / ml was produced and used as a core sheet. The activated carbon fiber papermaking sheet is bonded to the front and back of the core material sheet and pressed at a temperature of 170 ° C. under a pressure of 5 kgf / cm 2 to form three types of three-layer laminated activated carbon fiber molded products having a thickness of 1.0 mm. Obtained. The tensile strength and bending strength of these molded bodies were measured.
[0038]
Comparative Examples 1-3
Three types of papermaking sheets having a thickness of 1.0 mm and a density of 0.2 g / ml were produced using the same activated carbon fiber chops as in Examples 1 to 3 and the same binder component at the same mixing ratio. The tensile strength and flexural strength of these molded sheets were measured.
[0039]
Table 1 shows the strength test results of Examples 1 to 3 and Comparative Examples 1 to 3.
[0040]
[Table 1]
[0041]
As shown in Table 1, the activated carbon fiber molded article of the present invention using the core material sheets of Examples 1 to 3 as the intermediate layer has significantly higher mechanical strength than the comparative product corresponding to the conventional product lacking the core material sheet. You can see that it has improved.
[0042]
In addition, it can be seen that the molded articles of Examples 1 to 3 can be put to practical use with molded articles in which the mixing ratio of the activated carbon fibers of the papermaking sheet as the surface layer is increased to 95%.
[0043]
Furthermore, when these molded products were passed through a corrugating machine used for corrugated board processing and processed into a corrugated plate having a pitch of 7 mm and a peak height of 5 mm called A-stage, the molded products of Examples 1 to 3 While the sheet was held firmly, the sheets of Comparative Examples 1 to 3 collapsed in shape over time.
[0044]
Examples 4 to 6
The activated carbon fiber molded bodies obtained in Examples 1 to 3 were used in a model flue gas desulfurization reaction, and the desulfurization performance of each was examined. In the desulfurization reaction, a gas composed of SO 2 = 1,000 ppm, O 2 = 5 vol%, water 10 vol%, and the balance N 2 was used in the inlet composition. In addition, a fixed bed flow type apparatus having an inner diameter of 20 mm was used as the apparatus, and the above gas was flowed at a rate of 0.0025 g · min / ml per activated carbon weight in the molded body. The reaction temperature was 30 ° C. The SO 2 concentration in the gas at the outlet of the device was measured by a non-dispersive infrared SO 2 meter, and the desulfurization rate was determined. Table 2 shows the results 72 hours after the start of the desulfurization reaction.
[0045]
Comparative Examples 4 to 6
The activated carbon fiber sheets of Comparative Examples 1 to 3 were used in a desulfurization reaction in the same manner as described above, and the desulfurization rate was determined. Table 2 shows the results 72 hours after the start of the desulfurization reaction.
[0046]
[Table 2]
[0047]
As shown in Table 2, when the weight of the activated carbon fiber in the molded article was kept constant and the desulfurization reaction test was performed, the activated carbon fiber molded articles of the present invention of Examples 1 to 3 were better than those of Comparative Examples 4 to 6. It can be seen that the desulfurization performance is improved as compared with the conventional papermaking sheet.
[0048]
This is because the conventional papermaking sheet only contributes to the desulfurization reaction only in the vicinity of the very surface, and the activated carbon fibers inside the sheet thickness direction are wasted. This is because the thin activated carbon fiber vertebral layer is laminated only on this layer, and the effective utilization of activated carbon fibers is greatly improved. Therefore, according to the molded article of the present invention, the amount of processing gas per unit weight of activated carbon fiber can be increased, and efficient smoke exhaust processing can be performed.
[0049]
【The invention's effect】
According to the activated carbon fiber papermaking molded article of the present invention, based on the specific three-layer laminated structure in which the activated carbon fiber papermaking sheets are adhered to both sides of the core material sheet, the effective gas contact area of the activated carbon fibers is Remarkable effects are obtained, such as increasing, mechanical strength is improved, functioning as an efficient catalyst or adsorbent in flue gas treatment, and being relatively easy to manufacture.
[0050]
Therefore, in the molded article of the present invention, mechanical strength, heat resistance, oxidation resistance, etc. required under severe conditions for removing harmful substances such as nitrogen oxides and sulfur oxides in flue gas from boilers and the like are required. Is greatly improved as compared with the prior art, and it is possible to remove harmful substances such as nitrogen oxides and sulfur oxides in flue gas with high efficiency. In addition, the shape retention after shape processing of corrugates and the like is also greatly improved.
[0051]
In addition, the activated carbon fiber paper molded article of the present invention has a thinner activated carbon fiber only on the surface layer of the molded article, so that the activated carbon fiber paper molded article is more expensive than the conventional activated carbon fiber paper molded article. The effective utilization of the carbon is greatly improved, and the mechanical strength is sufficient and the molding process is easy, so that a small amount of activated carbon fiber can efficiently perform the smoke exhaust treatment. In particular, harmful substances in flue gas can be removed with extremely high efficiency by forming a multi-layered activated carbon fiber molded body.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an activated carbon fiber molded article of the present invention.
FIG. 2 is a perspective view of a multilayered activated carbon fiber molded article of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07033899A JP3605714B2 (en) | 1999-03-16 | 1999-03-16 | Activated carbon fiber molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07033899A JP3605714B2 (en) | 1999-03-16 | 1999-03-16 | Activated carbon fiber molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000263678A JP2000263678A (en) | 2000-09-26 |
JP3605714B2 true JP3605714B2 (en) | 2004-12-22 |
Family
ID=13428543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07033899A Expired - Fee Related JP3605714B2 (en) | 1999-03-16 | 1999-03-16 | Activated carbon fiber molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3605714B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003334423A (en) * | 2002-05-15 | 2003-11-25 | Mitsubishi Heavy Ind Ltd | Exhaust gas treatment apparatus |
FR2845621B1 (en) * | 2002-10-10 | 2004-12-10 | Ahlstrom Research & Services | IMPROVED FILTER MEDIA AND USE OF SAID FILTER MEDIA FOR DEPOLLUTION OF LAGOONS |
JP4657583B2 (en) * | 2003-03-27 | 2011-03-23 | 大阪瓦斯株式会社 | Single-stage honeycomb sheet and manufacturing method thereof |
JP2005205291A (en) * | 2004-01-21 | 2005-08-04 | Mitsubishi Heavy Ind Ltd | Activated carbon fiber sheet and removal method for harmful substance in flue gas or apparatus |
CN103611418B (en) * | 2013-11-26 | 2015-07-22 | 中国化学工业桂林工程有限公司 | Joint treatment device and method for organic waste gas |
KR102087513B1 (en) * | 2018-07-30 | 2020-03-10 | 한국섬유개발연구원 | Multi-Layer Wet-Laid Non Woven Fabric for Pressure Sensor |
JP7405507B2 (en) * | 2019-01-09 | 2023-12-26 | イビデン株式会社 | Sulfur-based gas adsorption structure and assembled battery |
-
1999
- 1999-03-16 JP JP07033899A patent/JP3605714B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000263678A (en) | 2000-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5194414A (en) | Method of manufacturing a gas absorbing element or a catalyst carrier having a honeycomb structure | |
US7615194B2 (en) | Purification composition and filter for ozone-containing exhaust gas | |
JPH04197441A (en) | Adsorbent | |
JPS63310636A (en) | Production of element for adsorbing gas of very low concentration | |
JPH01293136A (en) | Honeycomb structural body carrying activated carbon and production thereof | |
JP3605714B2 (en) | Activated carbon fiber molded body | |
CN1698949A (en) | Filtering material for absorption purification | |
EP1771616B1 (en) | Lofted composite with enhanced air permeability | |
EP0774295B1 (en) | Packing element with high adsorption capacity for effluent gas purification device | |
JP4819367B2 (en) | Manufacturing method of air filter sheet | |
JP4657583B2 (en) | Single-stage honeycomb sheet and manufacturing method thereof | |
KR20050026065A (en) | Filter element, filter and method of using and method of cleaning the smae | |
CN207962937U (en) | A kind of corrugation air cleaning unit | |
JP2002177718A (en) | Filter medium for air filter and air filter unit | |
JP2007014880A (en) | Adsorbing sheet, adsorbing element and production method thereof | |
JP4401670B2 (en) | Molded article for desulfurization and method for producing the same | |
RU2200615C2 (en) | Aerosol filter and filtering material | |
CN214050779U (en) | Air filter | |
JPH09267009A (en) | Carbon fiber nonwoven fabric and its production | |
JP4191907B2 (en) | Metal honeycomb carrier, metal honeycomb carrier manufacturing method, and metal honeycomb basic structure manufacturing method | |
CN214862342U (en) | Filter membrane | |
JPH04225762A (en) | Adsorption type heat pump | |
JP4191906B2 (en) | Metal honeycomb catalyst unit and manufacturing method thereof | |
JPS60161713A (en) | Filter and its preparation | |
JPS5827618A (en) | Preparation of gas absorbing element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040607 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040812 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040921 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111015 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121015 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121015 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131015 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |