JP3604820B2 - Pressure swing adsorption type nitrogen gas generator - Google Patents

Pressure swing adsorption type nitrogen gas generator Download PDF

Info

Publication number
JP3604820B2
JP3604820B2 JP18670296A JP18670296A JP3604820B2 JP 3604820 B2 JP3604820 B2 JP 3604820B2 JP 18670296 A JP18670296 A JP 18670296A JP 18670296 A JP18670296 A JP 18670296A JP 3604820 B2 JP3604820 B2 JP 3604820B2
Authority
JP
Japan
Prior art keywords
nitrogen gas
adsorption
nitrogen
pressure
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18670296A
Other languages
Japanese (ja)
Other versions
JPH105522A (en
Inventor
龍生 木下
Original Assignee
カネボウ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カネボウ株式会社 filed Critical カネボウ株式会社
Priority to JP18670296A priority Critical patent/JP3604820B2/en
Publication of JPH105522A publication Critical patent/JPH105522A/en
Application granted granted Critical
Publication of JP3604820B2 publication Critical patent/JP3604820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、吸着剤の選択的吸着特性を利用して、窒素を含む混合ガスより高濃度の窒素ガスを分離する装置と、それを用いた自動はんだ付け装置に関する。
【0002】
【従来の技術】
工業用窒素ガスは、金属の熱処理、半導体の製造、化学プラントの防爆シールなどに幅広く利用され、新たな利用分野も広がりつつある。大気中で行っていたはんだ付け工程を、窒素雰囲気下で低フラックスペーストを使用して実施することによりプリント基板やはんだの酸化を防止し、後工程のフロン洗浄工程を省略することが知られている。そのため、電子機器、電気製品等に使用されるプリント基板等に電子部品を表面実装する自動はんだ付け装置にも工業用窒素ガスは利用され、従来の大気中で行っていたはんだ付け工程を窒素雰囲気下で低フラックスペーストを使用して実施している。
【0003】
一方、公知の窒素ガス供給手段としては、窒素ガスボンベ、液体窒素タンク、PSA式窒素ガス発生装置、膜式窒素ガス発生装置、燃焼式窒素ガス発生装置等が知られている。この内、液体窒素タンクは、高純度の窒素(99.999容積%以上)を容易に供給できるが、低温貯蔵容器および蒸発設備等を設ける必要があるため、設備が大きくなり設備コストが高く、保守点検等が煩わしい等の欠点がある。また、窒素ガスボンベでも、コスト高で、ボンベ交換が煩わしい等の欠点がある。燃焼式窒素ガス発生装置は、バーナーで灯油や重油を高温度(1000℃付近)で燃焼させて酸素含有濃度の低い窒素ガスを発生させる装置であるが、高温度で燃焼させるため窒素酸化物の発生を避けることができない、火気を取り扱うので安全上特別の注意が必要となる、などの問題がある。更に、膜式窒素ガス発生装置は、簡便ではあるが、高純度の窒素ガスの発生が困難であるという欠点がある。このため、最近の傾向として、自動はんだ付け装置用の窒素ガス発生装置として、PSA式窒素ガス発生装置が注目されている。
【0004】
かかるPSA式窒素ガス発生装置は、例えば特公昭54−17595号公報に開示された如く、分子ふるい炭素等の吸着剤を充填した吸着塔に原料ガスを加圧下で送入し、酸素を選択的に吸着させ、窒素ガスを分離できるものである。このPSA式窒素ガス分離法は、深冷分離法に比較して装置が、小型となり、操作が簡便で、無人連続運転が可能などの利点が注目され、装置のより一層の小型化や発生窒素ガスの純度向上、動力原単位の向上を意図した種々の改良が試みられてきた。
【0005】
そして、PSA式窒素ガス発生装置の改良としては、種々の提案が行われており、例えば特開平1−56113号公報では、上下均圧の方法に関する改善が提案されている。
【0006】
また、吸着剤の改良も試みられ、例えば、従来は天然原料を出発物質として、煩雑な工程により炭素表面のミクロ孔構造を制御することにより製造されてきた(特公昭52−18675号公報)が、特公平6−20546号公報では、合成高分子を主原料とし、簡便なプロセスにより均質性に優れた分子ふるい炭素の得られることが提案されている。
【0007】
また、特開平6−154595号公報では、全体の80容積%(以降の%は、特に断らないかぎり容量%とする)以上が外径0.8〜1.8mmの円柱状または球状の最適な粒子形状を有する分離性能の優れた圧力スイング吸着式窒素ガス発生装置用分子ふるい炭素が提案されている。
【0008】
【発明が解決しようとする課題】
従来のPSA式窒素ガス発生装置においては、吸着剤の分離特性が限定されていたことや、吸着塔サイズ,操作条件等の選定が不適切であり、上記の如き操作法の工夫、吸着剤の改良にも関わらず発生窒素ガスの到達純度や製品窒素ガスの収率は未だ不十分であり、装置の小型化も未だ不十分な状態である。また、自動はんだ付け装置の気密性も悪いことから自動はんだ付け装置に必要な窒素ガス流入量も多くなり、これを供給するPSA式窒素ガス発生装置を、自動はんだ付け装置内へ組み込むことは不可能で、もっぱら自動はんだ付け装置とは別に設置して使用されている。その為、設置スペースが大きくなる、取り扱いが煩雑になる等の不具合が生じているのが現状である。
【0009】
【課題を解決するための手段】
本発明者らは、上記既存の諸問題を解決すべく鋭意研究を続けた結果、本発明を完成させたものであり、その目的とするところは、所定の特性の吸着剤を使用し、吸着塔容積を小さくし、所定の操作条件と組み合わすことにより、コンパクトで高性能なPSA式窒素ガス発生装置とし、従来不可能であった自動はんだ付け装置内への組み込みを可能にするものである。また、もう一つの目的は、従来の自動はんだ付け装置を改良することにより内蔵したPSA式窒素ガス発生装置より発生する窒素ガスの必要量を最小限にとめ、効果的に活用することにより、少量の窒素ガスで良好な自動はんだ付けを可能にするものである。
【0010】
本発明の目的は、以下の手段で達成しうる。
少なくとも2塔以上の吸着塔に窒素を含む混合ガスを供給し、高圧吸着行程と低圧再生行程とを各吸着塔で交互に繰り返し、窒素ガスを分離する圧力スイング吸着(Pressure Swing Adsorption:PSA)式窒素ガス発生装置において、
(a)2.5kgf/cm・Gの加圧下での単成分吸着を行った際の1分後の酸素吸着量が24.0〜30.0mg/g,窒素吸着量が6.0〜12.0mg/gで、且つ、1分後の窒素に対する酸素の吸着量が2.0〜5.0である吸着剤を用いること、
(b)吸着塔1塔当たりの有効容積が、原料空気の平均供給量に対して0.10〜0.050L・min/NLであり、且つ、製品窒素ガスの平均取出量が原料空気の平均供給量当たり、0.15〜0.45であること、
(c)吸脱着操作サイクルとして、吸着、均圧、再生の各工程を含み、各塔の吸着行程が40〜120秒であることを特徴とする圧力スイング吸着式窒素ガス発生装置を用いることで、さらには、該装置と、該装置より加熱室内に窒素ガスを供給する窒素ガス供給手段と、被はんだ付け部剤の搬入口および搬出口でのガスの出入りを制御して加熱室内の窒素ガス濃度の低下を防止する機構を備えることを特徴とする自動はんだ付け装置により達成される。
【0011】
【発明の実施の形態】
本発明の窒素ガス発生装置に用いる分子ふるい炭素は2.5kgf/cm・Gの加圧下での単成分吸着を行った際の1分後の酸素吸着量が24.0〜30.0mg/g,好ましくは25.0〜29.0mg/g,最も好ましくは26.0〜28.0mg/gで、1分後の窒素吸着量が6.0〜12.0mg/g、好ましくは6.0〜11.0mg/g,最も好ましくは6.5〜10.0mg/g,で、且つ、一分後の窒素当たりの酸素の吸着量が2.0〜5.0、好ましくは2.3〜4.8,最も好ましくは2.6〜4.3である。酸素吸着量が24.0mg/g以下の場合には、酸素吸着容量の不足のために実用的な酸素、窒素分離性能を得ることが出来ない。また、酸素吸着量が30.0mg/gを越える場合には、窒素吸着量も12.0mg/g以上となり分離性能が低下して好ましくない。更に、窒素吸着量が6mg/g以下の場合には、酸素の吸着速度が遅くなり過ぎ、単位時間当たりに取り出せる窒素ガス量が少なくなり好ましくない。
【0012】
本発明に用いる分子ふるい炭素は、上記特性を備えていれば良くその原料や製造法等について特に制限するものではないが、特に、特公平6−20546号等に記載したフェノール樹脂微粉末、熱硬化樹脂溶液及び高分子バインダーを主原料として製造した分子ふるい炭素を吸着剤として用いた場合に最も好ましい結果がえられる。
【0013】
この分子ふるい炭素の製造法の一例は以下の如くである。即ち、粒径1〜160μmの球状熱硬化性フェノール樹脂の粉末100重量部当り、フェノール樹脂またはメラミン樹脂よりなる熱硬化性樹脂の溶液を固形分として5〜60重量部、さらにポリビニルアルコールおよび水溶性又は水膨潤性セルロ一ス誘導体から運ばれる高分子バインダーを1〜30重量部混合して均一とし、この混合物を円柱状または球状粒状物に成形する。そして、この粒状物を非酸化性雰囲気下、500〜1100℃の範囲の温度で、加熱処理して炭化し、粒状分子ふるい炭素とする。この分子ふるい炭素は、好ましくは、多数の球状炭素粒子が粒径2〜80μmを有し、好ましくは多数の炭素粒子の間の連続通路の平均値径は0.1〜20μmである。
【0014】
この分子ふるい炭素は、多数の炭素粒子の夫々が、粒子間の通路に還通する多数の細孔を有する。この多数の細孔の存在が分子ふるい炭素の選択吸着性の発現に大きく寄与している。多数の炭素粒子の中の該細孔は2.8〜5.0Å程度の平均直径を有する。
【0015】
また、該細孔の占める容積は分子ふるい炭素の重量1g当り好ましくは0.1〜0.7ccであり、より好ましくは0.15〜0.5ccであり、さらに好ましくは0.2〜0.4ccである。該分子ふるい炭素は、組成上の特徴として、少なくとも85重量%の炭素含有率を有し、好ましくは少なくとも90重量%の炭素含有率を有する。また、該分子ふるい炭素は、気孔率が好ましくは25〜50容積%であり、より好ましくは30〜45容積%である。また、嵩密度が好ましくは0.7〜1.2g/ccであり、より好ましくは0.8〜1.1g/ccである。
【0016】
該分子ふるい炭素は、例えば直径0.1〜12mm,長さ1〜10mm程度の円柱伏、あるいは直径0.1〜10mm程度の球伏の形態で提供され、その充墳密度は通常0.5〜0.75g/cmであり、好ましくは0.60〜0.70g/cmである。
【0017】
本発明においては2.5kgf/cm・Gの加圧下での単成分吸着を行った際の1分後の酸素吸着が24.0〜30.0mg/g、窒素吸着量が6.0〜12.0mg/gで、且つ、1分後の窒素当たりの酸素の吸着量比が2.0〜5.0である吸着剤をPSA式窒素ガス発生装置の構成および操作条件を組み合わせることにより、高純度の窒素ガスを極めて効率よく分離することが可能となり、従来の装置に比較してコンパクトで高性能な装置とすることが出来る。即ち、少なくとも2塔以上の吸着塔を有するPSA式窒素ガス発生装置において、吸着塔1塔当たりの有効容積Lを、原料ガスの平均供給量NL/minに対して0.10〜0.050L・min/NLとし、且つ、製品窒素ガスの平均取出量NL/minが原料空気の平均供給量NL/minに対して、0.15〜0.45となるように設定し、吸脱着操作サイクルとして、吸着、均圧、再生の各工程を含みかつ、各塔の吸着行程が40〜120秒とする装置構成及び操作条件とすることによりコンパクトな装置で所定の濃度の窒素ガスを効率よく発生させることが出来る。
【0018】
本発明のPSA式窒素ガス発生装置は、通常、吸着剤を充填した2塔以上の吸着塔、貯留槽及びこれらの構成要素を連結する配管及びガスの流れを制御するための自動弁とその制御系、流量調整計及びガス濃度分析計などから構成され、空気圧縮機などの原料空気供給装置を付帯設備としている。原料ガス供給量に対して吸着塔有効容積を小さくすると、吸着剤単位重量当たりの処理ガス量が増加するために、吸着剤のガス吸着速度を大きくする必要がある。通常、酸素吸着速度を大きくすると、窒素の吸着速度も大きくなり酸素・窒素分離能が低下する。本発明においては、吸着剤の吸着特性と原料ガス供給量、吸着塔容積を上記所定の範囲に設定することによりコンパクトで高効率の装置とすることが可能であることを見いだしたものである。
【0019】
本発明の窒素ガス発生装置においては、上記装置構成において吸着塔1塔当たりの有効容積が、原料ガスの平均供給量に対して0.10〜0.050L・min/NL、好ましくは0.09〜0.060L・min/NL、最も好ましくは0.08〜0.060L・min/NLであり、且つ、原料空気の平均供給量当たり製品窒素ガスの平均取出量が0.15〜0.45、好ましくは0.20〜0.44、最も好ましくは0.25〜0.43である。
【0020】
また、通常、得られる製品窒素ガスの純度は、吸着工程、再生工程の時間および塔内圧力等により変動するが、製品窒素ガス取出量に対し、吸着塔容積が小さい場合には、吸着塔容量当りの生産性が向上し、製品単位量当りの動力消費量即ち動力原単位も少なくて済むが、製品の窒素純度が低下する傾向にある。本発明においては、吸着剤特性の設定と吸着塔容積、操作条件の選定により、窒素純度(N+Ar)99〜99.999容積%の範囲の製品ガスを効率的に得ることが可能である。
【0021】
本発明の上述の如き構成のPSA式窒素ガス発生装置の構成を図1に基づいて具体的に説明する。(1)はPSA式窒素ガス発生装置、(3)は該PSA式窒素ガス発生装置に原料空気を供給する空気圧縮機、(2)は原料空気を除湿する除湿機、(4)は発生した窒素ガスを貯留する貯留する貯留層、(16)は後に述べる自動はんだ付け装置に連結する配管、(14)は窒素ガスの圧力を調整する圧力設定器、(15)は窒素ガスの流量を調整する取り出し量設定器である。上記PSA式窒素ガス発生装置(1)は、吸着塔(6),(6a)と、配管(5),(5a),(9),(9a),(11),(12),(17)と、 自動弁(7),(7a),(8),(8a),(10),(10a),(13),(13a),(18)からなる。
【0022】
次に作動状態について説明すると、空気圧縮機(3)により供給された原料空気は、必要ならば除湿器(2)で除湿した後、自動弁(8)又は(8a)を通して一方の吸着塔(6)に供給される。例えば、一方の吸着塔(6)が吸着工程の場合には、この吸着塔(6)に原料空気が供給され、他方の吸着塔(6a)は再生工程となる。吸着工程にある吸着塔の塔内圧力は通常3〜9.9kgf/cm・G、好ましくは4〜9.5kgf/cm・G、最も好ましくは5〜8.5kgf/cm・Gである。また、吸着塔(6a)の再生は、通常大気開放または真空ポンプによる減圧再生により実施されるので、再生工程にある吸着塔(6a)の内圧は、大気圧または100torr以下程度にまで低下する。図1には、大気圧再生の場合を例示してある。また、図1は、配管(17)、自動弁(18)により貯留槽(4)より窒素富化ガスを強制的に還流する工程が含まれる場合の例示であるが、この配管(17)、自動弁(18)がなく、吸着塔(6),(6a)と貯留槽(4)の圧力バランスの結果として、配管(11),(9),(9a)、自動弁(10),(10a)を通じて還流が自動的に起こる場合もある。
【0023】
また再生工程では、貯留槽(4)内の窒素富化ガスを逆流して吸着塔(6a)内を洗浄するか、或いは吸着工程の吸着塔(6)から取り出される製品窒素ガスの一部を再生工程の吸着塔(6a)に流して、吸着塔内を洗浄するいわゆるパージ法を採用してもよい。次に吸着工程の終了した吸着塔(6)と再生工程の終了した吸着塔(6a)は、吸着塔製品ガス取出側または、吸着塔原料ガス送入側あるいは、吸着塔製品ガス取出側と原料ガス送入側とで連結し、吸着工程の終了した吸着塔(6)内に存在する混合ガスの一定量を再生工程の終了した吸着塔(6a)に移動させる所謂均圧工程に移る。通常吸着塔製品ガス取出側を連結した場合を塔頂均圧、吸着塔製品ガス取出側どうし及び製品ガス送入側どうしを連結した場合を上下均圧、吸着塔製品ガス取出側と製品ガス送入側とを連結した場合をクロス均圧と呼んでいるが、これらの均圧方法あるいは、その他の均圧方法も含め均圧工程を実施することにより装置効率を高めることが出来る。
【0024】
均圧工程の終了後、貯留槽(4)より窒素富化ガスを配管(17)および自動弁(18)により強制的に吸着塔(6a)に還流させてもよいが、この工程は、省略することも可能である。強制的な還流工程が行なわれない場合、あるいは、強制的な還流量が吸着塔(6a)と貯留槽(4)の完全な圧カバランスに到達するに至らない程度に少ない場合には、次の吸着塔(6a)の吸着工程初期に、吸着塔(6a)内の圧カが貯留槽内(4)の内圧より低いことにより自動的に還流がおこる。この自動的な還流は、吸着塔(6a)への原料空気の送入及び貯留槽(4)からの窒素富化ガスの還流により吸着塔(6a)の内圧が上昇し、貯留槽(4)と圧カがバランスすることにより自動的に停止し、吸着塔(6a)より貯留槽(4)への窒素富化ガスの取出しに移行していく。この吸着塔(6a)の吸着工程の間、吸着塔(6)は再生工程にある。そして吸着工程の終了した吸着塔(6a)と再生工程終了した吸着塔(6)は連結され、均圧工程に移る。この様にして、吸着−均圧−再生(洗浄)−均圧−(還流)の工程が順次繰り返される。
【0025】
上記の本発明のPSAサイクルに於て吸着工程の時間は40〜140秒、好ましくは50〜100秒、最も好ましくは60〜90秒である。吸着時間が短すぎあるいは長すぎる場合には、製品窒素ガスの純度が低下して好ましくない。また、その他の工程については、その長さを特に限定するものではないが、通常均圧は0.1〜10秒程度、還流も0.1〜10秒程度であり、パージ工程及び再生工程の長さは吸着工程との兼ね合いにより自動的に決まってくる。
【0026】
2.5kgf/cm・Gの加圧下での単成分吸着を行った際の1分後の酸素吸着が24.0〜30.0mg/g,窒素吸着量が6.0〜12.0mg/gで、且つ、1分後の窒素に対する酸素の吸着量比が2.0〜5.0である吸着剤を用い、特定の装置構成と操作条件を採用することにより、コンパクトになった上記のPSA式窒素ガス発生装置は、自動はんだ付け装置に内蔵することが可能となる。また、自動はんだ付け装置構造の改良を組み合わせることにより、窒素ガスの必要量を最小限に留め、効率よく活用し、良好な作業性の確保が可能となる。
【0027】
PSA式窒素ガス発生装置を内蔵する自動はんだ付け装置の改良としては、被はんだ付け部材の搬入口および搬出口でのガスの出入りを制御して加熱室内の窒素ガス濃度の低下を防止する窒素ガス濃度低下防止機構を備えることが最も効果的である。
この窒素ガス濃度低下防止機構としては、特に自動はんだ付け装置の被はんだ付け部材の搬入口および搬出口にガスカーテンを備えることが効果的であり、それにより、加熱室内への大気の流入を制御することができる。
また、自動はんだ付け装置の加熱室内部の酸素濃度を検知し、それに対応してPSA式窒素ガス発生装置からの窒素ガス流入量を自動制御し、加熱室内部の窒素ガス濃度を所定濃度に保つ窒素ガス自動濃度保持機構を設けることにより、より安定的に歩留まり良くはんだ付けを実施することが出来る。
【0028】
例えば、電子部品の製造において用いられる自動はんだ付け装置には、プリント基板に形成された銅箔等の回路パターンの電極部に電子部品を装着した後、溶融はんだと接触させるフロー式と、はんだとフラックスを混合したクリームはんだの上に電子部品を載せて熱処理するリフロー式等があり、本発明はどちらの方式にも適用可能であるがここでは、実施態様の一例として図2のリフロー式について説明する。図2に例示の自動はんだ付け装置においては、PSA式窒素ガス発生装置を内蔵し、該装置より加熱室内に窒素ガスを供給する。また、加熱室内の窒素ガス濃度の低下を防止する窒素ガス濃度低下防止機構として、被はんだ付け部剤の搬入口および搬出口にガスカーテンを備え、搬入口および搬出口でのガスの出入りを制御して加熱室内への大気の流入を制御できる。更に、自動はんだ付け装置の加熱室内部の酸素濃度を検知し、それに対応してPSA式窒素ガス発生装置からの窒素ガス流入量を自動制御し、加熱室内部の窒素ガス濃度を所定濃度に保つ窒素ガス自動濃度保持機構を有している。
【0029】
以下自動はんだ付け装置の構成を図2に基づいて具体的に説明する。(1)は窒素ガス発生装置部であり、図1で説明したPSA式窒素ガス発生装置である。リフロー装置部は、被はんだ付け部材である電子部品(104)を搭載したプリント基板(105)を搬入するコンベア(106)、コンベア(107)、電子部品(104)を搭載したプリント基板(105)を搬出するコンベア(108)と、4つの加熱室である予備加熱室(110)、予備加熱室(111)、リフローはんだ付け室(112)、徐冷室(113)、各室を分割する隔壁(123),(124),(125)からなる。各加熱室内部には、ヒーター(118),(119),(120)、ファン(126),(127),(128),(129)、ノズル部(114),(115),(116),(117)が設置してあり、ノズル部(114),(115),(116),(117)は自動はんだ付け装置に連絡する配管(16)に接続されている。そして、ノズル部(114),(115),(116),(117)には窒素ガス噴出用ノズル、窒素ガス自動流量制御器、自動圧力調節器、開閉弁および加熱室内圧力測定用圧力センサー等が設置されている。
【0030】
次に、窒素ガス発生装置(1)とはんだ付け装置内部の加熱室(110),(111),(112),(113)等の作動状態について説明する。窒素発生装置部(1)で、空気圧縮機(3)より供給された圧縮空気を用いて製造された窒素ガスは貯留槽(4)に一旦貯留され、圧力設定器(14)および取出量設定器(15)により調節され、自動はんだ付け装置に連結する配管(16)を介し、ノズル部(114),(115),(116),(117)より各加熱室(110),(111),(112),(113)に供給される。
【0031】
自動はんだ付け装置部の加熱室は、隔壁(123),(124),(125)によって、互いに独立して構成された予備加熱室(110)、予備加熱室(111)、はんだ付け室(112)、徐冷室(113)に分割されている。装置の運転に当たっては、例えば予備加熱室(110)内をヒーター(118)により約150℃に、予備加熱室(111)内をヒーター(119)により約180℃、リフローはんだ付け室(112)内ヒーター(120)によりを約250℃に、また徐冷室(113)内を約150℃となるように加熱制御し、搬入用コンベアー(106)に積載された電子部品(104)を搭載したプリント基板(105)を搬送しながら予備加熱室(110),(111)で予備加熱した後に、リフローはんだ付け室(112)で急速にはんだ付け温度にまで加熱してはんだ付けをし、徐冷室(113)で徐々に冷却して搬出コンベアー(108)から搬出する。
ファン(126),(127),(128),(129)は各加熱室内に充満する加熱された窒素ガス等の雰囲気ガスを強制循環させる為のものであって、予備加熱室(110),(111)、はんだ付け室(112)、徐冷室(113)に夫々配置されたモーターによって駆動されるようになっている。
【0032】
窒素ガス発生装置の設置箇所は、自動はんだ付け装置内部であれば特に制限はなく、自動はんだ付け装置下部,側面,前面および裏面等に内蔵することができる。例えば、自動はんだ付け装置がコンパクトになるように、PSA式窒素ガス発生装置の吸着塔2塔を、吸着塔1塔は右側面、もう1塔は左側面に配置し、貯留槽およびその他の部品等を下部に設置することも可能である。
窒素ガス発生装置部、特に吸着塔および制御機器等は、通常、周囲温度5〜45℃、好ましくは10〜35℃、最も好ましくは20〜30℃に保持される。そのため、自動はんだ付け装置の加熱部等からの伝熱、外気温度、周囲の蓄熱などの影響を受けないように断熱材、保温材等を要所に取り付けたり、冷却ファン、冷房装置、エアーコンディショナーなどの空調設備を設けることが好ましい。
【0033】
高純度窒素ガス発生装置の内蔵に際し、吸着塔および貯留槽(4)の形状および配置については特に限定するものではない。例えば、吸着塔形状は、I字型、L字型、U字型、およびV字型等、特に制限するものではないが、最も好ましくは通常の円筒、縦型であるI字型である。吸着塔の配置としては、吸着剤遍在によるガスのチャネリングが起きにくい縦型配置が最も好ましいが、横配置、傾斜配置等も可能である。傾斜型については水平面に対して吸着塔の角度を、特に指定するものではない。原料空気は、下部からを供給し、上部より窒素ガスを取り出す方法が最も一般的であるが、吸着塔形状等により最適な原料ガス供給および取出方法を、適宜選択すればよい。
【0034】
PSA窒素ガス発生装置を小型化し、自動はんだ付け装置に内蔵するには、該自動はんだ付け装置の空きスペースを利用する必要があり、実用面を考慮すると、1塔の吸着塔容積は、100L程度以下であることが好ましい。I字型吸着塔の場合では、外径350mm程度以下、好ましくは、300mm程度以下、高さは1200mm程度以下、好ましくは1000mm程度以下、最も好ましくは900mm程度以下である
【0035】
吸着塔内部の未充填空間は、圧力スイング吸着による吸着剤の振動により、吸着剤の摩耗および粉化を起こし、発生窒素ガスの純度に悪影響を及ぼす原因となる。したがって、吸着塔内部の未充填空間を極力少なくし、吸着材が吸着塔内部で振動しないようにする必要がある。
【0036】
次に、自動はんだ付け装置に内蔵した窒素ガス発生装置部(1)より加熱室内に窒素ガスを供給すると窒素ガス供給機構と、被はんだ付け部材の搬入出口でのガスの出入りを制御して加熱室内の窒素ガス濃度の低下を防止する窒素ガス濃度低下防止機構について説明する。
【0037】
隔壁(123),(124),(125)によって予備加熱室(110)、予備加熱室(111)、リフローはんだ付け室(112)、徐冷室(113)は、分割されているので、各室内での雰囲気ガス拡散が容易となる一方で、各室間での雰囲気ガス移動は抑制されている。また、各室間の熱影響を低減し、加熱管理を容易に行うことが出来る。
【0038】
窒素ガス供給機構は、ノズル部(114),(117)に設置された加熱室内圧力測定センサーにより加熱室(110),(113)内部の圧力を測定し、絶えず検出信号を自動はんだ付け装置の制御部に送り、加熱室内部雰囲気が、大気圧よりやや高くなる様、ノズル部(114),(115),(116),(117)により適量の窒素ガスを供給する。予備加熱室(110),(111)からはんだ付け室(112)に向かって次第に高温となるように温度が管理されており、高温部においてはガス密度が薄く、低温部においてはガス密度が濃くなる為に、雰囲気ガスは、ガス密度の濃い低温部から薄い高温部に向かう流れを生じるが、大気圧以上に加圧された加熱室内の窒素雰囲気ガスは、搬出口において少しずつ上昇気流として排出される。
【0039】
上記の加熱室内の圧力制御による大気の漏れ込み防止に加え、更に搬入口および搬出口に窒素ガス濃度低下防止機構としてガスカーテン(121),(122)を設け、窒素雰囲気ガスの出入りを制限することが出来る。電子部品(104)を搭載したプリント基板(105)が予備加熱室(110)に搬入される際、または電子部品(104)がはんだ付けされたプリント基板(5)が除冷室(113)から搬出される際に持ち込まれる大気は、低温(室温)の重い空気であるために侵入しようとするが搬入口、搬出口より排出する窒素雰囲気ガスに遮断されて加熱室内部への侵入はほぼ阻止される。プリント基板の大形化により大気が持ち込まれやすくなるが、ガスカーテンにより大気侵入を防止し、大気侵入による加熱室内の窒素ガス濃度の低下を防止することができる。
【0040】
搬入口および搬出口ガスカーテン用ノズル部(121),(122)には、噴出用ノズル、自動圧力設定器および自動流量設定器を配置しており、予備加熱室(110)と、徐冷室(113)内部より外部に向けて、一定の圧力、一定の流量で噴出している。図2では搬入口および搬出口の上部に設置してあるが、下方または両方に設置しても良い。更に、大気漏れ込みを阻止するために、搬入口および搬出口の外表面上部または下部、好ましくは下部に、吸引口または吸引装置等を設置し、強制的に搬入口および搬出口付近の大気および排出される窒素雰囲気ガスを吸引することにより、排出される窒素雰囲気ガスに大気を巻き込んで吸引することにより、更に漏れ込みを防止することができる。また、搬入出コンベアー(106)と搬出コンベアー(108)を加熱室内にあるコンベアー(107)より少し低く設置することでも効果が上がる。
【0041】
次に、自動はんだ付け装置の加熱室内部の酸素濃度を検知し、それに対応して窒素ガス発生装置部(1)からの窒素ガス流入量を自動制御し加熱室内部の窒素ガス濃度を所定の濃度に保つ窒素ガス自動濃度保持機構について図2を用いて説明する。加熱室(112)の雰囲気ガスを雰囲気ガス吸入口(130)より吸引し、雰囲気ガス送気路パイプ(131)を介して吸入し、加熱室内雰囲気ガス測定用酸素濃度計(132)で酸素濃度を測定する。
【0042】
自動はんだ付け装置が定常状態で運転している時に、加熱室(112)内雰囲気ガスの酸素濃度値は、加熱室内雰囲気ガス測定用濃度系(132)で測定され、はんだ付け装置の運転状況を管理する制御部に絶えず検出信号として送られ、加熱室(112)内部の酸素濃度が所定濃度の一定値になるように、ノズル部(114),(115),(116),(117)内の流量設定器により窒素ガス供給量を自動調節する。
【0043】
尚、図2においては加熱室内雰囲気ガス測定用酸素濃度計(132)を1カ所および加熱室内圧力測定センサーをノズル部(114),(117)の2カ所に設置したが、酸素濃度計および圧力測定センサーを各室に設置し、各室を更に細かく濃度管理および圧力管理しても良い。
【0044】
上記、自動はんだ付け装置の加熱室では、加熱室内の高濃度窒素ガス雰囲気が、はんだボールの生成を抑えるためには、酸素濃度が少なくとも1.0容量%以下、好ましくは0.3容量%以下、最も好ましくは0.02容量%以下の窒素ガス雰囲気が必要である。
自動はんだ付け装置の加熱室内の雰囲気窒素ガス濃度を上記範囲内に保持するには、PSA式窒素ガス発生装置の窒素ガス発生量は、通常8〜20Nm/H、好ましくは10〜18Nm/H、最も好ましくは12〜16Nm/Hである。 またその窒素純度は99〜99.999容量%、好ましくは99.7〜99.993容量%、最も好ましくは99.98〜99.995容量%である。
【0045】
【実施例】
以下に実施例を挙げて、本発明を具体的に説明する。なお本発明に用いた測定法をまとめて示すと次の通りである。
(1) 細孔容積、細孔径分布の測定:
本発明の分子ふるい炭素の細孔容積及び細孔径分布は、細孔直径60Å〜500μmの範囲の細孔については、ポロシメーターによる水銀圧入法(島津製作所製,ボアサイザー9310)により測定した。
また、細孔直径60Å以下の細孔については、窒素ガスの吸着等温線により、下記のいわゆるケルビン式により求めた。
【数1】

Figure 0003604820
P :吸着ガスが細孔に吸着するときの飽和蒸気圧、
Po:常態での吸着ガスの飽和蒸気圧、
γ :表面張力、
V :液体窒素の1分子体積、
R :ガス定数、
T :絶対温度、
γK:細孔のケルビン半径、
細孔のケルビン半径に対する補正は、Cranston−Inkley法によりおこなった。
(2) 酸素及び窒素の1分後の吸着量及び平衡吸着量の測定:
本発明に用いる分子ふるい炭素の酸素・窒素の吸着量を図3に示す吸着特性測定装置により測定した。
【0046】
図3において、(201)は真空ポンプ、(204)は試料室、(205)は調整室、(206),(207)は圧力センサー、(209)は記録計、(210)は圧力計、(214),(215)はガスレギュレータ、(216)は窒素ボンベ、(217)は酸素ボンベ、(202),(203),(208),(211),(212),(213)はバルブであり、226.9mlの試料室(204)に約3gの試料を入れ、バルブ(211)、(208)を閉じ、バルブ(202)、(203)を開けて30分間脱気した後バルブ(202)、(203)を閉じ、バルブ(211)を開けて231.7mlの調整室(205)内に酸素ガスボンベ(217)より酸素ガスまたは窒素ガスボンベ(216)より窒素ガスを送り込み、設定圧になったところでバルブ(211)を閉じ、バルブ(203)を開け所定時間における内部圧力の変化を測定して、酸素および窒素の各々の吸着量の経時変化を測定し、吸着開始1分後の酸素吸着量、窒素吸着量を求めた。
測定は測定開始1分後の吸着塔内圧が2.5kgf/cm・Gより大または小となる点、数点が測定できる様、初期設定圧を変えて測定し、それより2.5kgf/cm・Gにおける酸素および窒素の1分後の吸着量を求めた。
【0047】
(実施例1)
平均粒径20μmの球状フェノール樹脂10kgを計量し、更に該球状フェノール樹脂粉末100重量部に対し、水溶性メラミン樹脂(住友化学株式会社製,スミテックスレジンM−3,固形分濃度80重量%)を固形分の量で5重量部、重合度1700けん化度88%のポリビニルアルコール4重量部、馬鈴薯澱粉20重量部、クレオソート20重量部(住金化工株式会社製)、界面活性剤9重量部および水3.5重量部を計量した。
【0048】
上記原料のうちポリビニルアルコールを温水で20重量%の水溶液となるように溶解し、このポリビニルアルコール水溶液に水溶性メラミン樹脂、馬鈴薯澱粉、クレオソート、界面活性剤および水を加えニ一ダ一で10分間混合した。その後球状フェノール樹脂を加えて更に10分間混合した。
この混合組成物を二軸押出造粒機(不二パウダル(株)製,ペレッタダブル,EXDF−100型)で押出し、平均粒子径が1.3mmφ×5mmLの粒状体を造粒した。該造粒体を80℃で24時間熱処理し、分子ふるい炭素前駆体組成物を得た。該前駆体組成物は前配作業くり返しにより約2100kg作製した。
【0049】
この前駆体組成物を、それぞれ有効寸法750mmφ×400mmLの連続式ロ一タリーキルンに入れ、窒素雰囲気下、滞留4時間、最高温度690℃,740℃,800℃の3種類に変化させて炭化し、平均粒子径1.0mmφ×4mmLのペレット状分子ふるい炭素を各300kg製造した。
最高温度を変化させた3種類の分子ふるい炭素A,B,Cは、2.5kgf/cm・G加圧下で1分後の酸素吸着量および窒素吸着量を測定し、1分後の酸素/窒素の吸着容量比を算出した結果、表1に示した吸着性能の分子ふるい炭素であった。
【0050】
【表1】
Figure 0003604820
【0051】
図1に示す貯留槽及び原料空気圧縮機、除湿機及びそれらを連結する配管および自動弁よりなるPSA実験装置において、吸着塔容積84.0Lを用い、吸着塔容積/供給量が0.08になる空気量を圧力8.5kgf/cm・Gで一定量供給し、純度を99.9容量%となるように取出量を調節しながら、PSA実験を行った。
【0052】
本実施例では、貯留槽内容積は吸着塔容積の90容量%、即ち、75.6Lとした。また、表2に示す操作サイクル及び操作時間で運転した。また、再生は大気圧再生とし、再生工程中の吸着塔を製品窒素ガスの一部を用いて洗浄するパージ工程を採用し、パージ流量は20NL/minとした。上記運転条件での窒素純度の結果を表3に示す。
【0053】
【表2】
Figure 0003604820
【0054】
【表3】
Figure 0003604820
【0055】
試料Bは、酸素吸着量、窒素吸着量、窒素に対する酸素の吸着量比が適切なので、酸素・窒素分離性能が良く、本発明のPSA式窒素ガス発生装置の構成および操作条件により、効率よく純度99.9容量%の窒素ガスを最も多く取り出すことが出来る。
試料Aでは、酸素、窒素の吸着速度が遅くなりすぎ、実用的な酸素・窒素分離性能を得ることが出来ず、単位時間当たりに取り出せる窒素ガス量が少なくなり、好ましくない。
試料Cでは、酸素、窒素の吸着速度が速すぎ、且つ、窒素に対する酸素の吸着量比が小さいために、酸素・窒素分離性能が低下し、単位時間当たりに取り出せる窒素ガス量が少なく、好ましくない。
【0056】
(実施例2)
実施例1と同様の混合組成物を作製し、二軸押出造粒機(不二パウダル株式会社製,ペレッタダブル,EXDF−100型)で押出し、平均粒子径が1.3mmφ×5mmLの粒状体を造粒した。該造粒体を95℃で24時間熱処理し、分子ふるい炭素前駆体組成物を得た。該前駆体組成物は前配作業くり返しにより約700kg作製した。
【0057】
この前駆体組成物を、それぞれ有効寸法750mmφ×400mmLの連続式ロ一タリーキルンに入れ、窒素雰囲気下、滞留4時間、最高温度750℃で炭化し、平均粒子径1.0mmφ×4mmLのペレット状分子ふるい炭素を約300kg製造した。この分子ふるい炭素は、2.5kgf/cm・G加圧下で1分後の酸素吸着量26.7mg/g、窒素吸着量7.9mg/gで、1分後の酸素/窒素の吸着容量比は3.38であった。
【0058】
図1に示す貯留槽及び原料空気圧縮機、除湿機及びそれらを連結する配管及び自動弁よりなるPSA実験装置を用い、空気を、圧力8.5kgf/cm・Gで一定量供給し、吸着塔容積/供給量を0.12〜0.04になるように吸着塔容積を変化させ、また、窒素純度を99.9容量%になるように取出量を調節しながら、PSA実験を行った。
【0059】
本実施例では、貯留槽内容積は吸着塔容積の90容量%とした。また、表2に示す操作サイクル及び操作時間で運転させた。尚、本実施例に於ては、再生は大気圧再生とし、再生工程中の吸着塔を製品窒素ガスの一部を用いて洗浄するパージ工程を採用し、パージ流量は35NL/minとした。上記運転条件での取出量の結果を表4に示す。
【0060】
【表4】
Figure 0003604820
【0061】
表4より、No.3では、吸着塔サイズと原料空気供給量との比率が吸着剤特性と良く適合しているために、99.9容量%の製品窒素ガスを最も多く取り出すことが出来た。
No.1では、自動はんだ付け装置に内蔵するには吸着塔が大きすぎて不適当であり、また、原料ガス供給量に対して吸着塔容積が大き過ぎるため、吸着塔の最高到達圧は6.7kgf/cm・Gまでしか上昇せず、吸着剤の特性を効果的に発揮することが出来ず99.9容量%での製品窒素ガス量が少なくなり好ましくない。
No.5の場合、吸着塔容量に対して原料ガス供給量が過剰なために、99.9容量%での取出量が極端に減少して好ましくない。
吸着塔容積/供給量比が0.10〜0.05の範囲内にあるNo.2,3,4では、自動はんだ付け装置内部に内蔵するのに適しており、且つ、吸着塔容積が小さく、製品ガスも効率的に取り出すことが出来る。
【0062】
(実施例3)
実施例2で用いた分子ふるい炭素、すなわち2.5kgf/cm・G加圧下で酸素吸着を行った際の1分後の酸素吸着量は26.7mg/g、窒素吸着量は7.9mg/gで1分後の酸素/窒素の吸着容量比は3.38である分子ふるい炭素を使用し、1塔当たりの吸着塔容積が76.0Lの吸着塔および64.8Lの貯留槽よりなるPSA式窒素ガス発生装置を内蔵した図3に示す自動はんだ付け装置において窒素気流中でのはんだ付け実験を実施した。吸着操作サイクルは、表2と同様にし、吸着時間70秒,均圧0.6秒とした。
発生した製品窒素ガスは、窒素ガス発生装置部から窒素ガス送気路パイプ(16)を介し、ノズル部(114),(115),(116),(117)より噴出して雰囲気酸素濃度を制御し、ガスカーテンノズル部(121),(122)からの噴出により、加熱室内圧力が大気圧以上になるように制御した。
【0063】
表5に示したように、PSA式窒素ガス発生装置を内蔵した自動はんだ付け装置による、はんだ付け実験の結果、取出量/空気供給量比が0.15〜0.45の範囲内で良好な結果が得られた。
【0064】
【表5】
Figure 0003604820
【0065】
(実施例4)
自動はんだ付け装置の加熱室内に酸素濃度計を接続し、加熱室内の酸素濃度が一定となる様、PSA式窒素ガス発生装置の発生量を自動制御した。
750℃で焼成して得た分子ふるい炭素(2.5kgf/cm・G加圧下で酸素吸着を行った際の1分後の酸素吸着量は26.7mg/g、窒素吸着量は7.9mg/gであり、1分後の酸素/窒素の吸着容量比が3.38である分子ふるい炭素)を使用し、吸着塔容積76.0Lの吸着塔の塔および68.4Lの製品貯留槽よりなるPSA式窒素ガス発生装置を内蔵した図3に示す自動はんだ付け装置において窒素気流中でのはんだ付け実験を実施した。吸着操作サイクルは、表2と同様にし、吸着時間70秒,均圧0.6秒とした。
【0066】
加熱室(112)内の酸素濃度は、雰囲気ガス吸入口(130)より吸引され、雰囲気ガス送気路パイプ(131)を介し、酸素濃度計(132)により測定する。発生した製品窒素ガスは、窒素ガス発生装置部から窒素ガス送気路パイプ(16)を介し、ノズル部(114),(115),(116),(117)より噴出して雰囲気酸素濃度を制御し、ガスカーテンノズル部(121),(122)からの噴出により、加熱室内圧力が大気圧以上になるように制御した。
【0067】
加熱室内の酸素濃度は100±20ppm以内に、また窒素ガス発生量は200NL/min±14NL/minの範囲内で変動したが装置を安定的に稼働させ、良好にはんだ付けを行うことが出来た。
【0068】
【発明の効果】
本発明の窒素ガスの分離装置は、特定の窒素・酸素の分離能を賦与した吸着剤とPSA装置構成及びPSA条件操作を組合せることにより、吸着塔の容積が小さく、製品窒素ガスの純度が高く、発生量が大きく、かつ、動カ源単位の小さいPSA式窒素ガス発生装置を提供するものである。
【0069】
そして、従来の比較的大きな窒素ガス発生装置に比べ、吸着剤の大幅な使用量の減少による吸着塔の小型化などにより、窒素ガス発生装置本体を大幅に縮小することができ、自動はんだ付け装置内部に内蔵することが可能となりうるものである。
【0070】
また、自動はんだ付け装置の加熱室内部への大気流入を制御する装置上の改善をあわせて行うことにより、はんだ表面の酸化を防止し、良好な製品が得られるものである。
【図面の簡単な説明】
【図1】窒素ガス発生装置の構成図である。
【図2】自動はんだ付け装置の構成図である。
【図3】吸着特性測定装置の構成図である。
【符号の説明】
1 PSA式窒素ガス発生装置
2 除湿器
3 空気圧縮機
4 貯留槽
6,6a 吸着塔
7,7a,8,8a,10,10a,13,13a,18 自動弁
5,5a,9,9a,11,12,17 配管
14 圧力設定器
15 取出量設定器
16 自動はんだ付け装置に連絡する配管
104 電子部品
105 プリント基板
106 搬入用コンベア
107 コンベア
108 搬出用コンベア
110,111 予備加熱室
112 リフローはんだ付け室
113 除冷室
114,115,116,117 ノズル部
118,119,120 ヒーター
121 搬入口ガスカーテン用ノズル部
122 搬出口ガスカーテン用ノズル部
123,124,125 隔壁
126,127,128,129 ファン
130 雰囲気ガス吸入口
131 加熱室内雰囲気測定用送気路パイプ
132 加熱室内雰囲気測定用酸素濃度計
201 真空ポンプ、
202,203,208,211,212,213 バルブ
204 試料室
205 調整室
206,207 圧カセンサー
209 記録計
210 圧カ計
214,215 ガスレギュレーター
216 窒素ボンベ
217 酸素ボンベ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for separating nitrogen gas having a higher concentration than a mixed gas containing nitrogen by utilizing the selective adsorption characteristics of an adsorbent, and an automatic soldering apparatus using the same.
[0002]
[Prior art]
Industrial nitrogen gas is widely used for heat treatment of metals, production of semiconductors, explosion-proof seals for chemical plants, and the like, and new fields of application are expanding. It is known that the soldering process, which was performed in the air, is performed under a nitrogen atmosphere using a low flux paste to prevent oxidation of the printed circuit board and solder, and to omit the subsequent CFC cleaning process. I have. For this reason, industrial nitrogen gas is also used in automatic soldering equipment for surface mounting electronic components on printed circuit boards and the like used in electronic devices and electrical products, etc. Performed using a low flux paste below.
[0003]
On the other hand, known nitrogen gas supply means include a nitrogen gas cylinder, a liquid nitrogen tank, a PSA type nitrogen gas generator, a film type nitrogen gas generator, and a combustion type nitrogen gas generator. Among them, the liquid nitrogen tank can easily supply high-purity nitrogen (99.999% by volume or more). However, since it is necessary to provide a low-temperature storage container and an evaporating facility, the facility becomes large and the facility cost is high. There are drawbacks such as troublesome maintenance and inspection. Further, nitrogen gas cylinders have disadvantages such as high cost and troublesome replacement of cylinders. The combustion type nitrogen gas generator is a device that burns kerosene or heavy oil at a high temperature (around 1000 ° C.) with a burner to generate nitrogen gas having a low oxygen content. There are problems such as the inevitable occurrence of fire and handling of fire, which requires special precautions for safety. Further, the membrane-type nitrogen gas generator is simple but has a drawback that it is difficult to generate high-purity nitrogen gas. For this reason, as a recent tendency, a PSA type nitrogen gas generator has been attracting attention as a nitrogen gas generator for an automatic soldering apparatus.
[0004]
Such a PSA-type nitrogen gas generator, as disclosed in, for example, Japanese Patent Publication No. 54-17595, feeds a raw material gas under pressure to an adsorption tower filled with an adsorbent such as molecular sieve carbon, and selectively oxygen. And nitrogen gas can be separated. In this PSA type nitrogen gas separation method, attention is paid to the advantages that the apparatus becomes smaller, the operation is simpler and unattended continuous operation is possible as compared with the cryogenic separation method. Various attempts have been made to improve gas purity and power consumption.
[0005]
Various proposals have been made for the improvement of the PSA type nitrogen gas generator. For example, Japanese Patent Application Laid-Open No. Hei.
[0006]
In addition, attempts have been made to improve adsorbents. For example, there has been proposed a method in which a natural material is used as a starting material to control the micropore structure of the carbon surface by a complicated process (Japanese Patent Publication No. 52-18675). In Japanese Patent Publication No. 6-20546, it is proposed that a synthetic polymer is used as a main raw material to obtain molecular sieve carbon having excellent homogeneity by a simple process.
[0007]
In JP-A-6-154595, an optimum columnar or spherical shape having an outer diameter of 0.8 to 1.8 mm has a volume of 80% by volume or more (hereinafter,% is volume% unless otherwise specified). A molecular sieve carbon having a particle shape and excellent in separation performance for a pressure swing adsorption type nitrogen gas generator has been proposed.
[0008]
[Problems to be solved by the invention]
In the conventional PSA type nitrogen gas generator, the separation characteristics of the adsorbent were limited, and the selection of the adsorption tower size and operating conditions was inappropriate. Despite the improvement, the ultimate purity of the generated nitrogen gas and the yield of the product nitrogen gas are still insufficient, and the miniaturization of the apparatus is still insufficient. Also, since the airtightness of the automatic soldering apparatus is poor, the amount of nitrogen gas required for the automatic soldering apparatus is increased, and it is not possible to incorporate a PSA type nitrogen gas generator for supplying the nitrogen gas into the automatic soldering apparatus. It is possible and is installed and used exclusively for automatic soldering equipment. Therefore, at present, problems such as an increase in installation space and complicated handling have occurred.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned existing problems, and as a result, have completed the present invention. The purpose of the present invention is to use an adsorbent having a predetermined characteristic, By making the tower volume small and combining it with predetermined operating conditions, it is possible to make a compact and high-performance PSA type nitrogen gas generator, which can be incorporated into an automatic soldering apparatus, which was impossible in the past. . Another object is to improve the conventional automatic soldering equipment to minimize the required amount of nitrogen gas generated from the built-in PSA type nitrogen gas generator, and to utilize it effectively to reduce the amount of nitrogen gas. It enables good automatic soldering with nitrogen gas.
[0010]
The object of the present invention can be achieved by the following means.
A mixed gas containing nitrogen is supplied to at least two or more adsorption towers, and a high pressure adsorption step and a low pressure regeneration step are alternately repeated in each of the adsorption towers, and a pressure swing adsorption (PSA) type for separating nitrogen gas is used. In the nitrogen gas generator,
(A) 2.5 kgf / cm 2 When the single-component adsorption under G pressure is performed, the oxygen adsorption amount after 1 minute is 24.0 to 30.0 mg / g, the nitrogen adsorption amount is 6.0 to 12.0 mg / g, and Using an adsorbent in which the amount of oxygen adsorbed on nitrogen after one minute is 2.0 to 5.0;
(B) The effective volume per adsorption tower is 0.10 to 0.050 L · min / NL with respect to the average supply amount of the raw air, and the average extraction amount of the product nitrogen gas is the average of the raw air. 0.15 to 0.45 per supply amount,
(C) The use of a pressure swing adsorption type nitrogen gas generator characterized in that the adsorption / desorption operation cycle includes the steps of adsorption, pressure equalization, and regeneration, and the adsorption step of each column is 40 to 120 seconds. Further, the apparatus, a nitrogen gas supply means for supplying nitrogen gas into the heating chamber from the apparatus, and controlling nitrogen gas in the heating chamber by controlling the flow of gas at the entrance and exit of the agent to be soldered. This is achieved by an automatic soldering apparatus characterized by having a mechanism for preventing a decrease in concentration.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The molecular sieve carbon used in the nitrogen gas generator of the present invention is 2.5 kgf / cm 2 When the single-component adsorption under G pressure is performed, the oxygen adsorption amount after one minute is 24.0 to 30.0 mg / g, preferably 25.0 to 29.0 mg / g, and most preferably 26. 0 to 28.0 mg / g, and the nitrogen adsorption amount after 1 minute is 6.0 to 12.0 mg / g, preferably 6.0 to 11.0 mg / g, most preferably 6.5 to 10.0 mg / g. g, and the amount of adsorbed oxygen per nitrogen after one minute is 2.0 to 5.0, preferably 2.3 to 4.8, and most preferably 2.6 to 4.3. When the oxygen adsorption amount is 24.0 mg / g or less, practical oxygen and nitrogen separation performance cannot be obtained due to insufficient oxygen adsorption capacity. If the amount of adsorbed oxygen exceeds 30.0 mg / g, the amount of adsorbed nitrogen also becomes 12.0 mg / g or more, and the separation performance is undesirably reduced. Further, when the amount of nitrogen adsorbed is 6 mg / g or less, the rate of adsorbing oxygen becomes too slow, and the amount of nitrogen gas that can be extracted per unit time is undesirably reduced.
[0012]
The molecular sieve carbon used in the present invention is not particularly limited as long as it has the above properties, and its raw material and production method are not particularly limited. In particular, phenol resin fine powder described in JP-B-6-20546, etc. The most preferable result is obtained when molecular sieve carbon produced using a cured resin solution and a polymer binder as main raw materials is used as an adsorbent.
[0013]
An example of a method for producing this molecular sieve carbon is as follows. That is, a solution of a thermosetting resin composed of a phenol resin or a melamine resin as a solid content is 5 to 60 parts by weight per 100 parts by weight of a spherical thermosetting phenol resin powder having a particle size of 1 to 160 μm, and further, polyvinyl alcohol and water-soluble Alternatively, 1 to 30 parts by weight of a polymer binder carried from the water-swellable cellulose derivative is mixed and made uniform, and this mixture is formed into a columnar or spherical granule. Then, the granular material is heated and carbonized at a temperature in the range of 500 to 1100 ° C. in a non-oxidizing atmosphere to obtain granular molecular sieve carbon. The molecular sieve carbon preferably has a large number of spherical carbon particles having a particle size of 2 to 80 μm, and preferably an average diameter of a continuous passage between the large number of carbon particles is 0.1 to 20 μm.
[0014]
The molecular sieve carbon has a number of pores, each of a number of carbon particles returning to the passage between the particles. The presence of the large number of pores greatly contributes to the expression of selective adsorption of molecular sieve carbon. The pores among many carbon particles have an average diameter on the order of 2.8-5.0 °.
[0015]
The volume occupied by the pores is preferably from 0.1 to 0.7 cc, more preferably from 0.15 to 0.5 cc, and even more preferably from 0.2 to 0.5 cc, per 1 g of the molecular sieve carbon. 4 cc. The molecular sieve carbon has a compositional characteristic of having a carbon content of at least 85% by weight, preferably at least 90% by weight. The molecular sieve carbon preferably has a porosity of 25 to 50% by volume, more preferably 30 to 45% by volume. The bulk density is preferably from 0.7 to 1.2 g / cc, and more preferably from 0.8 to 1.1 g / cc.
[0016]
The molecular sieve carbon is provided, for example, in the form of a cylinder having a diameter of about 0.1 to 12 mm and a length of about 1 to 10 mm, or a sphere having a diameter of about 0.1 to 10 mm. ~ 0.75g / cm 2 And preferably 0.60 to 0.70 g / cm 2 It is.
[0017]
In the present invention, 2.5 kgf / cm 2 When the single-component adsorption under G pressure is performed, the oxygen adsorption after 1 minute is 24.0 to 30.0 mg / g, the nitrogen adsorption amount is 6.0 to 12.0 mg / g, and 1 A high-purity nitrogen gas can be separated very efficiently by combining an adsorbent having an oxygen adsorption ratio of 2.0 to 5.0 per minute after the combination with the configuration and operating conditions of the PSA type nitrogen gas generator. This makes it possible to provide a compact and high-performance device as compared with a conventional device. That is, in a PSA type nitrogen gas generator having at least two or more adsorption towers, the effective volume L per adsorption tower is set to 0.10 to 0.050 L · with respect to the average supply amount NL / min of the raw material gas. min / NL, and the average removal amount NL / min of the product nitrogen gas is set to be 0.15 to 0.45 with respect to the average supply amount NL / min of the raw material air. Including a process of adsorption, pressure equalization, and regeneration, and using an apparatus configuration and operating conditions in which the adsorption process of each column is 40 to 120 seconds, a compact apparatus can efficiently generate nitrogen gas of a predetermined concentration. I can do it.
[0018]
The PSA type nitrogen gas generator of the present invention generally has two or more adsorption towers filled with an adsorbent, a storage tank, a pipe connecting these components, and an automatic valve for controlling the flow of gas and its control. It is composed of a system, a flow controller, a gas concentration analyzer, etc., and has a raw material air supply device such as an air compressor as ancillary equipment. If the effective volume of the adsorption tower is reduced with respect to the supply amount of the raw material gas, the amount of the treated gas per unit weight of the adsorbent increases, so that it is necessary to increase the gas adsorption speed of the adsorbent. Normally, when the oxygen adsorption rate is increased, the nitrogen adsorption rate is increased, and the oxygen / nitrogen separation ability is reduced. In the present invention, it has been found that a compact and highly efficient device can be obtained by setting the adsorption characteristics of the adsorbent, the supply amount of the raw material gas, and the volume of the adsorption tower within the above-mentioned predetermined ranges.
[0019]
In the nitrogen gas generator of the present invention, the effective volume per one adsorption tower in the above-mentioned apparatus configuration is 0.10 to 0.050 L · min / NL, preferably 0.09 L / min with respect to the average supply amount of the raw material gas. 0.060 L · min / NL, most preferably 0.08 to 0.060 L · min / NL, and the average removal amount of product nitrogen gas per average supply amount of the raw air is 0.15 to 0.45. , Preferably 0.20 to 0.44, most preferably 0.25 to 0.43.
[0020]
In addition, the purity of the obtained product nitrogen gas generally varies depending on the time of the adsorption step, the regeneration step, the pressure in the column, and the like. However, the power consumption per unit of product, that is, the power consumption, can be reduced, but the nitrogen purity of the product tends to decrease. In the present invention, the nitrogen purity (N 2 + Ar) It is possible to efficiently obtain a product gas in the range of 99 to 99.999% by volume.
[0021]
The configuration of the PSA type nitrogen gas generator of the present invention having the above-described configuration will be specifically described with reference to FIG. (1) is a PSA-type nitrogen gas generator, (3) is an air compressor that supplies raw air to the PSA-type nitrogen gas generator, (2) is a dehumidifier that dehumidifies raw air, and (4) is generated. A storage layer for storing nitrogen gas, (16) a pipe connected to an automatic soldering apparatus described later, (14) a pressure setting device for adjusting the pressure of nitrogen gas, and (15) an adjustment of the flow rate of nitrogen gas. This is a take-out amount setting device. The PSA type nitrogen gas generator (1) comprises adsorption towers (6) and (6a) and pipes (5), (5a), (9), (9a), (11), (12) and (17). ) And automatic valves (7), (7a), (8), (8a), (10), (10a), (13), (13a), and (18).
[0022]
Next, the operation state will be described. The raw material air supplied by the air compressor (3) is dehumidified by a dehumidifier (2) if necessary, and then passed through one of the adsorption towers (8) or (8a) through an automatic valve (8) or (8a). 6). For example, when one adsorption tower (6) is in the adsorption step, the raw material air is supplied to this adsorption tower (6), and the other adsorption tower (6a) is a regeneration step. The pressure inside the adsorption tower in the adsorption step is usually 3 to 9.9 kgf / cm. 2 G, preferably 4 to 9.5 kgf / cm 2 G, most preferably 5-8.5 kgf / cm 2 -It is G. Since the regeneration of the adsorption tower (6a) is usually performed by opening to the atmosphere or regeneration under reduced pressure by a vacuum pump, the internal pressure of the adsorption tower (6a) in the regeneration step is reduced to atmospheric pressure or about 100 torr or less. FIG. 1 illustrates the case of the atmospheric pressure regeneration. FIG. 1 shows an example in which a step of forcibly refluxing the nitrogen-enriched gas from the storage tank (4) by the pipe (17) and the automatic valve (18) is included. There is no automatic valve (18), and as a result of the pressure balance between the adsorption towers (6), (6a) and the storage tank (4), the pipes (11), (9), (9a), the automatic valves (10), ( Reflux may occur automatically through 10a).
[0023]
In the regeneration step, the nitrogen-enriched gas in the storage tank (4) is flowed back to wash the inside of the adsorption tower (6a), or a part of the product nitrogen gas taken out from the adsorption tower (6) in the adsorption step is removed. A so-called purge method may be adopted in which the solution flows into the adsorption tower (6a) in the regeneration step to wash the inside of the adsorption tower. Next, the adsorption tower (6) for which the adsorption step has been completed and the adsorption tower (6a) for which the regeneration step has been completed are connected to the side of the product gas withdrawal of the adsorption tower, the side of the feed gas of the adsorption tower, or the side of the gas withdrawal of the product of the adsorption tower. The process is shifted to a so-called pressure equalization step in which a fixed amount of the mixed gas existing in the adsorption tower (6) after the adsorption step is transferred to the adsorption tower (6a) after the regeneration step. Normally, when the product gas extraction side of the adsorption tower is connected, the top pressure is equalized.When the product gas extraction side of the adsorption tower and the product gas supply side are connected, the pressure is equalized in the vertical direction. The case where the inlet side is connected to the inlet side is referred to as cross equalization. By performing the equalizing step including these equalizing methods or other equalizing methods, the efficiency of the apparatus can be increased.
[0024]
After completion of the equalizing step, the nitrogen-enriched gas may be forcibly refluxed from the storage tank (4) to the adsorption tower (6a) by the pipe (17) and the automatic valve (18), but this step is omitted. It is also possible. If the forced reflux step is not performed, or if the forced reflux amount is small enough not to reach the complete pressure balance of the adsorption tower (6a) and the storage tank (4), When the pressure in the adsorption tower (6a) is lower than the internal pressure in the storage tank (4) at the beginning of the adsorption step of the adsorption tower (6a), reflux occurs automatically. This automatic reflux is performed by feeding the raw material air into the adsorption tower (6a) and refluxing the nitrogen-enriched gas from the storage tank (4), so that the internal pressure of the adsorption tower (6a) increases and the storage tank (4) When the pressure and the pressure are balanced, the operation is automatically stopped, and the process shifts to taking out the nitrogen-enriched gas from the adsorption tower (6a) to the storage tank (4). During the adsorption step of the adsorption tower (6a), the adsorption tower (6) is in a regeneration step. Then, the adsorption tower (6a) for which the adsorption step has been completed and the adsorption tower (6) for which the regeneration step has been completed are connected, and the process proceeds to the pressure equalization step. In this manner, the steps of adsorption, pressure equalization, regeneration (washing), pressure equalization, and (reflux) are sequentially repeated.
[0025]
In the above-mentioned PSA cycle of the present invention, the time of the adsorption step is 40 to 140 seconds, preferably 50 to 100 seconds, and most preferably 60 to 90 seconds. If the adsorption time is too short or too long, the purity of the product nitrogen gas decreases, which is not preferable. The length of the other steps is not particularly limited, but the pressure is usually about 0.1 to 10 seconds and the reflux is about 0.1 to 10 seconds. The length is automatically determined depending on the balance with the adsorption process.
[0026]
2.5kgf / cm 2 When the single component adsorption under G pressure is performed, the oxygen adsorption after 1 minute is 24.0 to 30.0 mg / g, the nitrogen adsorption amount is 6.0 to 12.0 mg / g, and 1 The above-mentioned PSA type nitrogen gas generator which has been made compact by using an adsorbent having an adsorption ratio of oxygen to nitrogen after 2.0 minutes which is 2.0 to 5.0 and adopting a specific apparatus configuration and operating conditions. Can be built into an automatic soldering apparatus. Further, by combining the improvement of the structure of the automatic soldering apparatus, the required amount of nitrogen gas can be minimized, efficiently used, and good workability can be secured.
[0027]
As an improvement of the automatic soldering apparatus incorporating the PSA type nitrogen gas generator, the nitrogen gas which controls the gas flow in and out of the entrance and the exit of the member to be soldered to prevent the nitrogen gas concentration in the heating chamber from lowering is improved. It is most effective to provide a concentration reduction prevention mechanism.
As a mechanism for preventing the nitrogen gas concentration from decreasing, it is particularly effective to provide gas curtains at the entrance and exit of the member to be soldered of the automatic soldering apparatus, thereby controlling the inflow of air into the heating chamber. can do.
Also, the oxygen concentration in the heating chamber of the automatic soldering apparatus is detected, and the nitrogen gas inflow from the PSA-type nitrogen gas generator is automatically controlled in accordance with the detected oxygen concentration to maintain the nitrogen gas concentration in the heating chamber at a predetermined concentration. By providing the automatic nitrogen gas concentration maintaining mechanism, soldering can be performed more stably with a high yield.
[0028]
For example, an automatic soldering apparatus used in the production of electronic components includes a flow type in which an electronic component is mounted on an electrode portion of a circuit pattern such as a copper foil formed on a printed circuit board and then comes into contact with molten solder, and a soldering device. There is a reflow method in which an electronic component is placed on cream solder mixed with flux and heat-treated. The present invention can be applied to either method. Here, the reflow method in FIG. 2 will be described as an example of the embodiment. I do. The automatic soldering apparatus illustrated in FIG. 2 incorporates a PSA type nitrogen gas generator, and supplies nitrogen gas into the heating chamber from the apparatus. In addition, as a mechanism for preventing a decrease in the concentration of nitrogen gas in the heating chamber, gas curtains are provided at the entrance and exit of the agent to be soldered to control the flow of gas at the entrance and exit. Thus, the inflow of the atmosphere into the heating chamber can be controlled. Further, the oxygen concentration in the heating chamber of the automatic soldering apparatus is detected, and the nitrogen gas inflow from the PSA type nitrogen gas generator is automatically controlled in accordance with the oxygen concentration to maintain the nitrogen gas concentration in the heating chamber at a predetermined concentration. It has an automatic nitrogen gas concentration maintaining mechanism.
[0029]
Hereinafter, the configuration of the automatic soldering apparatus will be specifically described with reference to FIG. (1) is a nitrogen gas generator unit, which is the PSA type nitrogen gas generator described in FIG. The reflow device section includes a conveyer (106), a conveyer (107), and a printed circuit board (105) on which the electronic component (104) is mounted, into which a printed circuit board (105) on which an electronic component (104) to be soldered is mounted is loaded. (108), a pre-heating chamber (110), a pre-heating chamber (111), a reflow soldering chamber (112), a slow cooling chamber (113), and a partition for dividing each chamber. (123), (124) and (125). Inside each heating chamber, heaters (118), (119), (120), fans (126), (127), (128), (129), nozzles (114), (115), (116) , (117) are installed, and the nozzle portions (114), (115), (116), and (117) are connected to a pipe (16) communicating with an automatic soldering apparatus. The nozzles (114), (115), (116), and (117) include a nitrogen gas ejection nozzle, a nitrogen gas automatic flow controller, an automatic pressure controller, an on-off valve, and a pressure sensor for measuring pressure in a heating chamber. Is installed.
[0030]
Next, the operating states of the nitrogen gas generator (1) and the heating chambers (110), (111), (112), (113) inside the soldering device will be described. In the nitrogen generator unit (1), the nitrogen gas produced using the compressed air supplied from the air compressor (3) is temporarily stored in the storage tank (4), and is set in the pressure setter (14) and the discharge amount setting. The nozzles (114), (115), (116), and (117) control the heating chambers (110) and (111) via a pipe (16) connected to an automatic soldering apparatus. , (112), and (113).
[0031]
The heating chamber of the automatic soldering device section includes a pre-heating chamber (110), a pre-heating chamber (111), and a soldering chamber (112) which are independently constituted by partitions (123), (124), and (125). ) And a slow cooling chamber (113). In operation of the apparatus, for example, the inside of the preheating chamber (110) is heated to about 150 ° C. by the heater (118), the inside of the preheating chamber (111) is heated to about 180 ° C. by the heater (119), and the inside of the reflow soldering chamber (112). Heating is controlled by the heater (120) to about 250 ° C., and the temperature of the annealing chamber (113) is controlled to about 150 ° C., and the electronic component (104) loaded on the carry-in conveyor (106) is printed. After preheating in the preheating chambers (110) and (111) while transporting the substrate (105), the substrate is rapidly heated to the soldering temperature in the reflow soldering chamber (112) to perform soldering, and the annealing chamber is gradually cooled. It is gradually cooled in (113) and carried out of the carry-out conveyor (108).
The fans (126), (127), (128), and (129) are for forcibly circulating the atmosphere gas such as the heated nitrogen gas filled in the respective heating chambers. (111), a soldering chamber (112), and a cooling chamber (113) are driven by motors respectively disposed therein.
[0032]
The installation location of the nitrogen gas generator is not particularly limited as long as it is inside the automatic soldering apparatus, and the nitrogen gas generator can be built in the lower, side, front and back surfaces of the automatic soldering apparatus. For example, two adsorption towers of a PSA type nitrogen gas generator, one adsorption tower is arranged on the right side and the other is arranged on the left side so that the automatic soldering apparatus becomes compact, and the storage tank and other parts are arranged. Can be installed at the bottom.
The nitrogen gas generator, especially the adsorption tower and the control equipment, are usually maintained at an ambient temperature of 5 to 45 ° C, preferably 10 to 35 ° C, most preferably 20 to 30 ° C. For this reason, heat insulating materials, heat insulating materials, etc. should be installed at key points so as not to be affected by heat transfer from the heating part of the automatic soldering equipment, outside air temperature, ambient heat storage, etc., cooling fans, cooling devices, air conditioners, etc. It is preferable to provide an air conditioner such as the above.
[0033]
In incorporating the high-purity nitrogen gas generator, the shape and arrangement of the adsorption tower and the storage tank (4) are not particularly limited. For example, the shape of the adsorption tower is not particularly limited, such as an I-shape, an L-shape, a U-shape, and a V-shape, but is most preferably an I-shape which is a normal cylinder or a vertical shape. The arrangement of the adsorption tower is most preferably a vertical arrangement in which gas channeling due to the ubiquity of the adsorbent does not easily occur, but a horizontal arrangement, an inclined arrangement and the like are also possible. For the inclined type, the angle of the adsorption tower with respect to the horizontal plane is not particularly specified. The most common method is to supply the raw material air from the lower part and take out the nitrogen gas from the upper part. However, the most appropriate raw material gas supply and take-out method may be appropriately selected depending on the shape of the adsorption tower.
[0034]
In order to reduce the size of the PSA nitrogen gas generator and incorporate it into the automatic soldering apparatus, it is necessary to use the empty space of the automatic soldering apparatus. In consideration of practical use, the capacity of one adsorption tower is about 100 L. The following is preferred. In the case of an I-shaped adsorption tower, the outer diameter is about 350 mm or less, preferably about 300 mm or less, and the height is about 1200 mm or less, preferably about 1000 mm or less, and most preferably about 900 mm or less.
[0035]
The unfilled space inside the adsorption tower causes abrasion and powdering of the adsorbent due to vibration of the adsorbent due to pressure swing adsorption, which causes a bad influence on the purity of generated nitrogen gas. Therefore, it is necessary to minimize the unfilled space inside the adsorption tower and prevent the adsorbent from vibrating inside the adsorption tower.
[0036]
Next, when nitrogen gas is supplied into the heating chamber from the nitrogen gas generator unit (1) incorporated in the automatic soldering apparatus, heating is performed by controlling the nitrogen gas supply mechanism and the gas flow in and out of the loading / unloading port of the member to be soldered. A mechanism for preventing a decrease in the nitrogen gas concentration in the room will be described.
[0037]
The preheating chamber (110), the preheating chamber (111), the reflow soldering chamber (112), and the slow cooling chamber (113) are divided by the partition walls (123), (124), and (125). While the diffusion of the atmospheric gas in the room becomes easy, the movement of the atmospheric gas between the rooms is suppressed. In addition, the influence of heat between the rooms can be reduced, and the heating can be easily controlled.
[0038]
The nitrogen gas supply mechanism measures the pressure inside the heating chambers (110) and (113) by the pressure measuring sensors in the heating chambers installed in the nozzles (114) and (117), and constantly outputs the detection signal of the automatic soldering apparatus. The gas is sent to the control unit, and an appropriate amount of nitrogen gas is supplied from the nozzles (114), (115), (116), and (117) so that the atmosphere inside the heating chamber is slightly higher than the atmospheric pressure. The temperature is controlled so that the temperature gradually increases from the preheating chambers (110) and (111) toward the soldering chamber (112). The gas density is low in the high-temperature portion and is high in the low-temperature portion. Therefore, the atmosphere gas generates a flow from a low-temperature part with a high gas density to a high-temperature part with a low gas density, but the nitrogen atmosphere gas in the heating chamber pressurized above the atmospheric pressure is discharged as a rising airflow at the carry-out port little by little. Is done.
[0039]
In addition to the above-described control of the pressure in the heating chamber, the gas curtains (121) and (122) are provided at the carry-in and carry-out ports as a mechanism for preventing a nitrogen gas concentration drop, thereby restricting the flow of the nitrogen atmosphere gas. I can do it. When the printed circuit board (105) on which the electronic component (104) is mounted is carried into the preheating chamber (110), or the printed circuit board (5) to which the electronic component (104) is soldered is removed from the cooling room (113). The air brought in when carrying out is trying to enter because it is heavy air of low temperature (room temperature), but is blocked by the nitrogen atmosphere gas discharged from the entrance and exit, almost preventing entry into the heating chamber. Is done. Although the air is easily brought in due to the increase in the size of the printed circuit board, the gas curtain can prevent the invasion of the atmosphere and can prevent the nitrogen gas concentration in the heating chamber from being reduced due to the invasion of the air.
[0040]
A jet nozzle, an automatic pressure setting device, and an automatic flow rate setting device are arranged in the gas inlet / outlet gas curtain nozzles (121) and (122), and a preheating chamber (110) and a slow cooling chamber are provided. (113) The gas is jetted from the inside to the outside at a constant pressure and a constant flow rate. In FIG. 2, they are installed above the carry-in and carry-out ports, but may be installed below or both. Furthermore, in order to prevent air from leaking, a suction port or a suction device or the like is installed at the upper or lower part, preferably at the lower part of the outer surface of the carry-in and carry-out ports, and the air and the vicinity of the carry-in and carry-out ports are forcibly installed. By sucking the discharged nitrogen atmosphere gas, the air can be taken in and sucked into the discharged nitrogen atmosphere gas, thereby further preventing leakage. Further, the effect can be improved by setting the carry-in / out conveyor (106) and the carry-out conveyor (108) slightly lower than the conveyor (107) in the heating chamber.
[0041]
Next, the oxygen concentration in the heating chamber of the automatic soldering apparatus is detected, and the flow rate of nitrogen gas from the nitrogen gas generator unit (1) is automatically controlled in accordance with the detected oxygen concentration to adjust the nitrogen gas concentration in the heating chamber to a predetermined value. An automatic nitrogen gas concentration maintaining mechanism for maintaining the concentration will be described with reference to FIG. Atmosphere gas in the heating chamber (112) is sucked through the atmosphere gas suction port (130), sucked in through the atmosphere gas air supply pipe (131), and oxygen concentration is measured by the oxygen gas meter (132) for measuring the atmosphere gas in the heating chamber. Is measured.
[0042]
When the automatic soldering apparatus is operating in a steady state, the oxygen concentration value of the atmosphere gas in the heating chamber (112) is measured by a concentration system for measuring the atmosphere gas in the heating chamber (132), and the operating state of the soldering apparatus is determined. It is constantly sent as a detection signal to the control unit that manages the nozzles (114), (115), (116), and (117) so that the oxygen concentration in the heating chamber (112) becomes a predetermined constant value. The nitrogen gas supply rate is automatically adjusted by the flow rate setting device.
[0043]
In FIG. 2, the oxygen concentration meter (132) for measuring the atmosphere gas in the heating chamber and the pressure measurement sensor in the heating chamber are installed at two locations, ie, the nozzles (114) and (117). A measurement sensor may be installed in each chamber, and each chamber may be more finely controlled in concentration and pressure.
[0044]
In the heating chamber of the automatic soldering apparatus, the high-concentration nitrogen gas atmosphere in the heating chamber has an oxygen concentration of at least 1.0% by volume or less, preferably 0.3% by volume or less, in order to suppress generation of solder balls. , Most preferably a nitrogen gas atmosphere of 0.02% by volume or less.
In order to maintain the nitrogen gas concentration in the heating chamber of the automatic soldering apparatus within the above range, the amount of nitrogen gas generated by the PSA type nitrogen gas generator is usually 8 to 20 Nm. 3 / H, preferably 10-18 Nm 3 / H, most preferably 12-16 Nm 3 / H. The nitrogen purity is 99 to 99.999% by volume, preferably 99.7 to 99.993% by volume, and most preferably 99.98 to 99.995% by volume.
[0045]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples. The measurement methods used in the present invention are summarized below.
(1) Measurement of pore volume and pore diameter distribution:
The pore volume and the pore size distribution of the molecular sieve carbon of the present invention were measured by a mercury intrusion method using a porosimeter (pore sizer 9310 manufactured by Shimadzu Corporation) for pores having a pore diameter of 60 ° to 500 μm.
The pores having a pore diameter of 60 ° or less were determined by the following so-called Kelvin equation using a nitrogen gas adsorption isotherm.
(Equation 1)
Figure 0003604820
P: saturated vapor pressure when the adsorbed gas is adsorbed on the pores,
Po: the saturated vapor pressure of the adsorbed gas under normal conditions,
γ: surface tension,
V: one molecular volume of liquid nitrogen,
R: gas constant,
T: absolute temperature,
γK: Kelvin radius of pore,
The correction to the Kelvin radius of the pore was performed by the Cranston-Inkley method.
(2) Measurement of adsorption and equilibrium adsorption of oxygen and nitrogen after one minute:
The amount of oxygen and nitrogen adsorbed on the molecular sieve carbon used in the present invention was measured by the adsorption characteristic measuring device shown in FIG.
[0046]
In FIG. 3, (201) is a vacuum pump, (204) is a sample chamber, (205) is an adjustment chamber, (206) and (207) are pressure sensors, (209) is a recorder, (210) is a pressure gauge, (214) and (215) are gas regulators, (216) is a nitrogen cylinder, (217) is an oxygen cylinder, (202), (203), (208), (211), (212), and (213) are valves. Approximately 3 g of a sample is put into a 226.9 ml sample chamber (204), valves (211) and (208) are closed, valves (202) and (203) are opened, and after degassing for 30 minutes, a valve ( 202) and (203) are closed, the valve (211) is opened, and the oxygen gas or the nitrogen gas from the nitrogen gas cylinder (216) is sent from the oxygen gas cylinder (217) into the 231.7 ml adjusting chamber (205) and set. Then, the valve (211) is closed, the valve (203) is opened, and the change of the internal pressure during a predetermined time is measured, and the change over time of the adsorption amount of each of oxygen and nitrogen is measured. The oxygen adsorption amount and the nitrogen adsorption amount were determined.
The internal pressure of the adsorption tower 1 minute after the start of the measurement was 2.5 kgf / cm. 2 ・ Measurement with changing the initial set pressure so that several points larger or smaller than G can be measured, and then 2.5 kgf / cm 2 -The amount of adsorption of oxygen and nitrogen in G after 1 minute was determined.
[0047]
(Example 1)
10 kg of a spherical phenol resin having an average particle diameter of 20 μm is weighed, and based on 100 parts by weight of the spherical phenol resin powder, a water-soluble melamine resin (Sumitomo Chemical Co., Ltd., Sumitex Resin M-3, solid content concentration 80% by weight) 5 parts by weight of solids, 4 parts by weight of polyvinyl alcohol having a degree of polymerization of 1700 and a saponification degree of 88%, 20 parts by weight of potato starch, 20 parts by weight of creosote (manufactured by Sumitomo Chemical Co., Ltd.), 9 parts by weight of a surfactant and 3.5 parts by weight of water were weighed.
[0048]
Among the above raw materials, polyvinyl alcohol is dissolved in warm water so as to form a 20% by weight aqueous solution, and a water-soluble melamine resin, potato starch, creosote, a surfactant and water are added to the aqueous polyvinyl alcohol solution, and the mixture is mixed with a liquid mixer. Mix for minutes. Thereafter, the spherical phenol resin was added and mixed for another 10 minutes.
This mixed composition was extruded with a twin-screw extruder (Fuji Paudal Co., Ltd., Peretta Double, model EXDF-100) to granulate a granule having an average particle diameter of 1.3 mmφ × 5 mmL. The granules were heat-treated at 80 ° C. for 24 hours to obtain a molecular sieve carbon precursor composition. The precursor composition was prepared in an amount of about 2100 kg by repeating the preceding operation.
[0049]
Each of the precursor compositions is put into a continuous rotary kiln having an effective size of 750 mmφ × 400 mmL, and is carbonized by changing to three types of a maximum temperature of 690 ° C., 740 ° C., and 800 ° C. under a nitrogen atmosphere for 4 hours. Each 300 kg of pelletized molecular sieve carbon having an average particle diameter of 1.0 mmφ × 4 mmL was produced.
The three types of molecular sieve carbons A, B, and C with the maximum temperature changed are 2.5 kgf / cm 2 The oxygen adsorption amount and the nitrogen adsorption amount after 1 minute were measured under G pressure, and the oxygen / nitrogen adsorption capacity ratio after 1 minute was calculated. As a result, it was a molecular sieve carbon having the adsorption performance shown in Table 1. .
[0050]
[Table 1]
Figure 0003604820
[0051]
In the PSA experimental apparatus shown in FIG. 1 comprising a storage tank, a raw material air compressor, a dehumidifier and piping and an automatic valve connecting them, an adsorption tower volume of 84.0 L was used, and the adsorption tower volume / supply amount was reduced to 0.08. The amount of air becomes 8.5 kgf / cm 2 A PSA experiment was performed while supplying a constant amount of G and adjusting the extraction amount so that the purity was 99.9% by volume.
[0052]
In the present embodiment, the storage tank internal volume was 90% by volume of the adsorption tower volume, that is, 75.6 L. The operation was performed in the operation cycle and operation time shown in Table 2. Regeneration was performed under atmospheric pressure, and a purge step of cleaning the adsorption tower during the regeneration step using a part of the product nitrogen gas was employed. The purge flow rate was set at 20 NL / min. Table 3 shows the results of the nitrogen purity under the above operating conditions.
[0053]
[Table 2]
Figure 0003604820
[0054]
[Table 3]
Figure 0003604820
[0055]
Sample B has an appropriate oxygen adsorption amount, nitrogen adsorption amount, and an oxygen adsorption ratio with respect to nitrogen, so that the oxygen / nitrogen separation performance is good, and the purity and efficiency of the PSA type nitrogen gas generator of the present invention can be improved efficiently. 99.9% by volume of nitrogen gas can be extracted most.
In sample A, the adsorption rates of oxygen and nitrogen are too slow, so that practical oxygen / nitrogen separation performance cannot be obtained, and the amount of nitrogen gas that can be taken out per unit time decreases, which is not preferable.
In sample C, the adsorption rate of oxygen and nitrogen is too high, and the adsorption ratio of oxygen to nitrogen is small, so that the oxygen / nitrogen separation performance is reduced and the amount of nitrogen gas that can be taken out per unit time is small, which is not preferable. .
[0056]
(Example 2)
A mixed composition similar to that in Example 1 was prepared and extruded with a twin-screw extruder (Fuji Paudal Co., Ltd., Peretta Double, model EXDF-100) to obtain granules having an average particle diameter of 1.3 mmφ × 5 mmL. Granulated. The granules were heat-treated at 95 ° C. for 24 hours to obtain a molecular sieve carbon precursor composition. Approximately 700 kg of the precursor composition was prepared by repeating the pretreatment operation.
[0057]
Each of the precursor compositions is put into a continuous rotary kiln having an effective size of 750 mmφ × 400 mmL, and carbonized at a maximum temperature of 750 ° C. for 4 hours under a nitrogen atmosphere, and pelletized molecules having an average particle diameter of 1.0 mmφ × 4 mmL. About 300 kg of sieved carbon was produced. This molecular sieve carbon is 2.5 kgf / cm 2 -Under G pressurization, the oxygen adsorption amount after one minute was 26.7 mg / g and the nitrogen adsorption amount was 7.9 mg / g, and the oxygen / nitrogen adsorption capacity ratio after one minute was 3.38.
[0058]
Using a storage tank, a raw material air compressor, a dehumidifier shown in FIG. 1, and a PSA experimental apparatus comprising a pipe and an automatic valve connecting them, air was supplied at a pressure of 8.5 kgf / cm. 2 -Supply a fixed amount with G, change the adsorption tower volume so that the adsorption tower volume / supply amount becomes 0.12 to 0.04, and adjust the removal amount so that the nitrogen purity becomes 99.9% by volume. The PSA experiment was performed with adjustment.
[0059]
In this embodiment, the volume in the storage tank was 90% by volume of the volume of the adsorption tower. In addition, the operation was performed with the operation cycle and operation time shown in Table 2. In this embodiment, the regeneration was performed under atmospheric pressure, and a purge step of cleaning the adsorption tower during the regeneration step using a part of the product nitrogen gas was employed. The purge flow rate was 35 NL / min. Table 4 shows the results of the removal amount under the above operating conditions.
[0060]
[Table 4]
Figure 0003604820
[0061]
From Table 4, No. In No. 3, 99.9% by volume of product nitrogen gas could be taken out most because the ratio between the size of the adsorption tower and the feed rate of the raw material air was well matched to the characteristics of the adsorbent.
No. In the case of No. 1, the adsorption tower is too large to be incorporated in the automatic soldering apparatus and is unsuitable, and since the capacity of the adsorption tower is too large with respect to the raw material gas supply amount, the maximum ultimate pressure of the adsorption tower is 6.7 kgf. / Cm 2 -It rises only up to G, so that the characteristics of the adsorbent cannot be exhibited effectively, and the amount of product nitrogen gas at 99.9% by volume decreases, which is not preferable.
No. In the case of No. 5, since the supply amount of the raw material gas is excessive with respect to the capacity of the adsorption tower, the extraction amount at 99.9% by volume is extremely reduced, which is not preferable.
When the adsorption tower volume / supply rate ratio was in the range of 0.10 to 0.05, No. Nos. 2, 3, and 4 are suitable for being built in an automatic soldering apparatus, have a small capacity of an adsorption tower, and can efficiently extract product gas.
[0062]
(Example 3)
The molecular sieve carbon used in Example 2, ie, 2.5 kgf / cm 2 When the oxygen adsorption was performed under G pressure, the oxygen adsorption amount after one minute was 26.7 mg / g, the nitrogen adsorption amount was 7.9 mg / g, and the oxygen / nitrogen adsorption capacity ratio after one minute was 3. An automatic soldering apparatus shown in FIG. 3 using a molecular sieve carbon of No. 38 and incorporating a PSA type nitrogen gas generator comprising an adsorption tower having a capacity of 76.0 L and a storage tank of 64.8 L per tower. , A soldering experiment was performed in a nitrogen stream. The adsorption operation cycle was the same as in Table 2, with an adsorption time of 70 seconds and a pressure equalization of 0.6 seconds.
The generated product nitrogen gas is spouted from the nozzles (114), (115), (116), and (117) from the nitrogen gas generator via the nitrogen gas air supply pipe (16) to reduce the atmospheric oxygen concentration. The pressure was controlled so that the pressure in the heating chamber became equal to or higher than the atmospheric pressure by the ejection from the gas curtain nozzles (121) and (122).
[0063]
As shown in Table 5, as a result of a soldering experiment using an automatic soldering apparatus having a built-in PSA type nitrogen gas generator, the extraction / air supply ratio was good within the range of 0.15 to 0.45. The result was obtained.
[0064]
[Table 5]
Figure 0003604820
[0065]
(Example 4)
An oxygen concentration meter was connected to the heating chamber of the automatic soldering apparatus, and the amount of generation of the PSA type nitrogen gas generator was automatically controlled so that the oxygen concentration in the heating chamber became constant.
Molecular sieve carbon obtained by firing at 750 ° C. (2.5 kgf / cm 2 When the oxygen adsorption was performed under G pressure, the oxygen adsorption amount after 1 minute was 26.7 mg / g, the nitrogen adsorption amount was 7.9 mg / g, and the oxygen / nitrogen adsorption capacity ratio after 1 minute was 3. The automatic soldering shown in FIG. 3 using a molecular sieve carbon of 3.38) and incorporating a PSA type nitrogen gas generator comprising an adsorption tower having a capacity of 76.0 L and a product storage tank of 68.4 L. A soldering experiment was performed in a nitrogen gas flow on the apparatus. The adsorption operation cycle was the same as in Table 2, with an adsorption time of 70 seconds and a pressure equalization of 0.6 seconds.
[0066]
The oxygen concentration in the heating chamber (112) is measured by the oxygen concentration meter (132) through the atmosphere gas air supply pipe (131), sucked from the atmosphere gas suction port (130). The generated product nitrogen gas is spouted from the nozzles (114), (115), (116), and (117) from the nitrogen gas generator via the nitrogen gas air supply pipe (16) to reduce the atmospheric oxygen concentration. The pressure was controlled so that the pressure in the heating chamber became equal to or higher than the atmospheric pressure by the ejection from the gas curtain nozzles (121) and (122).
[0067]
The oxygen concentration in the heating chamber fluctuated within 100 ± 20 ppm, and the amount of nitrogen gas generated fluctuated within the range of 200 NL / min ± 14 NL / min. However, the apparatus was operated stably, and good soldering was performed. .
[0068]
【The invention's effect】
The nitrogen gas separation device of the present invention combines the adsorbent imparting specific nitrogen / oxygen separation capability with the PSA device configuration and PSA condition operation to reduce the volume of the adsorption tower and reduce the purity of the product nitrogen gas. An object of the present invention is to provide a PSA-type nitrogen gas generator which is high, generates a large amount, and has a small power source unit.
[0069]
Compared to the conventional relatively large nitrogen gas generator, the nitrogen gas generator main body can be greatly reduced by the downsizing of the adsorption tower due to the drastic reduction in the amount of adsorbent used, and the automatic soldering equipment. It can be built inside.
[0070]
In addition, by improving the device for controlling the flow of air into the heating chamber of the automatic soldering device, oxidation of the solder surface is prevented, and a good product is obtained.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a nitrogen gas generator.
FIG. 2 is a configuration diagram of an automatic soldering apparatus.
FIG. 3 is a configuration diagram of an adsorption characteristic measuring device.
[Explanation of symbols]
1 PSA type nitrogen gas generator
2 Dehumidifier
3 air compressor
4 Storage tank
6,6a adsorption tower
7, 7a, 8, 8a, 10, 10a, 13, 13a, 18 Automatic valve
5,5a, 9,9a, 11,12,17 piping
14 Pressure setting device
15 Extraction amount setting device
16 Piping to connect to automatic soldering equipment
104 Electronic components
105 Printed circuit board
106 Conveyor for loading
107 conveyor
108 Conveyor for unloading
110,111 Preheating chamber
112 Reflow soldering room
113 Cooling room
114, 115, 116, 117 Nozzle part
118, 119, 120 heater
121 Nozzle for loading gas curtain
122 Nozzle for gas curtain
123, 124, 125 partition
126,127,128,129 fan
130 Atmospheric gas inlet
131 Air supply pipe for atmosphere measurement in heating room
132 Oxygen analyzer for measuring atmosphere in heated room
201 vacuum pump,
202, 203, 208, 211, 212, 213 Valve
204 Sample room
205 Control Room
206, 207 pressure sensor
209 Recorder
210 pressure gauge
214,215 Gas regulator
216 Nitrogen cylinder
217 Oxygen cylinder

Claims (4)

少なくとも2塔以上の吸着塔に窒素を含む混合ガスを供給し、高圧吸着行程と低圧再生行程とを各吸着塔で交互に繰り返し、窒素ガスを分離する圧力スイング吸着(Pressure Swing Adsorption:PSA)式窒素ガス発生装置において、
(a)2.5kgf/cm・Gの加圧下での単成分吸着を行った際の1分後の酸素吸着量が24.0〜30.0mg/g,窒素吸着量が6.0〜12.0mg/gで、且つ、1分後の窒素に対する酸素の吸着量が2.0〜5.0である吸着剤を用いること、
(b)吸着塔1塔当たりの有効容積が、原料空気の平均供給量に対して0.10〜0.050L・min/NLであり、且つ、製品窒素ガスの平均取出量が原料空気の平均供給量当たり、0.15〜0.45であること、
(c)吸脱着操作サイクルとして、吸着、均圧、再生の各工程を含み、各塔の吸着行程が40〜120秒であること、
を特徴とする圧力スイング吸着式窒素ガス発生装置。
A mixed gas containing nitrogen is supplied to at least two or more adsorption towers, and a high pressure adsorption step and a low pressure regeneration step are alternately repeated in each of the adsorption towers, and a pressure swing adsorption (PSA) type for separating nitrogen gas is used. In the nitrogen gas generator,
(A) When single component adsorption was performed under a pressure of 2.5 kgf / cm 2 · G, the oxygen adsorption amount after 1 minute was 24.0 to 30.0 mg / g, and the nitrogen adsorption amount was 6.0 to 6.0. 12.0 mg / g, and using an adsorbent having an adsorption amount of oxygen to nitrogen of 2.0 to 5.0 after 1 minute,
(B) The effective volume per adsorption tower is 0.10 to 0.050 L · min / NL with respect to the average supply amount of the raw air, and the average extraction amount of the product nitrogen gas is the average of the raw air. 0.15 to 0.45 per supply amount,
(C) The adsorption / desorption operation cycle includes the steps of adsorption, pressure equalization, and regeneration, and the adsorption step of each column is 40 to 120 seconds;
Pressure swing adsorption type nitrogen gas generator characterized by the above-mentioned.
請求項1記載の圧力スイング吸着式窒素ガス発生装置と、該装置より加熱室内に窒素ガスを供給する窒素ガス供給手段と、被はんだ付け部材の搬入口および搬出口でのガスの出入りを制御して加熱室内の窒素ガス濃度を保持する窒素ガス供給手段とを備えることを特徴とする自動はんだ付け装置。A pressure swing adsorption type nitrogen gas generator according to claim 1, nitrogen gas supply means for supplying nitrogen gas from the device into a heating chamber, and control of gas flow in and out of a loading port and a loading port of a member to be soldered. And a nitrogen gas supply means for maintaining a nitrogen gas concentration in the heating chamber. 窒素ガス濃度の保持手段が、被はんだ付け部材の搬入口および搬出口に設けた窒素ガスカーテンであることを特徴とする請求項2記載の自動はんだ付け装置。3. The automatic soldering apparatus according to claim 2, wherein the nitrogen gas concentration holding means is a nitrogen gas curtain provided at a carry-in port and a carry-out port of the member to be soldered. 加熱室内部の酸素濃度を検知し、それに対応して圧力スイング吸着式窒素ガス発生装置からの窒素ガス流入量を自動制御し、加熱室内部の窒素ガス濃度を所定濃度に保つ窒素ガス自動濃度保持手段をさらに設けたことを特徴とする請求項2記載の自動はんだ付け装置。Detects the oxygen concentration inside the heating chamber, automatically controls the flow rate of nitrogen gas from the pressure swing adsorption type nitrogen gas generator according to the oxygen concentration, and automatically maintains the nitrogen gas concentration inside the heating chamber at a predetermined concentration. 3. The automatic soldering apparatus according to claim 2, further comprising means.
JP18670296A 1996-06-26 1996-06-26 Pressure swing adsorption type nitrogen gas generator Expired - Fee Related JP3604820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18670296A JP3604820B2 (en) 1996-06-26 1996-06-26 Pressure swing adsorption type nitrogen gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18670296A JP3604820B2 (en) 1996-06-26 1996-06-26 Pressure swing adsorption type nitrogen gas generator

Publications (2)

Publication Number Publication Date
JPH105522A JPH105522A (en) 1998-01-13
JP3604820B2 true JP3604820B2 (en) 2004-12-22

Family

ID=16193146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18670296A Expired - Fee Related JP3604820B2 (en) 1996-06-26 1996-06-26 Pressure swing adsorption type nitrogen gas generator

Country Status (1)

Country Link
JP (1) JP3604820B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514353B1 (en) * 2003-04-02 2005-09-13 주식회사 티에스 Soldering Machine with Self-supporting Apparatus of Nitrogen Gas
US7670408B2 (en) * 2004-08-30 2010-03-02 Kuraray Chemical Co., Ltd. Method of separating nitrogen gas and molecular sieve carbon
JP4972467B2 (en) * 2007-06-06 2012-07-11 大陽日酸株式会社 Low purity nitrogen gas generation method
KR100824025B1 (en) 2007-11-14 2008-04-21 주식회사 예성이엔지 Nitrogen generator
CN102343195A (en) * 2011-08-25 2012-02-08 太原晋魂环保工程有限公司 Vertical dry flue gas desulphurization and denitration integrated device
JP2015511989A (en) * 2011-12-23 2015-04-23 ソレクセル、インコーポレイテッド Productive semiconductor metallization and interconnect spraying
CN103011097A (en) * 2012-12-18 2013-04-03 江苏泰达机电设备有限责任公司 Nitrogen generating and filling device

Also Published As

Publication number Publication date
JPH105522A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
JP5587607B2 (en) Method and apparatus for purifying exhaust gas in the sintering process of ores and / or other metal-containing materials in metal production
JP5873615B2 (en) Activated carbon activation regeneration furnace, and gas purification method and apparatus using the same
KR100858077B1 (en) Gas cabinet assembly comprising sorbent-based gas storage and delivery system
TWI238079B (en) Method and device for separating gas
JP3604820B2 (en) Pressure swing adsorption type nitrogen gas generator
JPH0568833A (en) Pressure swing adsorption process for removing gaseous impurity composed of steam and carbon dioxide from aie
JPH05261233A (en) Gaseous nitrogen separation method
JP2010249324A (en) Method of manufacturing fluid storage and supply container for storing adsorbent
JP2015221441A (en) Activation regeneration furnace for active charcoal, and method and apparatus for gas purification utilizing the same
CN101878182A (en) Ozone concentrator
KR100263941B1 (en) Method and apparatus for separation gas mixture
US11913693B2 (en) Enhanced refrigeration purge system
GB2281229A (en) An adsorber vessel
JPH06233911A (en) Compression of oxygen
JP2623487B2 (en) Nitrogen gas separation method
CN102099088A (en) Gasoline vapor recovery apparatus
JP2003089508A (en) System for generating ozone
JPH029318A (en) Apparatus for storing perishables
JPH03228806A (en) Separation of gaseous nitrogen
JP3709591B2 (en) Ozone adsorption / desorption method and apparatus
KR102283485B1 (en) Method for munufacturing high purity dimethylamine
JP5665953B2 (en) Concentration / dilution device for specific gas and method for concentration / dilution of specific gas
CN109414643A (en) For operating the method for the industrial complete set of equipments with adsorbent equipment and the industrial complete set of equipments with adsorbent equipment
JP2623487C (en)
JPH01245827A (en) Gaseous nitrogen separator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees