JP3605477B2 - Manufacturing method of conductive resin molded product - Google Patents

Manufacturing method of conductive resin molded product Download PDF

Info

Publication number
JP3605477B2
JP3605477B2 JP21005396A JP21005396A JP3605477B2 JP 3605477 B2 JP3605477 B2 JP 3605477B2 JP 21005396 A JP21005396 A JP 21005396A JP 21005396 A JP21005396 A JP 21005396A JP 3605477 B2 JP3605477 B2 JP 3605477B2
Authority
JP
Japan
Prior art keywords
molded product
conductive resin
shear rate
mold
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21005396A
Other languages
Japanese (ja)
Other versions
JPH1044205A (en
Inventor
稔美 山仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Technos Corp
Original Assignee
Riken Technos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Technos Corp filed Critical Riken Technos Corp
Priority to JP21005396A priority Critical patent/JP3605477B2/en
Publication of JPH1044205A publication Critical patent/JPH1044205A/en
Application granted granted Critical
Publication of JP3605477B2 publication Critical patent/JP3605477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/766Measuring, controlling or regulating the setting or resetting of moulding conditions, e.g. before starting a cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7693Measuring, controlling or regulating using rheological models of the material in the mould, e.g. finite elements method

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は導電性樹脂成形品の製造方法に関するものであり、さらに詳しくは本発明は、射出成形品の表面固有抵抗値を、成形品形状にとらわれずにあらかじめ把握することで、的確に射出成形条件を設定することができ、しかも導電性樹脂の配合設計や金型製作等に係るコストを大幅に減少することのできる導電性樹脂成形品の製造方法に関するものである。
【0002】
【従来の技術】
通常、導電性樹脂は、ポリ塩化ビニル樹脂等にカーボンブラック、炭素繊維、金属粉、酸化亜鉛等の導電性を有する添加物を数〜数十重量%添加して製造されている。
【0003】
しかしながら、このような導電性樹脂を加熱溶融後、金型内に高圧で射出して製造された成形品は、表面固有抵抗値が10〜1014Ω/sq.の範囲で大きく変動してしまうという欠点がある。これはカーボンブラック等の導電性添加物に抵抗値が大きく変化する変極点が存在するからである。したがって、導電性樹脂の射出成形では、射出成形条件や金型寸法が僅かに異なっても、成形品の表面固有抵抗値が大きく変動してしまうものであった。
【0004】
上記のような理由から、従来においては数種類の導電性樹脂を用いて射出成形して成形品の抵抗値を測定し、この抵抗値が所望の値になるように導電性樹脂の配合設計を変更したり、金型の試作等を数回繰り返さなければならなかった。しかし、このような方法を行っても成形品の金型ゲート付近と流動末端付近との抵抗値が大きく異なったり、樹脂の収縮率が変化して設計通りの成形品が得られ難いなどの問題点がある。
【0005】
【発明が解決しようとする課題】
したがって本発明の目的は、射出成形品の表面固有抵抗値を成形品形状にとらわれずにあらかじめ把握することで、的確に射出成形条件を設定することができ、しかも導電性樹脂の配合設計や金型製作等に係るコストを大幅に減少することのできる導電性樹脂成形品の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は鋭意検討の結果、導電性樹脂の成形品の表面固有抵抗値は、金型内のせん断速度の分布に大きく影響するという驚くべき事実を見いだし、上記のような従来の課題を解決することができた。
【0007】
すなわち本発明は、導電性樹脂を金型に射出して所望の形状の成形品を得る導電性樹脂成形品の製造方法において、
(i)金型内の導電性樹脂の射出成形流動解析を行い、金型内の任意場所における樹脂のせん断速度を予測し、
(ii)これとは別に導電性樹脂のせん断速度と成形品の表面固有抵抗値との関係を決定し、両者の関数式を誘導しておき、
(iii)前記関数式を用いて、予測されたせん断速度から成形品の任意場所の表面固有抵抗値を算出し、
(iv)前記(iii)のステップで算出される表面固有抵抗値が所望の値になるように、予測されるせん断速度を射出成形条件および/または金型形状の設定により調節することを特徴とする導電性樹脂成形品の製造方法を提供するものである。
【0008】
また本発明は、ステップ(iv)において、射出成形条件としてゲート位置が採用される前記の導電性樹脂成形品の製造方法を提供するものである。
【0009】
さらに本発明は、成形品がICトレーである前記の導電性樹脂成形品の製造方法を提供するものである。
【0010】
なお、従来技術において、射出成形流動解析(CAE)でせん断速度分布を予測するシステムは存在するが、せん断速度が成形品の表面固有抵抗値に影響を及ぼすという事実は全く知られていなかった。
【0011】
以下、本発明をさらに詳細に説明する。
上記のように本発明は、導電性樹脂を射出成形して得られる成形品の表面固有抵抗値は、金型内の導電性樹脂のせん断速度と特定の相関関係を有することを見いだしたことに基づいている。
【0012】
図1は、その相関関係を示すためのグラフである。図1において、縦軸を表面固有抵抗値の対数、横軸をせん断速度の対数とした場合、両者に著しい相関関係が存在することが分かる。したがって特定の関数式を誘導することができる。なお、図1のグラフを導くための実験の詳細は、下記実施例に記載した。
【0013】
金型内の導電性樹脂のせん断速度から成形品の表面固有抵抗値が導かれることにより、様々な有利な点が提供される。例えばICトレーは、表面固有抵抗値が一定範囲、例えば単位面積あたり10〜10Ωであることが要求される。抵抗値がこの範囲外ではICに悪影響を及ぼすことが知られている。上記のようにカーボンブラック等の導電性添加物には、抵抗値が大きく変化する変極点が存在し、例えばICトレーの表面固有抵抗値を所望の範囲にすることは極めて困難であった。本発明によれば、せん断速度を予測することによってのみ、成形品の表面固有抵抗値を制御することができるため、このような従来の課題は完全に解決される。
【0014】
せん断速度の予測は、公知の射出成形流動解析(CAE)により行うことができる。この方法は、溶融した樹脂の金型内への充填工程における流動状態を、コンピューターシミュレーションによって予測するものである。一般的に、得られる成形品の形状を多数の微小要素に分割し、各要素ごとにせん断速度を予測することができるため、結果として成形品全体の任意場所における予測せん断速度が得られる。
【0015】
予測されるせん断速度と表面固有抵抗値との間の相関関係、すなわち関数式は、複数回以上の実験を行いデータベースを作成し、このデータベースから求めることが望ましい。
例えば射出成形条件として、少なくとも射出速度は3水準以上変化させ、成形品肉厚は2種類以上、例えば1mmおよび3mmの2種類以上とし、その他にも考えられる様々な条件、例えば射出圧力、保持圧力、射出・保圧時間、冷却時間、金型温度、樹脂温度、ゲート種類、ゲート寸法、ゲート数、ゲート位置を変化させ、それぞれの予測されたせん断速度に対応する表面固有抵抗値を調査し、データベースを作成することが望ましい。中でもゲート数および位置の変更が、せん断速度の制御に好適である。
【0016】
コンピューターシミュレーションにより予測されるせん断速度が、所望の表面固有抵抗値に対応するように、金型形状、射出成形条件若しくは導電性樹脂グレードを適宜決定すれば、所望の表面固有抵抗値を有する成形品が得られることになる。
【0017】
なお、コンピューターシミュレーションが予測するせん断速度には、しばしば誤差が生じるので、その場合にはデータベースを補正する必要がある。
例えば、L/tバーフローテストピースを用い、コンピューターシミュレーションにより樹脂の射出圧力と流動距離との関係を予測し、関数式を誘導する。これとは別に、実測により樹脂の射出圧力と流動距離との関係を調査する。同じ射出圧力において、仮にコンピューターシミュレーションのほうが実測よりも樹脂の流動距離が常に大きかった場合、予測されるせん断速度は実際よりも高い値になる。したがってこの場合は、ゲートまでの距離を考慮しながら、せん断速度を予測される値よりも低く補正する必要がある。
【0018】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれらの例に限定されるものではない。
(実施例1)
コンピューターシミュレーションにより予測されたせん断速度と得られた成形品の表面固有抵抗値との間に、著しい相関関係が存在することを示す実験を行った。
幅40mm×長さ200mm、肉厚2mmまたは5mmの成形品が得られるような金型を作製し、この金型内における導電性樹脂のせん断速度の分布をコンピューターシミュレーションにより予測した。このときの射出成形条件は、射出速度10〜100mm/秒(10mm/秒ごと)、射出圧力1800kg/cm、保持圧力700kg/cm、射出・保圧時間6秒、冷却時間25秒、金型温度50℃、樹脂温度230℃、250℃、ゲート種類はフィルム、ゲート寸法1mm、ゲート数1個であった。
およそ10〜10(1/s)の範囲の予測されたせん断速度の成形品の各ポイントにおいて、導電性塗料を幅1cm×長さ5mmの形状で塗布し、2点間10mmの表面固有抵抗値を測定した。
得られた結果を図1に示す。図1において、四角形のプロットは肉厚5mmの成形品であり、星形のプロットは肉厚2mmの成形品である。
なお、使用した導電性樹脂は、理研ビニル工業社製、導電PP樹脂、商品名ESP9935Rである[組成はポリプロピレン(PN670、トクソー社製)50重量部、無機充填剤(マイカ、クラレ社製)40重量部、カーボンブラック(ケッチェンブラックEC、ライオン社製)10重量部である]。
図1から明らかなように、コンピューターシミュレーションにより予測されたせん断速度と得られた成形品の表面固有抵抗値との間に、著しい相関関係が存在することが分かる。
【0019】
(実施例2)
図2に示すような形状の成形品を射出成形により製造した。成形品は、幅40mm×長さ200mm、肉厚2mmの短冊状である。射出成形条件は、射出速度10mm/秒、射出圧力1800kg/cm、保持圧力800kg/cm、射出・保圧時間6秒、冷却時間25秒、金型温度120℃、樹脂温度330℃、ゲート種類はフィルム、ゲート寸法1mmおよび2mm、ゲート数1個とした。
次に導電性塗料を、幅1cm×長さ5mmの形状で図2のように塗布し、2点間10mmの表面固有抵抗値を測定した。測定箇所は、ゲートから20mm、100mm、180mmの3箇所とした。
【0020】
上記の実験を、射出条件、すなわち射出速度10〜100mm/秒(10mm/秒ごと)、樹脂温度310、330、350℃、ゲート寸法0.5、1.0、2.0mmにそれぞれ変更して複数回繰り返した。
得られた結果を図3に示す。図3によれば、コンピューターシミュレーションにより予測されたせん断速度(横軸)と、測定された表面固有抵抗値(縦軸)との間にはバラツキが見られたので(○印のプロット)、次のようにして補正を行った。
【0021】
図4に示すようなL/tバーフローテストピースを用い、コンピューターシミュレーションにより樹脂の射出圧力と流動距離との関係を予測し、関数式を誘導した。これとは別に、実測により樹脂の射出圧力と流動距離との関係を調査した。調査結果を図5に示す。図5によれば、同じ射出圧力において、常にコンピューターシミュレーションのほうが実測よりも樹脂の流動距離が大きかったことが分かる。なお、この実験に使用した導電性樹脂は、理研ビニル工業社製、導電PPE樹脂、商品名ESC9856Nである[組成は、PPE(ザイロンX9101、旭化成工業社製)90重量部およびカーボンブラック(ケッチェンブラックEC、ライオン社製)10重量部である]。
【0022】
図3において、各プロットは、次のような関数式で表される3つの領域、すなわちABCの3点により形成される三角形内に分布している。
【0023】
【数1】
Y=aX
Y=c;および
X=d
(式中、Yは表面固有抵抗値、Xは予測されたせん断速度、a、b、cおよびdは定数である)
【0024】
そして上記のように、同じ射出圧力において、常にコンピューターシミュレーションのほうが実測よりも樹脂の流動距離が大きかったので、直線ABが導電性樹脂の予測されたせん断速度と成形品の表面固有抵抗値との関係を示す関数式となる。
図3の場合、a=0.01、b=2、c=100、d=10000が算出される。
【0025】
さらに具体的に言えば、図3において、例えば予測されたせん断速度が10000(1/s)の場合、表面固有抵抗値は、1E+2〜1E+7Ω/sq.の5乗の範囲で分布が広がっている。しかしながら、上記のように図3および図4の結果から、予測されたせん断速度と成形品の表面固有抵抗値との関係を示す関数式は、直線ABであることが決定され得るので、前記5乗の範囲の分布は、直線ABに収束するように補正することができる。
【0026】
簡略的には例えば、せん断速度の値が低い測定箇所、例えばゲートから0以上20mm未満の場所は、予測されたせん断速度の値を修正する必要はなく、直線ABが用いられる。これは、図5によれば流動距離が短ければ予測されるせん断速度と実際のそれとの間に誤差が少ないと判断されるからである。
また測定箇所がゲートから20以上100mm未満の間にある時は、予測されたせん断速度の値を1桁小さくし、さらにゲートから100mm以上離れているときは、予測されたせん断速度の値を2桁小さくして直線ABの関数で表面固有抵抗値の決定を行う。ただし、せん断速度の桁数を下げて関数ABと交差した場合は、その位置で決定を行う。
【0027】
本発明において、予測されたせん断速度と表面固有抵抗値の領域の関数は、前記の3関数で限定されないことは言うまでもない。
【0028】
(実施例3)
図6に示されるICトレー金型に、本発明の方法を適用した。
まず比較実験として、ICトレーの金型内における導電性樹脂(理研ビニル工業製、導電性PPE樹脂、商品名ESC9856N)のせん断速度を考慮せずに射出成形を行った。得られたICトレーのA、BおよびCの場所の表面固有抵抗値は、それぞれAが106−7Ω/sq.、Bが103−4Ω/sq.、Cが106−7Ω/sq.であり、バラツキが認められた。
そこで、上記実施例2の手法を用い、予測されたせん断速度と表面固有抵抗値との間の関数式を誘導し、このICトレー金型内のA、BおよびCの場所のせん断速度がほぼ同じになるようにゲートの数および位置を図6に示されるように変更した。その結果、ICトレーのA、BおよびCの場所の表面固有抵抗値は、10Ω/sq.付近でほぼ一定の値になった。
【0029】
【発明の効果】
本発明によれば、射出成形品の表面固有抵抗値を、成形品形状にとらわれずにあらかじめ把握することで、的確に射出成形条件を設定することができ、しかも導電性樹脂の配合設計や金型製作等に係るコストを大幅に減少することのできる導電性樹脂成形品の製造方法が提供される。
【図面の簡単な説明】
【図1】実施例1において、予測されたせん断速度と得られた成形品の表面固有抵抗値との間に著しい相関関係が存在することを示す図である。
【図2】実施例2で製造した成形品を説明するための図である。
【図3】実施例2において、予測されたせん断速度と得られた成形品の表面固有抵抗値との関係を示す図である。
【図4】実施例2で使用したL/tバーフローテストピースを説明するための図である。
【図5】実施例2において、実測した導電性樹脂の流動性とCAEにより求めた流動性とを比較するための図である。
【図6】実施例3で製造したICトレー金型の略図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a conductive resin molded product, and more specifically, the present invention relates to a method for accurately performing injection molding by grasping in advance the surface specific resistance value of an injection molded product regardless of the shape of the molded product. The present invention relates to a method of manufacturing a conductive resin molded product that can set conditions and can significantly reduce the cost involved in designing and mixing a conductive resin and manufacturing a mold.
[0002]
[Prior art]
Usually, the conductive resin is produced by adding a conductive additive such as carbon black, carbon fiber, metal powder and zinc oxide to a polyvinyl chloride resin or the like in an amount of several to several tens of weight%.
[0003]
However, a molded product manufactured by injecting such a conductive resin into a mold at a high pressure after heating and melting the resin has a surface specific resistance of 10 2 to 10 14 Ω / sq. There is a drawback that it greatly varies in the range of. This is because the conductive additive such as carbon black has an inflection point at which the resistance value greatly changes. Therefore, in the injection molding of a conductive resin, even if the injection molding conditions and the mold dimensions are slightly different, the surface specific resistance value of the molded product greatly varies.
[0004]
For the reasons described above, conventionally, the resistance value of a molded product is measured by injection molding using several types of conductive resins, and the blending design of the conductive resin is changed so that this resistance value becomes a desired value. And the prototype of the mold had to be repeated several times. However, even with such a method, there are problems such as a large difference in the resistance value between the vicinity of the mold gate and the vicinity of the flow end of the molded product, and a difficulty in obtaining a molded product as designed due to a change in the resin shrinkage. There are points.
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to grasp the surface specific resistance value of an injection molded product in advance without depending on the shape of the molded product, so that it is possible to accurately set injection molding conditions, and furthermore, it is possible to design a conductive resin composition and a metal mold. It is an object of the present invention to provide a method of manufacturing a conductive resin molded product capable of greatly reducing costs related to mold production and the like.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the present inventor has found the surprising fact that the surface resistivity of a conductive resin molded article greatly affects the distribution of the shear rate in a mold, and has solved the above-mentioned conventional problems. We were able to.
[0007]
That is, the present invention relates to a method of manufacturing a conductive resin molded product, in which a conductive resin is injected into a mold to obtain a molded product having a desired shape,
(I) performing an injection molding flow analysis of the conductive resin in the mold, predicting a shear rate of the resin at an arbitrary position in the mold,
(Ii) Separately, the relationship between the shear rate of the conductive resin and the surface resistivity of the molded article is determined, and a functional equation of both is derived,
(Iii) calculating a surface specific resistance value at an arbitrary position of the molded article from the predicted shear rate by using the function formula;
(Iv) The predicted shear rate is adjusted by setting the injection molding conditions and / or the mold shape so that the surface resistivity value calculated in the step (iii) becomes a desired value. It is intended to provide a method for producing a conductive resin molded product.
[0008]
Further, the present invention provides a method for producing the above-mentioned conductive resin molded product, wherein in step (iv), a gate position is adopted as an injection molding condition.
[0009]
Further, the present invention provides a method for producing the above-mentioned conductive resin molded product, wherein the molded product is an IC tray.
[0010]
In the prior art, there is a system for predicting a shear rate distribution by injection molding flow analysis (CAE), but the fact that the shear rate affects the surface resistivity of a molded product has not been known at all.
[0011]
Hereinafter, the present invention will be described in more detail.
As described above, the present invention has found that the surface specific resistance value of a molded product obtained by injection-molding a conductive resin has a specific correlation with the shear rate of the conductive resin in the mold. Based on.
[0012]
FIG. 1 is a graph showing the correlation. In FIG. 1, when the vertical axis is the logarithm of the surface specific resistance value and the horizontal axis is the logarithm of the shear rate, it can be seen that there is a remarkable correlation between the two. Therefore, a specific functional expression can be derived. The details of the experiment for deriving the graph of FIG. 1 are described in the following Examples.
[0013]
Deriving the surface resistivity of the molded article from the shear rate of the conductive resin in the mold provides various advantages. For example, an IC tray is required to have a specific surface resistance value within a certain range, for example, 10 5 to 10 8 Ω per unit area. It is known that if the resistance value is outside this range, the IC will be adversely affected. As described above, the conductive additive such as carbon black has an inflection point at which the resistance value greatly changes. For example, it has been extremely difficult to set the surface specific resistance value of the IC tray to a desired range. According to the present invention, such a conventional problem is completely solved because the surface specific resistance value of the molded article can be controlled only by predicting the shear rate.
[0014]
The prediction of the shear rate can be performed by a known injection molding flow analysis (CAE). In this method, the flow state of a molten resin in a step of filling the resin into a mold is predicted by computer simulation. In general, the shape of the obtained molded article can be divided into a large number of microelements, and the shear rate can be predicted for each element. As a result, a predicted shear rate at an arbitrary position of the entire molded article can be obtained.
[0015]
It is desirable that the correlation between the predicted shear rate and the surface resistivity value, that is, the function formula, be obtained by performing a plurality of experiments and creating a database, and using the database.
For example, as injection molding conditions, at least the injection speed is changed by three or more levels, the thickness of the molded product is two or more, for example, two or more of 1 mm and 3 mm, and various other conceivable conditions, for example, injection pressure and holding pressure , Injection / Packing time, Cooling time, Mold temperature, Resin temperature, Gate type, Gate size, Number of gates, Gate position, and investigate the surface specific resistance value corresponding to each predicted shear rate, It is desirable to create a database. Above all, changing the number and position of gates is suitable for controlling the shear rate.
[0016]
If the mold shape, injection molding conditions, or conductive resin grade is appropriately determined so that the shear rate predicted by computer simulation corresponds to the desired surface resistivity, a molded product having the desired surface resistivity Is obtained.
[0017]
The shear rate predicted by the computer simulation often includes an error. In this case, it is necessary to correct the database.
For example, using a L / t bar flow test piece, the relationship between the injection pressure and the flow distance of the resin is predicted by computer simulation, and a functional formula is derived. Apart from this, the relationship between the injection pressure and the flow distance of the resin is investigated by actual measurement. If, at the same injection pressure, the flow distance of the resin is always larger in the computer simulation than in the actual measurement, the predicted shear rate becomes higher than the actual value. Therefore, in this case, it is necessary to correct the shear rate to be lower than an expected value while considering the distance to the gate.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
(Example 1)
An experiment was performed to show that there is a significant correlation between the shear rate predicted by computer simulation and the surface resistivity of the resulting molded article.
A mold was prepared so as to obtain a molded product having a width of 40 mm × a length of 200 mm and a thickness of 2 mm or 5 mm, and the distribution of the shear rate of the conductive resin in the mold was predicted by computer simulation. The injection molding conditions at this time were: injection speed 10 to 100 mm / sec (every 10 mm / sec), injection pressure 1800 kg / cm 2 , holding pressure 700 kg / cm 2 , injection / holding time 6 seconds, cooling time 25 seconds, gold The mold temperature was 50 ° C, the resin temperature was 230 ° C, 250 ° C, the gate type was a film, the gate dimension was 1 mm, and the number of gates was one.
At each point of the molded article having a predicted shear rate in the range of approximately 10 2 to 10 4 (1 / s), a conductive paint is applied in a shape of 1 cm wide × 5 mm long, and a surface characteristic of 10 mm between two points is applied. The resistance was measured.
The results obtained are shown in FIG. In FIG. 1, a square plot is a molded product having a thickness of 5 mm, and a star plot is a molded product having a thickness of 2 mm.
The conductive resin used was a conductive PP resin manufactured by Riken Vinyl Industry Co., Ltd., and the product name was ESP9935R. [The composition was 50 parts by weight of polypropylene (PN670, manufactured by Tokso), and an inorganic filler (mica, manufactured by Kuraray) 40 Parts by weight, and 10 parts by weight of carbon black (Ketjen Black EC, manufactured by Lion Corporation)].
As is clear from FIG. 1, it can be seen that there is a remarkable correlation between the shear rate predicted by the computer simulation and the surface resistivity of the obtained molded article.
[0019]
(Example 2)
A molded product having a shape as shown in FIG. 2 was produced by injection molding. The molded product has a rectangular shape having a width of 40 mm × a length of 200 mm and a thickness of 2 mm. The injection molding conditions were: injection speed 10 mm / sec, injection pressure 1800 kg / cm 2 , holding pressure 800 kg / cm 2 , injection / holding time 6 seconds, cooling time 25 seconds, mold temperature 120 ° C., resin temperature 330 ° C., gate The type was a film, gate dimensions 1 mm and 2 mm, and one gate.
Next, a conductive paint was applied in a shape of 1 cm in width × 5 mm in length as shown in FIG. 2, and a surface specific resistance value of 10 mm between two points was measured. The measurement was made at three places of 20 mm, 100 mm, and 180 mm from the gate.
[0020]
The above experiment was carried out by changing the injection conditions, that is, the injection speed, ie, 10 to 100 mm / sec (every 10 mm / sec), the resin temperature of 310, 330, 350 ° C., and the gate dimensions of 0.5, 1.0, 2.0 mm. Repeated several times.
The results obtained are shown in FIG. According to FIG. 3, there was a variation between the shear rate (horizontal axis) predicted by the computer simulation and the measured surface resistivity (vertical axis) (plotted with a circle). The correction was performed as follows.
[0021]
Using an L / t bar flow test piece as shown in FIG. 4, the relationship between the injection pressure and the flow distance of the resin was predicted by computer simulation, and a functional equation was derived. Apart from this, the relationship between the resin injection pressure and the flow distance was investigated by actual measurement. FIG. 5 shows the results of the investigation. FIG. 5 shows that at the same injection pressure, the flow distance of the resin was always longer in the computer simulation than in the actual measurement. The conductive resin used in this experiment is a conductive PPE resin manufactured by Riken Vinyl Industry Co., Ltd., trade name: ESC9856N [composition is 90 parts by weight of PPE (Xylon X9101, manufactured by Asahi Kasei Kogyo) and carbon black (Ketjen). Black EC, manufactured by Lion Corporation) 10 parts by weight].
[0022]
In FIG. 3, each plot is distributed in three regions represented by the following functional expressions, that is, in a triangle formed by three points of ABC.
[0023]
(Equation 1)
Y = aX b ;
Y = c; and X = d
(Where Y is the surface resistivity, X is the predicted shear rate, and a, b, c and d are constants)
[0024]
And, as described above, at the same injection pressure, the flow distance of the resin was always larger in the computer simulation than in the actual measurement, so that the straight line AB was the difference between the predicted shear rate of the conductive resin and the surface resistivity of the molded product. This is a functional expression indicating the relationship.
In the case of FIG. 3, a = 0.01, b = 2, c = 100, and d = 10000 are calculated.
[0025]
More specifically, in FIG. 3, for example, when the predicted shear rate is 10,000 (1 / s), the surface resistivity is 1E + 2 to 1E + 7Ω / sq. The distribution spreads in the range of the fifth power of. However, as described above, from the results of FIG. 3 and FIG. 4, the functional expression indicating the relationship between the predicted shear rate and the surface resistivity of the molded product can be determined to be a straight line AB. The distribution of the power range can be corrected so as to converge on the straight line AB.
[0026]
For simplicity, for example, at a measurement location where the value of the shear rate is low, for example, at a location of 0 to less than 20 mm from the gate, it is not necessary to modify the predicted value of the shear rate, and the straight line AB is used. This is because according to FIG. 5, if the flow distance is short, it is determined that there is little error between the predicted shear rate and the actual shear rate.
When the measurement point is between 20 and less than 100 mm from the gate, the value of the predicted shear rate is reduced by one digit, and when it is further than 100 mm from the gate, the value of the predicted shear rate is reduced by two. The surface specific resistance value is determined by a function of the straight line AB with an order of magnitude smaller. However, if the number of digits of the shearing speed is reduced and the function AB intersects, the determination is made at that position.
[0027]
In the present invention, it goes without saying that the function of the region of the predicted shear rate and the surface resistivity value is not limited to the above three functions.
[0028]
(Example 3)
The method of the present invention was applied to the IC tray mold shown in FIG.
First, as a comparative experiment, injection molding was performed without considering the shear rate of the conductive resin (manufactured by Riken Vinyl Industry, conductive PPE resin, trade name: ESC9856N) in the mold of the IC tray. The surface resistivity of A, B, and C of the obtained IC tray is 10 6-7 Ω / sq. , B is 10 3-4 Ω / sq. , C is 10 6-7 Ω / sq. And variation was recognized.
Then, using the method of the second embodiment, a functional equation between the predicted shear rate and the surface specific resistance value is derived, and the shear rates at the locations of A, B, and C in the IC tray mold are almost equal. The number and positions of the gates were changed to be the same as shown in FIG. As a result, the surface resistivity of the IC tray at the locations of A, B, and C was 10 5 Ω / sq. The value became almost constant around.
[0029]
【The invention's effect】
According to the present invention, the injection molding conditions can be set accurately by grasping the surface specific resistance value of the injection molded product in advance regardless of the shape of the molded product. Provided is a method for manufacturing a conductive resin molded product, which can significantly reduce costs related to mold production and the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing that in Example 1, there is a significant correlation between the predicted shear rate and the surface resistivity of the obtained molded article.
FIG. 2 is a view for explaining a molded product manufactured in Example 2.
FIG. 3 is a diagram showing a relationship between a predicted shear rate and a surface resistivity value of an obtained molded product in Example 2.
FIG. 4 is a view for explaining an L / t bar flow test piece used in Example 2.
FIG. 5 is a diagram for comparing the measured fluidity of a conductive resin with the fluidity determined by CAE in Example 2.
FIG. 6 is a schematic view of an IC tray mold manufactured in Example 3.

Claims (3)

導電性樹脂を金型に射出して所望の形状の成形品を得る導電性樹脂成形品の製造方法において、
(i)金型内の導電性樹脂の射出成形流動解析を行い、金型内の任意場所における樹脂のせん断速度を予測し、
(ii)これとは別に導電性樹脂のせん断速度と成形品の表面固有抵抗値との関係を決定し、両者の関数式を誘導しておき、
(iii)前記関数式を用いて、予測されたせん断速度から成形品の任意場所の表面固有抵抗値を算出し、
(iv)前記(iii)のステップで算出される表面固有抵抗値が所望の値になるように、予測されるせん断速度を射出成形条件および/または金型形状の設定により調節することを特徴とする導電性樹脂成形品の製造方法。
In a method of manufacturing a conductive resin molded product to obtain a molded product of a desired shape by injecting a conductive resin into a mold,
(I) performing an injection molding flow analysis of the conductive resin in the mold, predicting a shear rate of the resin at an arbitrary position in the mold,
(Ii) Separately, the relationship between the shear rate of the conductive resin and the surface resistivity of the molded article is determined, and a functional equation of both is derived,
(Iii) calculating a surface specific resistance value at an arbitrary position of the molded article from the predicted shear rate by using the function formula;
(Iv) The predicted shear rate is adjusted by setting the injection molding conditions and / or the mold shape so that the surface specific resistance value calculated in the step (iii) becomes a desired value. Of producing a conductive resin molded article.
ステップ(iv)において、射出成形条件としてゲート位置が採用される請求項1に記載の導電性樹脂成形品の製造方法。The method for producing a conductive resin molded product according to claim 1, wherein in step (iv), a gate position is adopted as an injection molding condition. 成形品がICトレーである請求項1または2に記載の導電性樹脂成形品の製造方法。3. The method for producing a conductive resin molded product according to claim 1, wherein the molded product is an IC tray.
JP21005396A 1996-08-08 1996-08-08 Manufacturing method of conductive resin molded product Expired - Fee Related JP3605477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21005396A JP3605477B2 (en) 1996-08-08 1996-08-08 Manufacturing method of conductive resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21005396A JP3605477B2 (en) 1996-08-08 1996-08-08 Manufacturing method of conductive resin molded product

Publications (2)

Publication Number Publication Date
JPH1044205A JPH1044205A (en) 1998-02-17
JP3605477B2 true JP3605477B2 (en) 2004-12-22

Family

ID=16583038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21005396A Expired - Fee Related JP3605477B2 (en) 1996-08-08 1996-08-08 Manufacturing method of conductive resin molded product

Country Status (1)

Country Link
JP (1) JP3605477B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932455B1 (en) 2008-12-31 2009-12-17 한국생산기술연구원 Method for post-processing and computer-readable storage medium
KR20120096484A (en) * 2009-10-05 2012-08-30 프리아무스 시스템 테크놀로지스 아게 Method for controlling the production of a product
JP6979388B2 (en) * 2018-04-27 2021-12-15 ポリプラスチックス株式会社 Manufacturing method of antistatic molded product

Also Published As

Publication number Publication date
JPH1044205A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
EP1422042B1 (en) Method of analyzing injection molding conditions
Kim et al. Gate location design in injection molding of an automobile junction box with integral hinges
EP3587067A1 (en) Injection molding system
Khor et al. Three-dimensional numerical and experimental investigations on polymer rheology in meso-scale injection molding
JP3605477B2 (en) Manufacturing method of conductive resin molded product
CN100471644C (en) Design method of metal mould, mfg. method of injection moulded products, program and injection moulding appts.
CN103310036A (en) Method and apparatus for simulating plastic material flowing through an extruding channel
KR102302291B1 (en) Apparatus and method for simulating double injection molding
Bushko et al. Estimates for material shrinkage in molded parts caused by time‐varying cavity pressures
CN113453865A (en) Auxiliary forming device of injection molding machine
Sateesh et al. Optimization of injection moulding process in manufacturing the top cap of water meter
JP3247026B2 (en) Profile setting method for injection speed program control in injection molding machine
Yan et al. Numerical simulation of the filling stage for plastic injection moulding based on the Petrov-Galerkin methods
JPH10128818A (en) Weldline length-estimating method for molded product
Shen et al. An improved algorithm for the simulation of injection-molding filling process
Hazwan et al. Warpage optimization on front panel housing by using glowworm swarm optimization (GSO) approach
JP3889587B2 (en) Method for predicting shrinkage of resin molded products
EP0509264A2 (en) Molding machine
Sha et al. Micro-injection moulding: factors affecting the replication quality of micro features
BARON et al. COMPARISON OF SELECTED MATERIALS INTENDED FOR THE MANUFACTURE OF PLASTIC HOLDER FOR REVERSE PARKING SENSOR WITH THE USE OF COMPUTER SIMULATION TOOLS.
Hartono et al. Characterization of Differences in Cavity Positions Orientation in the Multi Cavity Plastic Molding Process on the Product Defects
KR100517529B1 (en) Injection Molding Method Using Optimized Ram-Speed Profile Calculated by Numerical Analysis
JPH06246807A (en) Injection molding method
US11060962B2 (en) Flow analysis method
JP2003154550A (en) Molded article, designing method therefor, and estimating method for length of weld line

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees