JP3604985B2 - Pattern transfer device - Google Patents

Pattern transfer device Download PDF

Info

Publication number
JP3604985B2
JP3604985B2 JP2000009090A JP2000009090A JP3604985B2 JP 3604985 B2 JP3604985 B2 JP 3604985B2 JP 2000009090 A JP2000009090 A JP 2000009090A JP 2000009090 A JP2000009090 A JP 2000009090A JP 3604985 B2 JP3604985 B2 JP 3604985B2
Authority
JP
Japan
Prior art keywords
substrate
mold member
pattern
resist film
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000009090A
Other languages
Japanese (ja)
Other versions
JP2001198979A (en
Inventor
英樹 松村
健一郎 木田
Original Assignee
株式会社石川製作所
英樹 松村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石川製作所, 英樹 松村 filed Critical 株式会社石川製作所
Priority to JP2000009090A priority Critical patent/JP3604985B2/en
Publication of JP2001198979A publication Critical patent/JP2001198979A/en
Application granted granted Critical
Publication of JP3604985B2 publication Critical patent/JP3604985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3697Moulds for making articles of definite length, i.e. discrete articles comprising rollers or belts cooperating with non-rotating mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • B29C2043/461Rollers the rollers having specific surface features

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶ディスプレイ、フィールドエミッションディスプレイ、プラズマディスプレイパネル、太陽電池、半導体などの半導体デバイスの製造に於ける回路や超小型部品の微細加工における、熱により軟化するレジスト膜を表面に成膜したガラス基板やSi基板などの脆性材料基板にインプリント法によるパターンの転写を行う装置に関する。
【0002】
【従来技術】
従来、例えば各種半導体デバイスの製造に於ける回路のパターン転写方法としては、スピンコート法によって、感光剤、樹脂、化学溶媒からなるフォトレジストをガラス基板、Si基板表面に、或いはガラス基板、Si基板にSiO膜、aーSi膜(非品質シリコン膜)、pーSi膜(多結晶シリコン膜)などを積層させた基板表面に塗布し、フォトマスクを介してパターン形状を露光によって転写し現像し、しかる後、ドライエッチングまたはウェットエッチングを施し、その後、レジスト膜をアッシング(灰化)或いはレジスト膜を剥離することにより、前記基板または前記積層膜に凹凸パターンを形成するフォトリソグラフィー法によるパターン転写法が最も一般的である。
このフォトリソグラフィー法によるパターン転写装置としては、前述したようにスピン塗布装置、加熱装置、冷却装置、露光装置、現像液塗布装置、エッチング装置、アッシング装置などの多くの装置が必要となる。
中でも、露光装置は非常に高価なものとなっており、又露光工程で一般に使用されるステッパーでは、フォトマスクを逐次移動させながら露光するため生産性が悪く、露光工程によってスループットが律速してしまう。
又、半導体デバイスの製造では、高集積化のため配線パターンを何層にも積層することが多く、このようなパターン転写は一つの製品の製造において、何回も繰り返し行われる。従って、上記のような高額な装置や生産性の悪さは増幅され製品の価格に影響している。
【0003】
又、最近では凹凸にパターンを形成された型部材を、スピンコート法によって基板表面に成膜されたレジスト膜に押し付けることにより、レジスト膜に凹凸を付け、それをエッチングすることによって、基板にパターン形状を転写するインプリント法によるパターン転写法が研究されつつある(US005772905A参照)。
この場合、レジスト膜の材質としてはPMMAを使用し、レジスト膜へ型部材を押し付ける際、基板をPMMAのガラス転移温度以上である200℃以上に加熱し、型部材のレジスト膜への押圧力を約100kgf/cmで行うことを特徴としている。
更に、インプリント法によるパターン転写法では、フォトリソグラフィー法によるパターン転写法のように感光剤を必要としないため、クリーンルーム内にて黄色灯のもとで作業を行なう必要もなく、作業性でも有利である。
このインプリント法によるパターン転写方法は、まだ実用化にいたっていないが、平板の片面に凹凸パターンを有する型部材を基板上に形成したレジスト膜に押し付けるといったパターン転写装置によってテストが行なわれている。
ただし、前述したように、型部材のレジスト膜への押圧力が100kgf/cmと非常に大きいために、テストに使用される試験片は非常にサイズの小さいものでしか行なうことが不可能となっている。
【0004】
【発明が解決しようとする課題】
ところで、このインプリント法では、レジスト膜の凹凸パターンに十分な押し付け深さを得るためにはインプリント時に、前述したような非常に大きな押圧力を必要とする。一般に使用される基板は、ガラス基板やSi基板などの脆性材料であることが多く、大きな押圧力を負荷すると基板が破損する恐れがある。
又、基板が破損しなかったとしても、大きな圧力を負荷するためにはパターン転写装置自体が強固で大型となり、高額なものになってしまう。
又、前記平板形状の大型の型部材を基板に押し付ける場合、型全体の押圧力を均一にするのは非常に難しく、押圧力の不均一は偏荷重を招き、押し込み深さの不均一性や基板の破損が生じる可能性がある。
更に、液晶ディスプレイや太陽電池の製造のように大型の基板にパターン転写する場合、平板形状の型部材でのインプリントでは型部材に非常に高い平面度や面精度が要求されるため、加工が非常に困難なものとなることが予想される。
このように、非常に大きな押圧力を必要とするということが、インプリント法によるパターン転写装置の実現を困難にしている一つの問題点となっている。
【0005】
更に、前述したように、型部材を基板に押し付ける場合、レジスト膜のガラス転移温度以上に加熱する必要がある。これは加熱によりレジスト膜を軟化させ、型部材を押し込んだ時にパターン形成しやすくするためである。
又、型部材を押し付けた後、次工程のエッチング工程へ搬送するために基板を冷却する必要がある。
このような基板の加熱及び冷却といった温度変化を伴うために、高い生産性が望めず、インプリント法によるパターン転写におけるもう一つの問題点となっているのである。
【0006】
本発明は、これらの問題点を解決し、インプリント法によるパターン転写を実現できる装置を安価に提供し、更に温度変化を伴うという生産上の欠点を克服し、生産性の高いパターン転写装置を提供せんとするものである。
【0007】
【課題を解決するための手段】
本発明は、熱により軟化するレジスト膜を表面に成膜したガラス基板やSi基板である脆性材料基板にインプリント法によるパターン転写を行う装置であって、基板を載置固定するプレート上に、パターン形状である凹凸を円周面に有し、積極回転する円筒形状の型部材を昇降可能に設置すると共に、基板のレジスト膜への押し付け荷重の制御機構を設け、又プレート及び型部材に加熱手段を設け、更に型部材又はプレートのいずれかに平行移動手段を設け、プレート上の基板のレジスト膜に型部材を回転させながら押し付けることによりパターン転写を行うこと、及び基板のレジスト膜への型部材押し付け工程の前工程に基板予備加熱部を、後工程に基板冷却部を設けたことによりパターン転写装置である。
基板を載置固定するプレートと、円筒形状の型部材を使用することにより、押圧時の型部材と基板との接触面積を非常に小さくすることによって、押し付け全荷重を非常に小さくすることが可能となる。
このように、押し付け全荷重が小さくできることにより、押し付け荷重の偏荷重による基板の損傷を少なくすることができ、パターン転写装置も平板の型部材を使用するパターン転写装置よりも小型で安価に製作することが可能となる。
更に、液晶ディスプレイや太陽電池の製造のように大型の基板にパターン転写する場合には、高い平面度や面精度が必要とされるが、一般に平板形状よりも円筒形状の方が加工精度を出しやすいことから、型部材を円筒形状にすることにより、平板形状の型部材よりも加工精度を容易に出すことが可能となる。
【0008】
又、本発明はプレートと型部材の両方に加熱手段を設け、更に温度制御機構を有するものであり、インプリント法によるパターン転写では、基板及びレジスト膜を加熱することによりレジスト膜を軟化させ、型部材を押し込んだ時のパターン形成が容易となる。
プレートで基板及びレジスト膜は全体を予備的に加熱されることになり、更にパターン形成時には型部材によって転写部分が更に加熱され、レジスト膜軟化温度となるため、効率の良い加熱となる。
そして、上記のプレート或いは型部材の温度制御機構によってパターン形成を容易に行うことができる。
【0009】
又、本発明は型部材の基板への押し付け工程の前工程に基板予備加熱部を設置し、後工程に基板冷却部を設置するものである。
型部材の押し付け工程では、前述のようにレジスト膜を軟化させ、パターン形成しやすくするために基板或いは型部材を加熱する必要がある。
この基板予備加熱部にて予め基板を加熱しておくことにより、型部材押し込み工程での加熱時間を短縮することができる。
又、型部材の押し付け後、レジスト膜のエッチングを行なうが、エッチング装置に搬送するために基板を冷却する必要がある。前述のように、基板冷却部を設置することによって基板を速やかに冷却し、次工程へ搬送することができる。
以上のように、型部材の基板への押し付け工程の前工程に基板予備加熱部を設置し、後工程に基板冷却部を設置することによって基板の加熱、冷却といった温度変化に伴う時間を短縮することが可能となり、生産性を上げることができる。
【0010】
又、本発明は基板から型部材の両側端の高さを検知するセンサーを設け、基板から型部材の高さの制御を行う制御機構を有することを特徴とするパターン転写装置である。
型部材の高さ制御のための高さ検知センサーを設置し、基板からの高さが型部材の両側端で等しくなるようにすることで型部材を制御し、型部材を押し付け時の型部材のかたがりによって生じる偏荷重を防止することができる。更に型部材の押し込み深さを制御することが可能となる。
【0011】
又、本発明はパターンの重ね合わせ時に、型部材の凹凸パターンと基板上に形成された凹凸パターンとの位置補正機構を有し、型部材或いは基板を位置補正することによりパターンの重ね合わせを行うことを特徴とするパターン転写装置である。
前述のように、これらのパターン転写は一つの製品について数回繰り返し行われるため、上記のようなパターンの位置補正機構によってパターンの重ね合わせが可能となる。
【0012】
【発明の実施の形態】
図1乃至図3は本発明の一実施の形態を示す。
図1は本発明のパターン転写装置の構成を示し、図1に基づいて本発明であるパターン転写装置におけるパターン転写工程を説明する。
先ず、レジスト膜1が形成された基板2を基板予備加熱部のプレート3に載置する。液晶ディスプレイの製造におけるインプリント法によるパターン転写を仮定に、レジスト膜の材質をPMMAとし、基板をガラス基板とし、基板サイズを650×850mmとして説明する。
基板予備加熱部のプレート3内には電熱線等の熱源22を有し、レジスト膜の軟化温度、例えば200℃まで加熱されており、加熱によりレジスト膜を軟化させる。その後、型部材押し付け部へ基板を搬送する。
【0013】
型部材押し込み部Bのプレート5は、基板予備加熱部と同じく内部に熱源22を有し、レジスト膜1の軟化温度まで加熱されており、このプレート5上に基板2を載置し固定する。
レジスト膜1は基板予備加熱部Aですでに加熱されているので、型部材押し込み部Bではわずかの加熱時間で型部材押し込み時の温度に達する。
次に、円筒形状の型部材6をレジスト膜1に押し付ける。この円筒形状の型部材6の円周長は基板2の長さと合わせてもよく、同じパターンが繰り返し必要とするならばさらに短い円周長の型部材を用いてもよい。
この円筒形状の型部材6をレジスト膜1に押し付けながら回転させることにより、レジスト膜1に凹凸形状を形成する。
この場合、基板2をプレート5上に固定し、型部材6を平行移動させながら回転させてもよいし、基板2を固定したプレート5を平行移動させ、型部材6はその場で回転させてもよい。
【0014】
加熱手段をプレート5に代えて型部材6に設け、プレート5上の基板2のレジスト膜1を型部材6の押し込み時に軟化温度まで加熱することもできる。
図4は加熱手段22を型部材6に設けた他の構成例を示すもので、プレート5上の基板2のレジスト膜1を型部材押し込み時に軟化温度まで加熱するものである。
更に、図4のように、プレート5及び型部材6の両方に加熱手段22を設ければ、加熱効率は一層良くなるものである。
【0015】
又、型部材6を基板2に押し付ける際、基板2からの型部材6の高さを型部材6の両側端部に設置した高さ検知センサー7、もしくは基板側に設置した高さ検知センサーによって計測し、基板2からの型部材6の高さが両側端で等しくなるように調節する。このことにより、型部材6の押し付けが型部材6の両側端で等しくすることが可能となり、基板2への偏荷重を防ぐことができる。
更に、型部材6のレジスト膜1への押し込み深さが得られるように型部材6の基板2からの高さを上記高さ検知センサー7によって設定し、上記のように型部材6を回転させ基板2に押し付けることにより、パターン転写を行うことができる。
この高さ測定のための高さ検知センサー7は、半導体デバイスの製造におけるパターンの凹凸はμmオーダーであるので、レーザー変位計などのような分解能がμmオーダー以下である測定装置を使用する必要がある。
【0016】
又、型部材6の押し付け荷重は、型部材6に設置したロードセル8によって検知する。押し付け荷重は型部材6のパターン形状に大きく影響を受ける。
例えば、型部材6の凸部の面積が比較的広いものやパターンが密になったものは、押し付けた際のレジスト膜1の逃げ場が少ないために、大きい押し付け荷重を与えないと十分な押し付け深さが得られない。
インプリント法によるパターン転写において、凹凸パターンの形成後、凹部のエッチングを行なうため、押し込み深さは均等になることが望ましい。
従って、上記のように型部材6の基板2からの高さを型部材6のレジスト膜1への押し込み深さになるように予め設定することにより、押し込んだ凹部の押し込み深さが全て等しくなるようにする。
ただし、偏荷重や上記の例のように押し込んだ際のレジスト膜1の逃げ場がなくなったため、大きい集中荷重が加わったりした場合に、基板2の破損を防止するために前記ロードセル8によって荷重を検知し、ある荷重でインターロックがかかるようにする必要がある。
上記のような大きな集中荷重が生じる恐れがある場合は、条件だしの段階で型部材6の回転速度を遅くするか又は基板加熱温度を高くするなどの条件の設定によって改善することができる。
【0017】
型部材6の形状が平板の場合と円筒の場合とで押し付け荷重を比較する。前述の仮定のように、ガラス基板サイズを650×850mmとし、平板形状の型部材で基板全体を上記100kgf/cmの押し付け荷重で押し付けるとすると552.5tもの押し付け荷重が必要となる。
しかし、円筒形状の型部材では、円の接点のみ基板と接する線接触となるが、仮に基板との接触面積を650×10mmとすると、押し付け荷重は平板の1/85である6.5tとなる。
このように、型部材を円筒形状にすることにより、押し付け荷重を非常に小さくすることが可能となるため、平板の型部材の場合よりはパターン転写装置をコンパクトで安価に製作することが可能となる。
又、平板形状の型部材では基板全体に均一に押し付ける必要があるため、型全体の平面度が非常に厳しいものとなるが、円筒形状の型部材では基板との接触面積が小さいために形状公差が出しやすく、又円筒形状であるので平板形状よりも加工しやすいといった利点がある。
【0018】
以上のようにして、レジスト膜1に凹凸パターンを形成する。その後、基板2を基板冷却部Cに搬送し、搬送に適した温度に冷却し、次工程のレジスト膜1のエッチング工程へ基板を搬送する。ちなみに、基板冷却部Cのクールプレート9の冷却源23には水循環の冷却装置を使用し、設定温度は室温程度、或いはエッチング工程に近い温度まで冷却してもよい。
工程によっては、生産性向上のためにペルチェ素子を内蔵した冷却装置を使用することにより、急速に冷却してもよい。
【0019】
本発明のパターン転写装置における各工程間の基板搬送は、基板は吸着載置又は側端面を把持するセラミックハンドのように耐熱性を有する素材を使用することが望ましい。
又、基板予備加熱部A、型部材押し付け部B、基板冷却部Cはそれぞれ基板搬送が容易になるようにリフトピン4のような基板の昇降機構を有している。
【0020】
又、本発明のように、型部材押し込み部Bの前工程に基板予備加熱部Aを、後工程に基板冷却部Cを設置することにより、順次ガラス基板を流すことが可能となり、生産性が大幅に向上させることができる。
【0021】
次に、図2及び図3は型部材の押し付け部の一構成例を示すものであり、型部材押し付け部Bの工程及びパターンの重ね合わせについて説明する。
図2において、前述の基板予備加熱部Aから搬送された基板2は、レジスト膜1の軟化温度に設定されたプレート5上に載置される。その際、型部材は基板の搬送の妨げにならない場所に待機する。
そして、基板2はプレート5に設置されたチャック10によって固定される。このチャック10の駆動にはエアシリンダやモータなどを使用することによって行うことができ、或いはプレート5上にエア(バキューム)チャック又は静電チャックを搭載することによってチャッキングを行ってもよい。
又、チャッキングの際の基板の破損を防ぐためにショックアブゾーバーを使用してもよい。そして、基板の有無を固定用のチャック又はプレート5にセンサー11を設置することにより確認し、プレート5の加熱温度は温度制御器20によって制御する。
【0022】
型部材6に加熱手段22を設ける場合は、同様に温度制御器20を設けて温度調節を行うものであり、図5はプレート5と型部材6の両方に加熱手段を設けた場合の構成例を示すものである。
【0023】
次に、図3のように、予め基板2の前部両端にはパターンの位置決め用のマーキング12をしておく。
更に、型部材6の軸受け部13からブラケット14を設置し、そのブラケット14に画像処理用カメラ15を設置する。画像処理用カメラ15は予め型部材6の軸心と平行に設置されている。
そして、X、Y軸位置制御機構16によって、画像処理用カメラ15が基板2の位置合わせマーキング12に合う位置まで型部材6を移動させる。ちなみに、X,Y軸位置制御機構16はサーボモーター、ボールねじ、直動案内のような構成によって実施でき、あるいは高精度の位置決めを行う場合、リニアモーターを使用してもよい。
そして、θ補正機構17及びX、Y軸位置制御機構16により、基板2及びプレート5を回転させることにより、画像処理用カメラ15の中心と基板2の位置合わせマーキング12の中心を合致させる。図中21は画像処理装置である。
以上のようにして、型部材6の軸心と位置合わせマーキング12の2点を結んだ直線を平行に設定する。
【0024】
次に、型部材6の軸心位置を基板2端部の位置まで、X、Y軸位置制御機構16によって移動させる。又初期パターンの位置が型部材6の最も下になるように型部材6を型部材回転モーター18によって回転させる。
この場合、予め型部材6の回転方向の原点位置を設定しておき、型部材回転モーター18によってパターンの位置制御を可能にしておく。
その後、型部材6をZ軸位置制御機構19によって型部材6の最下の凸部をレジスト膜1の押し込み深さと同じ位置まで押し下げる。
Z軸位置制御機構19は、X、Y軸制御機構16と同じようにサーボモーター、ボールねじ、直動案内のような構成によって実施できる。このZ軸の位置制御の場合、前述した高さ検知センサー7によって基板2からの型部材6の高さを検知することによって基板2からの正確な位置を制御する。
【0025】
次に、X軸位置制御機構16によって型部材6のX方向の移動と、型部材回転モーター18の回転とを同期させながら、型部材6を基板2に押し付けパターン転写を行う。その時、前述したようにロードセル8によって異常な荷重が加わっていないかを検知しながら行なう。
型部材6が基板2の端部に達すると、ロードセル8において押し付け荷重が減少する。それを検知し、Z軸位置制御機構19によって型部材6を基板搬送の妨げとならない位置まで上昇させる。
その後、前述の図1のように基板2を基板加熱部へ移載し、冷却後、次工程へ搬送するのである。
【0026】
【発明の効果】
以上のように、本発明のパターン転写装置によれば、平面状のプレートと円筒形状の型部材を使用することにより、押し付け荷重を非常に小さくできるため、ガラス基板やSi基板などの脆性材料基板にインプリント法によるパターン転写を行う際、押し付け荷重の偏荷重による基板の破損を少なくすることができ、転写装置をコンパクトでかつ安価に製作することが可能となる。
更に、大面積の基板でのパターン転写では、高い平面度や面精度が必要とされるが、一般に平板形状よりも円筒形状の方が加工精度を出しやすいことから、型部材のみを円筒形状にすることにより、平板形状の型部材よりも加工精度を容易に出すことが可能となる。
そして、プレートで基板及びレジスト膜は全体を予備的に加熱されることになり、更にパターン形成時には型部材によって転写部分が更に加熱され、レジスト膜軟化温度となるため、効率の良い加熱となる。
又、型部材押し込み部の前工程に基板予備加熱部を、基板予備加熱部で予め基板を加熱しておくことにより、型部材押し込み工程での加熱時間を更に短縮し、効率化を図ることができる。
加えて、後工程に基板冷却部を設置することにより、順次ガラス基板を流すことが可能となり、基板の熱変化によって伴うタイムロスを少なくできるため、生産性が大幅に向上させることができる。
【図面の簡単な説明】
【図1】本発明のパターン転写装置の一構成例を示した図である。
【図2】本発明のパターン転写装置の型部材押し込み部の一構成例を示した図である。
【図3】本発明のパターン転写装置の型部材押し込み部の平面図である。
【図4】本発明のパターン転写装置の一部型部材押し込み部の他の構成例を示した図である。
【図5】本発明のパターン転写装置の型部材押し込み部の他の構成例を示した図である。
【符号の説明】
1 レジスト膜
2 基板
3 プレート
4 リフトピン
5 プレート
6 型部材
7 高さ検知センサー
8 ロードセル
9 クールプレート
10 チャック
11 基板有無確認センサー
12 位置合わせマーキング
13 軸受け部
14 ブラケット
15 画像処理用カメラ
16 X、Y位置制御機構
17 θ補正機構
18 型部材回転モーター
19 Z軸位置制御機構
20 温度制御器
21 画像処理装置
22 熱源
23 冷却源
A 基板予備加熱部
B 型部材押し込み部
C 基板冷却
[0001]
TECHNICAL FIELD OF THE INVENTION
In the present invention, a resist film which is softened by heat is formed on the surface in the fine processing of circuits and micro parts in the manufacture of semiconductor devices such as liquid crystal displays, field emission displays, plasma display panels, solar cells, and semiconductors. The present invention relates to an apparatus for transferring a pattern to a brittle material substrate such as a glass substrate or a Si substrate by an imprint method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, as a pattern transfer method of a circuit in the manufacture of various semiconductor devices, a photoresist made of a photosensitive agent, a resin, and a chemical solvent is applied to a glass substrate, a Si substrate surface or a glass substrate, a Si substrate Is coated on the surface of a substrate on which a SiO 2 film, an a-Si film (non-quality silicon film), a p-Si film (polycrystalline silicon film), etc. are laminated, and the pattern shape is transferred by exposure through a photomask and developed. Thereafter, dry etching or wet etching is performed, and thereafter, the resist film is ashed (ashed) or the resist film is peeled off, so that a pattern transfer by a photolithography method of forming an uneven pattern on the substrate or the laminated film is performed. The law is the most common.
As described above, many devices such as a spin coating device, a heating device, a cooling device, an exposure device, a developing solution coating device, an etching device, and an ashing device are required as a pattern transfer device by the photolithography method.
Above all, the exposure apparatus is very expensive, and the stepper generally used in the exposure step has low productivity because the exposure is performed while sequentially moving the photomask, and the throughput is limited by the exposure step. .
In the manufacture of semiconductor devices, wiring patterns are often stacked in layers for high integration, and such pattern transfer is repeated many times in the manufacture of one product. Therefore, the expensive apparatus and the low productivity described above are amplified and affect the price of the product.
[0003]
Also, recently, a pattern member having an uneven pattern is pressed against a resist film formed on a substrate surface by a spin coating method, whereby the resist film is made uneven, and the resist film is etched to form a pattern on the substrate. A pattern transfer method by an imprint method for transferring a shape is being studied (see US005772905A).
In this case, PMMA is used as the material of the resist film, and when pressing the mold member against the resist film, the substrate is heated to 200 ° C. or higher, which is higher than the glass transition temperature of PMMA, and the pressing force of the mold member against the resist film is reduced. It is characterized in that it is performed at about 100 kgf / cm 2 .
Further, the pattern transfer method by the imprint method does not require a photosensitive agent unlike the pattern transfer method by the photolithography method, so that it is not necessary to work under a yellow light in a clean room, which is advantageous in workability. It is.
Although the pattern transfer method by the imprint method has not yet been put to practical use, a test is performed by a pattern transfer apparatus such as pressing a mold member having an uneven pattern on one side of a flat plate against a resist film formed on a substrate. .
However, as described above, since the pressing force of the mold member against the resist film is as large as 100 kgf / cm 2 , the test piece used for the test can be performed only with a very small size. Has become.
[0004]
[Problems to be solved by the invention]
By the way, in this imprint method, in order to obtain a sufficient pressing depth on the concave / convex pattern of the resist film, an extremely large pressing force as described above is required at the time of imprinting. A commonly used substrate is often a brittle material such as a glass substrate or a Si substrate, and the substrate may be damaged when a large pressing force is applied.
Further, even if the substrate is not damaged, in order to apply a large pressure, the pattern transfer apparatus itself becomes strong, large, and expensive.
Further, when pressing the large plate-shaped mold member against the substrate, it is extremely difficult to make the pressing force of the entire mold uniform, and the uneven pressing force causes an uneven load, and the pressing depth becomes nonuniform. The substrate may be damaged.
Furthermore, when transferring a pattern to a large substrate as in the case of manufacturing a liquid crystal display or a solar cell, imprinting with a flat-shaped mold member requires extremely high flatness and surface accuracy in the mold member. It is expected to be very difficult.
As described above, the need for a very large pressing force is one of the problems that makes it difficult to realize a pattern transfer device by the imprint method.
[0005]
Further, as described above, when the mold member is pressed against the substrate, it is necessary to heat the resist member to a temperature higher than the glass transition temperature of the resist film. This is because the resist film is softened by heating so that a pattern can be easily formed when the mold member is pushed.
Further, after pressing the mold member, it is necessary to cool the substrate in order to carry it to the next etching step.
Due to such temperature changes such as heating and cooling of the substrate, high productivity cannot be expected, which is another problem in pattern transfer by the imprint method.
[0006]
The present invention solves these problems, provides an apparatus capable of realizing pattern transfer by the imprint method at a low cost, and further overcomes a production defect that involves a temperature change, and provides a highly productive pattern transfer apparatus. It will not be provided.
[0007]
[Means for Solving the Problems]
The present invention is an apparatus for performing pattern transfer by an imprint method on a brittle material substrate such as a glass substrate or a Si substrate on which a resist film softened by heat is formed on a surface, and on a plate for mounting and fixing the substrate, It has a pattern-shaped concavo-convex pattern on its circumferential surface, and a positively rotating cylindrical mold member is installed so as to be able to move up and down.A control mechanism is also provided for controlling the load applied to the resist film on the substrate. Means for transferring a pattern by rotating and pressing the mold member against the resist film of the substrate on the plate, and providing a mold for transferring the pattern onto the resist film of the substrate. A pattern transfer apparatus is provided by providing a substrate pre-heating unit in a process preceding the member pressing process and a substrate cooling unit in a process subsequent to the member pressing process.
By using a plate for mounting and fixing the substrate and a cylindrical mold member, the contact area between the mold member and the substrate at the time of pressing can be made very small, so that the total pressing load can be made very small. It becomes.
As described above, since the total pressing load can be reduced, damage to the substrate due to the uneven load of the pressing load can be reduced, and the pattern transfer device can be manufactured smaller and less expensively than the pattern transfer device using a flat mold member. It becomes possible.
Furthermore, when transferring a pattern to a large substrate as in the case of manufacturing a liquid crystal display or a solar cell, high flatness and surface accuracy are required, but in general, a cylindrical shape provides a higher processing accuracy than a flat plate shape. Since the mold member has a cylindrical shape, processing accuracy can be more easily obtained than a mold member having a flat plate shape.
[0008]
Further, the present invention provides heating means for both the plate and the mold member, and further has a temperature control mechanism.In pattern transfer by the imprint method, the resist film is softened by heating the substrate and the resist film, The pattern formation when the mold member is pushed in becomes easy.
The entire substrate and the resist film on the plate are preliminarily heated, and the transferred portion is further heated by the mold member at the time of pattern formation, and the resist film softening temperature, so that efficient heating is achieved.
Then, the pattern can be easily formed by the temperature control mechanism of the plate or the mold member.
[0009]
Further, in the present invention, a substrate pre-heating unit is installed in a step before the step of pressing the mold member against the substrate, and a substrate cooling unit is installed in a post-step.
In the step of pressing the mold member, it is necessary to heat the substrate or the mold member in order to soften the resist film and facilitate pattern formation as described above.
By heating the substrate in advance in the substrate preheating section, the heating time in the mold member pressing step can be shortened.
After the pressing of the mold member, the resist film is etched. However, it is necessary to cool the substrate in order to transfer the resist film to the etching apparatus. As described above, the substrate can be cooled quickly by installing the substrate cooling unit, and the substrate can be transferred to the next step.
As described above, the time required for temperature changes such as heating and cooling of the substrate is reduced by installing the substrate pre-heating unit in the process before the process of pressing the mold member against the substrate and installing the substrate cooling unit in the process after the process. And increase productivity.
[0010]
Further, the present invention is a pattern transfer device comprising a sensor for detecting the height of both sides of a mold member from a substrate, and a control mechanism for controlling the height of the mold member from the substrate.
A height detection sensor for controlling the height of the mold member is installed, and the height of the mold member is controlled by making the height from the substrate equal on both sides of the mold member. It is possible to prevent the unbalanced load caused by the backlash. Further, it is possible to control the depth of pushing of the mold member.
[0011]
In addition, the present invention has a position correcting mechanism of the concave and convex pattern of the mold member and the concave and convex pattern formed on the substrate at the time of pattern superposition, and performs the pattern superposition by correcting the position of the mold member or the substrate. This is a pattern transfer device characterized by the following.
As described above, since these pattern transfer operations are repeated several times for one product, the patterns can be superimposed by the pattern position correcting mechanism as described above.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3 show an embodiment of the present invention.
FIG. 1 shows the configuration of the pattern transfer device of the present invention, and the pattern transfer process in the pattern transfer device of the present invention will be described with reference to FIG.
First, the substrate 2 on which the resist film 1 is formed is placed on the plate 3 of the substrate preheating unit. Assuming a pattern transfer by an imprint method in the manufacture of a liquid crystal display, a description will be given on the assumption that the material of the resist film is PMMA, the substrate is a glass substrate, and the substrate size is 650 × 850 mm.
A heat source 22 such as a heating wire is provided in the plate 3 of the substrate preheating unit, and is heated to a softening temperature of the resist film, for example, 200 ° C., and the resist film is softened by heating. Thereafter, the substrate is transported to the mold member pressing section.
[0013]
The plate 5 of the mold member pushing part B has a heat source 22 inside like the substrate preheating part and is heated to the softening temperature of the resist film 1, and the substrate 2 is placed and fixed on the plate 5.
Since the resist film 1 is already heated in the substrate preheating section A, the temperature at the time when the mold member is pushed is reached in the mold member pushing section B in a short heating time.
Next, the cylindrical mold member 6 is pressed against the resist film 1. The circumferential length of the cylindrical mold member 6 may be the same as the length of the substrate 2, or a shorter circumferential mold member may be used if the same pattern is required repeatedly.
By rotating the cylindrical mold member 6 while pressing it against the resist film 1, an uneven shape is formed on the resist film 1.
In this case, the substrate 2 may be fixed on the plate 5 and the mold member 6 may be rotated while moving in parallel. Alternatively, the plate 5 on which the substrate 2 is fixed may be moved in parallel and the mold member 6 is rotated in place. Is also good.
[0014]
A heating means may be provided on the mold member 6 instead of the plate 5, and the resist film 1 of the substrate 2 on the plate 5 may be heated to the softening temperature when the mold member 6 is pushed.
FIG. 4 shows another configuration example in which the heating means 22 is provided on the mold member 6, in which the resist film 1 of the substrate 2 on the plate 5 is heated to the softening temperature when the mold member is pushed.
Further, as shown in FIG. 4, if the heating means 22 is provided on both the plate 5 and the mold member 6, the heating efficiency is further improved.
[0015]
When the mold member 6 is pressed against the substrate 2, the height of the mold member 6 from the substrate 2 is determined by a height detection sensor 7 installed on both side ends of the mold member 6 or a height detection sensor installed on the substrate side. It measures and adjusts so that the height of the mold member 6 from the board | substrate 2 may become equal on both side ends. Thereby, the pressing of the mold member 6 can be made equal at both side ends of the mold member 6, and the uneven load on the substrate 2 can be prevented.
Further, the height of the mold member 6 from the substrate 2 is set by the height detection sensor 7 so that the depth of the press of the mold member 6 into the resist film 1 is obtained, and the mold member 6 is rotated as described above. By pressing the substrate against the substrate 2, pattern transfer can be performed.
The height detection sensor 7 for measuring the height needs to use a measuring device having a resolution of the order of μm or less, such as a laser displacement meter, because the unevenness of the pattern in the manufacture of the semiconductor device is on the order of μm. is there.
[0016]
The pressing load of the mold member 6 is detected by a load cell 8 installed on the mold member 6. The pressing load is greatly affected by the pattern shape of the mold member 6.
For example, in the case of the mold member 6 having a relatively large convex area or a dense pattern, there is little escape of the resist film 1 when pressed, so that a sufficient pressing depth is not applied unless a large pressing load is applied. Cannot be obtained.
In pattern transfer by the imprint method, since the concave portion is etched after the formation of the concave / convex pattern, it is desirable that the indentation depth is uniform.
Therefore, as described above, by setting the height of the mold member 6 from the substrate 2 so as to be equal to the depth of pushing the mold member 6 into the resist film 1, the pushing depths of the pushed concave portions are all equal. To do.
However, since there is no relief place of the resist film 1 when the resist film 1 is pushed in as in the case of the uneven load or the above-mentioned example, when a large concentrated load is applied, the load is detected by the load cell 8 to prevent the substrate 2 from being damaged. However, it is necessary to interlock at a certain load.
When there is a possibility that a large concentrated load as described above may occur, it can be improved by setting the conditions such as lowering the rotation speed of the mold member 6 or increasing the substrate heating temperature in the condition setting stage.
[0017]
The pressing load is compared between the case where the shape of the mold member 6 is a flat plate and the case where the shape is a cylinder. As described above, if the size of the glass substrate is 650 × 850 mm, and the entire substrate is pressed with the above-described pressing load of 100 kgf / cm 2 by a flat plate-shaped mold member, a pressing load of 552.5 t is required.
However, in the case of a cylindrical mold member, only circular contacts are in line contact with the substrate, but if the contact area with the substrate is 650 × 10 mm, the pressing load is 6.5t, which is 1/85 of the flat plate. .
As described above, since the pressing force can be made extremely small by making the mold member a cylindrical shape, it is possible to manufacture a pattern transfer device more compactly and inexpensively than in the case of a flat mold member. Become.
In addition, the flatness of the flat mold member must be uniformly pressed on the entire substrate, so that the flatness of the entire mold is extremely severe. However, the cylindrical mold member has a small shape contact tolerance due to a small contact area with the substrate. There is an advantage that the shape is easy to produce and that the shape is easier than the flat shape because of the cylindrical shape.
[0018]
As described above, the concavo-convex pattern is formed on the resist film 1. Thereafter, the substrate 2 is transferred to the substrate cooling section C, cooled to a temperature suitable for the transfer, and transferred to the next step of etching the resist film 1. Incidentally, a cooling device for circulating water may be used as the cooling source 23 of the cool plate 9 of the substrate cooling unit C, and the cooling temperature may be set to about room temperature or a temperature close to the etching process.
Depending on the process, cooling may be performed rapidly by using a cooling device having a built-in Peltier element to improve productivity.
[0019]
In the transfer of the substrate between the steps in the pattern transfer apparatus of the present invention, it is desirable that the substrate be made of a material having heat resistance, such as a ceramic hand that holds the suction end or a side end surface.
Further, the substrate preheating unit A, the mold member pressing unit B, and the substrate cooling unit C each have a substrate elevating mechanism such as a lift pin 4 so that the substrate can be easily transported.
[0020]
Further, as in the present invention, by installing the substrate pre-heating unit A in the process preceding the mold member pushing unit B and the substrate cooling unit C in the subsequent process, it becomes possible to flow the glass substrate sequentially, thereby improving productivity. It can be greatly improved.
[0021]
Next, FIG. 2 and FIG. 3 show an example of the configuration of the pressing portion of the mold member, and the process of the die member pressing portion B and the overlapping of the patterns will be described.
In FIG. 2, the substrate 2 transported from the substrate preheating unit A is placed on a plate 5 set at the softening temperature of the resist film 1. At that time, the mold member stands by at a place where it does not hinder the transfer of the substrate.
Then, the substrate 2 is fixed by the chuck 10 installed on the plate 5. The chuck 10 may be driven by using an air cylinder, a motor, or the like, or may be chucked by mounting an air (vacuum) chuck or an electrostatic chuck on the plate 5.
Further, a shock absorber may be used to prevent the substrate from being damaged during chucking. The presence or absence of the substrate is confirmed by installing the sensor 11 on the fixing chuck or the plate 5, and the heating temperature of the plate 5 is controlled by the temperature controller 20.
[0022]
When the heating means 22 is provided on the mold member 6, the temperature controller 20 is similarly provided to adjust the temperature. FIG. 5 shows an example of a configuration in which the heating means is provided on both the plate 5 and the mold member 6. It is shown.
[0023]
Next, as shown in FIG. 3, markings 12 for pattern positioning are formed on both front ends of the substrate 2 in advance.
Further, a bracket 14 is installed from the bearing portion 13 of the mold member 6, and an image processing camera 15 is installed on the bracket 14. The image processing camera 15 is installed in advance in parallel with the axis of the mold member 6.
Then, the mold member 6 is moved by the X and Y axis position control mechanism 16 to a position where the image processing camera 15 matches the alignment mark 12 on the substrate 2. Incidentally, the X, Y axis position control mechanism 16 can be implemented by a configuration such as a servomotor, a ball screw, and a linear motion guide, or a linear motor may be used when performing high-precision positioning.
Then, the substrate 2 and the plate 5 are rotated by the θ correction mechanism 17 and the X and Y axis position control mechanisms 16 so that the center of the image processing camera 15 and the center of the alignment marking 12 of the substrate 2 are matched. In the figure, reference numeral 21 denotes an image processing device.
As described above, the straight line connecting the axis of the mold member 6 and the two points of the alignment marking 12 is set in parallel.
[0024]
Next, the X / Y-axis position control mechanism 16 moves the axial center position of the mold member 6 to the position of the end of the substrate 2. Further, the mold member 6 is rotated by the mold member rotating motor 18 so that the position of the initial pattern is located at the bottom of the mold member 6.
In this case, the origin position in the rotation direction of the mold member 6 is set in advance, and the pattern position can be controlled by the mold member rotation motor 18.
Thereafter, the lowermost convex portion of the mold member 6 is pushed down by the Z-axis position control mechanism 19 to the same position as the indentation depth of the resist film 1.
The Z-axis position control mechanism 19 can be implemented by a configuration such as a servomotor, a ball screw, and a linear motion guide, like the X- and Y-axis control mechanisms 16. In the case of the Z-axis position control, an accurate position from the substrate 2 is controlled by detecting the height of the mold member 6 from the substrate 2 by the height detection sensor 7 described above.
[0025]
Next, the X-axis position control mechanism 16 synchronizes the movement of the mold member 6 in the X direction with the rotation of the mold member rotating motor 18 to press the mold member 6 against the substrate 2 to transfer a pattern. At this time, the detection is performed while detecting whether an abnormal load is applied by the load cell 8 as described above.
When the mold member 6 reaches the end of the substrate 2, the pressing load on the load cell 8 decreases. Upon detecting this, the Z-axis position control mechanism 19 raises the mold member 6 to a position where it does not hinder the substrate conveyance.
Thereafter, as shown in FIG. 1 described above, the substrate 2 is transferred to the substrate heating section, cooled, and then transported to the next step.
[0026]
【The invention's effect】
As described above, according to the pattern transfer apparatus of the present invention, the use of a flat plate and a cylindrical mold member allows the pressing load to be extremely reduced, so that a brittle material substrate such as a glass substrate or a Si substrate is used. When performing pattern transfer by the imprint method, it is possible to reduce the damage to the substrate due to the uneven load of the pressing load, and it is possible to manufacture the transfer device compactly and inexpensively.
Furthermore, pattern transfer on a large-area substrate requires high flatness and surface accuracy, but in general, a cylindrical shape is easier to achieve processing accuracy than a flat plate shape. By doing so, it is possible to more easily achieve processing accuracy than a plate-shaped mold member.
Then, the entire substrate and resist film are preliminarily heated by the plate, and further, the transferred portion is further heated by the mold member at the time of pattern formation.
In addition, by heating the substrate pre-heating unit in the process preceding the mold member pushing unit and the substrate in advance in the substrate pre-heating unit, the heating time in the mold member pushing process can be further shortened and efficiency can be improved. it can.
In addition, by installing a substrate cooling unit in a post-process, it becomes possible to flow glass substrates sequentially, and a time loss caused by a change in heat of the substrate can be reduced, so that productivity can be greatly improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing one configuration example of a pattern transfer device of the present invention.
FIG. 2 is a diagram showing an example of a configuration of a mold member pushing section of the pattern transfer apparatus of the present invention.
FIG. 3 is a plan view of a mold member pushing portion of the pattern transfer device of the present invention.
FIG. 4 is a diagram illustrating another configuration example of the partial mold member pushing portion of the pattern transfer device of the present invention.
FIG. 5 is a view showing another configuration example of the mold member pushing section of the pattern transfer apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Resist film 2 Substrate 3 Plate 4 Lift pin 5 Plate 6 Mold member 7 Height detection sensor 8 Load cell 9 Cool plate 10 Chuck 11 Substrate presence / absence confirmation sensor 12 Alignment marking 13 Bearing unit 14 Bracket 15 Image processing camera 16 X, Y position Control mechanism 17 θ correction mechanism 18 Mold member rotation motor 19 Z-axis position control mechanism 20 Temperature controller 21 Image processing device 22 Heat source 23 Cooling source A Substrate preheating section B Mold member pushing section C Substrate cooling

Claims (5)

熱により軟化するレジスト膜を表面に成膜したガラス基板やSi基板である脆性材料基板にインプリント法によるパターン転写を行う装置であって、基板を載置固定するプレート上に、パターン形状である凹凸を円周面に有し、積極回転する円筒形状の型部材を昇降可能に設置すると共に、基板のレジスト膜への押し付け荷重の制御機構を設け、又プレート及び型部材に加熱手段を設け、更に型部材又はプレートのいずれかに平行移動手段を設け、プレート上の基板のレジスト膜に型部材を回転させながら押し付けることによりパターン転写を行うこと、及び基板のレジスト膜への型部材押し付け工程の前工程に基板予備加熱部を、後工程に基板冷却部を設けたことを特徴とするパターン転写装置。An apparatus for transferring a pattern by an imprint method to a brittle material substrate such as a glass substrate or a Si substrate on which a resist film softened by heat is formed on the surface, and has a pattern shape on a plate on which the substrate is mounted and fixed. Having concavities and convexities on the circumferential surface, a positively rotating cylindrical mold member is installed so as to be able to move up and down, a control mechanism for pressing load on the resist film of the substrate is provided, and a heating means is provided on the plate and the mold member, Further, a parallel moving means is provided on either the mold member or the plate, and the pattern is transferred by rotating and pressing the mold member on the resist film of the substrate on the plate, and the process of pressing the mold member on the resist film of the substrate is performed. A pattern transfer apparatus comprising: a substrate preheating unit provided in a preceding step; and a substrate cooling unit provided in a subsequent step. 熱により軟化するレジスト膜を表面に成膜したガラス基板やSi基板である脆性材料基板にインプリント法によるパターン転写を行う装置であって、半導体デバイスの製造において、基板を載置固定するプレート上に、パターン形状である凹凸を円周面に有し、積極回転する円筒形状の型部材を昇降可能に設置すると共に、基板のレジスト膜への押し付け荷重の制御機構を設け、又プレート及び型部材に加熱手段を設け、更に型部材又はプレートのいずれかに平行移動手段を設け、プレート上の基板のレジスト膜に型部材を回転させながら押し付けることによりパターン転写を行うこと、及び基板のレジスト膜への型部材押し付け工程の前工程に基板予備加熱部を、後工程に基板冷却部を設けたことを特徴とするパターン転写装置。An apparatus for transferring a pattern by a imprint method to a brittle material substrate such as a glass substrate or a Si substrate on which a resist film softened by heat is formed on a surface, and on a plate on which the substrate is mounted and fixed in the manufacture of a semiconductor device. In addition to the above, a cylindrical mold member which has a pattern of concavities and convexities on its circumferential surface, a positively rotating cylindrical mold member is installed so as to be able to move up and down, and a control mechanism of a load for pressing a substrate against a resist film is provided. Provide a heating means, further provide a parallel moving means to either the mold member or the plate, perform pattern transfer by rotating and pressing the mold member against the resist film of the substrate on the plate, and to the resist film of the substrate A pattern pre-heating unit is provided in a step preceding the mold member pressing step and a substrate cooling unit is provided in a step subsequent thereto. 加熱手段に温度制御機構を有することを特徴とする請求項1又は2記載のパターン転写装置。3. The pattern transfer device according to claim 1, wherein the heating means has a temperature control mechanism. 基板から型部材の両側端の高さを検知するセンサーを設け、基板から型部材の高さの制御を行う制御機構を有することを特徴とする請求項1、2又は3記載のパターン転写装置。4. The pattern transfer apparatus according to claim 1, further comprising a sensor for detecting the height of both side ends of the mold member from the substrate, and a control mechanism for controlling the height of the mold member from the substrate. 型部材の凹凸パターンと基板のレジスト膜上に形成された凹凸パターンとの位置補正機構を有し、型部材あるいは基板を位置補正することによりパターンの重ね合わせを行うことを特徴とする請求項1、2、3又は4記載のパターン転写装置。2. The method according to claim 1, further comprising a position correcting mechanism for correcting the position of the concave / convex pattern of the mold member and the concave / convex pattern formed on the resist film of the substrate, and performing pattern superposition by correcting the position of the mold member or the substrate. 5. The pattern transfer device according to 2, 3, or 4.
JP2000009090A 2000-01-18 2000-01-18 Pattern transfer device Expired - Lifetime JP3604985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000009090A JP3604985B2 (en) 2000-01-18 2000-01-18 Pattern transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000009090A JP3604985B2 (en) 2000-01-18 2000-01-18 Pattern transfer device

Publications (2)

Publication Number Publication Date
JP2001198979A JP2001198979A (en) 2001-07-24
JP3604985B2 true JP3604985B2 (en) 2004-12-22

Family

ID=18537282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000009090A Expired - Lifetime JP3604985B2 (en) 2000-01-18 2000-01-18 Pattern transfer device

Country Status (1)

Country Link
JP (1) JP3604985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296730B1 (en) 2010-11-01 2013-08-20 (주) 엔피홀딩스 Pattern apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365733B2 (en) * 2002-12-16 2008-04-29 E Ink Corporation Backplanes for electro-optic displays
KR101010476B1 (en) * 2003-12-27 2011-01-21 엘지디스플레이 주식회사 Method and Apparatus for Fabricating Flat Panel Display
US7329114B2 (en) * 2004-01-20 2008-02-12 Komag, Inc. Isothermal imprint embossing system
US7730834B2 (en) 2004-03-04 2010-06-08 Asml Netherlands B.V. Printing apparatus and device manufacturing method
JP4996488B2 (en) 2007-03-08 2012-08-08 東芝機械株式会社 Fine pattern forming method
WO2008108441A1 (en) * 2007-03-08 2008-09-12 Toshiba Kikai Kabushiki Kaisha Method of forming fine pattern, mold formed by the method, transfer method and fine pattern forming method using the mold
JP4975675B2 (en) * 2008-04-04 2012-07-11 株式会社日本製鋼所 Manufacturing method and manufacturing apparatus of molded body
JP4641552B2 (en) * 2008-06-23 2011-03-02 キヤノン株式会社 Fine processing method and fine processing apparatus
CN103650106B (en) * 2011-06-30 2016-11-09 旭化成株式会社 Convexo-concave microstructure transcription template
DE102016207233A1 (en) * 2016-04-28 2017-11-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A method for locally forming a smooth surface of a substrate made of glass or a glass ceramic as well as a control element produced by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296730B1 (en) 2010-11-01 2013-08-20 (주) 엔피홀딩스 Pattern apparatus

Also Published As

Publication number Publication date
JP2001198979A (en) 2001-07-24

Similar Documents

Publication Publication Date Title
KR20050090070A (en) Device, method, and system for pattern forming
JP6021606B2 (en) Imprint apparatus, article manufacturing method using the same, and imprint method
JP6029495B2 (en) Imprint method, imprint apparatus, and article manufacturing method using the same
JP3604985B2 (en) Pattern transfer device
JP2010067796A (en) Imprint device
US20070125491A1 (en) Method of removing particle on substrate, apparatus therefor, and coating and development apparatus
KR20120122955A (en) Imprint apparatus, imprint method, and method for producing device
KR100507788B1 (en) Apparatus for curing resist
JP2005167166A (en) Position controllable pattern formation equipment and position controlling method
WO2015043321A1 (en) Nanoimprint lithography device and method
JP6513125B2 (en) Stage apparatus, lithographic apparatus, and method of manufacturing article
KR102200768B1 (en) Stage apparatus, lithography apparatus, and method of manufacturing article
JP2020088286A (en) Molding apparatus, molding method, and article manufacturing method
EP2991100B1 (en) Apparatus and method for solution transfer-type imprint lithography using roll stamp
JP7121653B2 (en) Film forming apparatus and article manufacturing method
JP2001274078A (en) Temperature control apparatus, device manufacturing apparatus and device manufacturing method
JP2007035706A (en) Conveyance apparatus, exposure device, and method of manufacturing micro device
JP7555735B2 (en) Molding apparatus, molding method, and method for manufacturing article
US11289341B2 (en) Pattern transfer technique and method of manufacturing the same
TW202316556A (en) Substrate conveyance method, substrate conveyance apparatus, molding method, and article manufacturing method
JP2005352070A (en) Substrate exchanging apparatus and aligner
KR20230166906A (en) Forming apparatus, forming method, and article manufacturing method
JP2011123103A (en) Proximity exposure apparatus, method for controlling gap of proximity exposure apparatus, and method for manufacturing display panel substrate
JP2016111213A (en) Stage apparatus, lithography apparatus, and manufacturing method of article
JP2018006554A (en) Pattern forming device, imprint device and manufacturing method of article

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8