JPH01245827A - Gaseous nitrogen separator - Google Patents

Gaseous nitrogen separator

Info

Publication number
JPH01245827A
JPH01245827A JP63075698A JP7569888A JPH01245827A JP H01245827 A JPH01245827 A JP H01245827A JP 63075698 A JP63075698 A JP 63075698A JP 7569888 A JP7569888 A JP 7569888A JP H01245827 A JPH01245827 A JP H01245827A
Authority
JP
Japan
Prior art keywords
adsorption tower
nitrogen gas
air
adsorption
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63075698A
Other languages
Japanese (ja)
Inventor
Takeshi Mizuno
全 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Sanso Ltd
Original Assignee
Toyo Sanso Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Sanso Ltd filed Critical Toyo Sanso Ltd
Priority to JP63075698A priority Critical patent/JPH01245827A/en
Publication of JPH01245827A publication Critical patent/JPH01245827A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To miniaturize the title equipment by connecting the bottom parts of the adsorption towers not less than two sets with a raw material air compressor via an air-cooled cooling pipe and providing the water droplets removing devices to the bottom parts in the towers and packing an adsorbent to the upper parts. CONSTITUTION:The raw material air compressed with a compressor 4 is passed through an air-cooled cooling pipe 7 to cool it and water is condensed. Water droplets are removed with a water droplet removing device 13 such as metallic small spheres which is provided to the bottom part of an adsorption tower 3a and both steam and CO2 are adsorbed with a zeolite layer 14 and O2 is adsorbed with a molecular sieve carbon layer 15 respectively and N2-enriched gas is introduced into a buffer tank 6. On the other hand, an adsorption tower 3b is evacuated with a vacuum pump 5 at this time and the adsorbed components are desorbed and also the collected water droplets are made into steam and discharged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒素ガス分離装置に関し、詳しくは小型化の図
れる窒素ガス分離装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nitrogen gas separation device, and more particularly to a nitrogen gas separation device that can be miniaturized.

〔従来の技術及び発明が解決しようとする課題〕窒素ガ
スは防爆ガス、保安用ガス、焼成・焼鈍炉の雰囲気ガス
等に幅広い需要があるが、その製造方法の一つとして精
留法での製造がある。精留製造される窒素ガスは酸素分
がt ppm以下という高純度のものが通常である。と
ころが保安、防爆用ガスや食品の鮮度維持等の用途では
酸素濃度がt ppm以上のパーセントオーダーで充分
対応できるものであるが酸素分1pp−以下の高純度窒
素ガスを使用していることが多いのが現状である。また
それらの供給方法も大容量では液体窒素タンク又は可搬
型液体窒素タンクを、小容量では窒素ボンベを使用し、
い−ずれも低温又は高圧ガスで安全面においてもその使
用にかなりの制約を強いられる。またきわめて大量に使
用する場合を除いてほとんどの場合がガスをガス製造基
地からの車輌等による輸送によっているため使用コスト
も上がり又、不便さを有する。
[Prior art and problems to be solved by the invention] Nitrogen gas is in wide demand as an explosion-proof gas, a safety gas, and an atmosphere gas for firing and annealing furnaces. There is manufacturing. Nitrogen gas produced by rectification usually has a high purity with an oxygen content of t ppm or less. However, for applications such as security, explosion-proof gas, and maintaining the freshness of food, high-purity nitrogen gas with an oxygen content of 1 ppm or less is often used, although an oxygen concentration of 1 ppm or more is sufficient. is the current situation. In addition, the supply method for these is a liquid nitrogen tank or a portable liquid nitrogen tank for large capacity, and a nitrogen cylinder for small capacity.
All of them involve low-temperature or high-pressure gases, which imposes considerable restrictions on their use in terms of safety. In addition, in most cases, except when used in extremely large quantities, gas is transported by vehicle from a gas production base, which increases usage costs and is inconvenient.

これらの欠点を補うことのできる方法として圧力変動式
吸着法(プレッシャー、スイング、アトソープション法
nPSA法)がある。該方法は空気から窒素をいわば自
家生産する方法で精留法での製造よりは純度において劣
るものの上記保安、防爆等の用途には充分対応できるも
のであり、又、使用末端のきわめて近い所で製造できる
ことが特徴といえる。但しこの方法は一般に使用量が多
い場合に適用されており、この方法を応用した分離装置
の小型化が困難なため実際に少ない量を長時間使用する
場合はこの方法を採用することができなかった。
A pressure fluctuation adsorption method (pressure, swing, atsorption method nPSA method) is a method that can compensate for these drawbacks. This method is a method of producing nitrogen from air in-house, and although the purity is inferior to that produced by rectification, it is sufficient for the above-mentioned purposes such as security and explosion-proofing. Its feature is that it can be manufactured. However, this method is generally applied when the amount used is large, and it is difficult to miniaturize the separation equipment using this method, so this method cannot be used when actually using a small amount for a long time. Ta.

通常、居力変動式窒素ガス分離装置は分子篩炭或いはゼ
オライト等の吸着剤を充填した2基の吸着塔に交番的に
数十秒〜4分程度までの一定周期で原料圧縮空気を交互
に送り込み、それぞれ吸着−均圧一説離一再生一均圧の
各工程を繰り返し行い連続的に酸素分の少ない窒素富化
ガスを得るものである。この様な従来の窒素分離装置に
は原料空気を冷却するための冷却器及び乾燥器が配され
ている。冷却器配備の理由として、吸着塔内に高い温度
の原料空気を直接送り込むと吸着塔内の温度が次第に上
昇し吸着剤の酸素吸着容量が減少する。結果として装置
起動直後から吸着剤温度が上昇すると伴に製品窒素ガス
中の酸素分が徐々に増加するためであり、従来この様な
冷却器として水或いはフロンガス等の冷媒を装備した冷
却塔を原料圧縮装置と吸着塔との間に配備することが行
われている。
Normally, a pressure variable nitrogen gas separation device alternately feeds raw compressed air into two adsorption towers filled with adsorbents such as molecular sieve charcoal or zeolite at a constant cycle of several tens of seconds to 4 minutes. The steps of adsorption, pressure equalization, separation, regeneration, and pressure equalization are repeated, respectively, to continuously obtain a nitrogen-enriched gas with a low oxygen content. Such conventional nitrogen separation equipment is provided with a cooler and a dryer for cooling the raw air. The reason for installing a cooler is that if high temperature feed air is directly fed into the adsorption tower, the temperature inside the adsorption tower will gradually rise and the oxygen adsorption capacity of the adsorbent will decrease. As a result, the oxygen content in the product nitrogen gas gradually increases as the adsorbent temperature rises immediately after the equipment starts up. It is common practice to install the compressor between the compressor and the adsorption tower.

また冷却器のみ設置した場合、圧縮原料空気中に飽和に
なっている水蒸気及び冷却により凝集した水滴が直接吸
着剤に吸着され、その結果吸着剤の酸素吸着容量の減少
を招く、吸着塔の温度上昇による製品窒素の中の酸素濃
度の増大は装置を停止し、吸着塔を冷却することにより
元の状態に戻るが、水滴の蓄積、水分の蓄積による酸素
濃度の増大は水分を何らかの方法で除去しない限り元の
状態に戻ることはない、従って、従来は冷却塔と吸着塔
の間に乾燥器(冷凍式、PSA方式、TSA方式等の乾
燥器)を配置させている。
In addition, when only a cooler is installed, water vapor saturated in the compressed feed air and water droplets condensed by cooling are directly adsorbed by the adsorbent, resulting in a decrease in the adsorption tower's oxygen adsorption capacity. The increase in the oxygen concentration in the product nitrogen due to the rise will return to the original state by stopping the equipment and cooling the adsorption tower, but if the oxygen concentration increases due to the accumulation of water droplets or moisture, the moisture must be removed by some method. Therefore, conventionally, a dryer (refrigeration type, PSA type, TSA type dryer, etc.) is placed between the cooling tower and the adsorption tower.

従来のこの種装置では、この冷却器、乾燥器の占める容
積が大きい為装置の小型化が困難であり、その結果上記
した如<PSA法による少量、長時間の窒素ガス供給は
困難であった。
In conventional devices of this kind, the cooler and dryer occupy a large volume, making it difficult to miniaturize the device.As a result, it has been difficult to supply nitrogen gas in small quantities over long periods of time using the PSA method as described above. .

本発明はこの様な従来の欠点を解消した小型の窒素ガス
分離装置を提供することを目的とするものである。
It is an object of the present invention to provide a small-sized nitrogen gas separation device that eliminates such conventional drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する為に、本発明の窒素ガス分離装置に
おいては従来の冷却塔を空冷冷却管とし、乾燥器に代え
て各吸着塔内部底部に物理的に吸着剤層への水滴の侵入
を防止する水滴除去装置を設けることにより解決するも
のである。
In order to achieve the above object, in the nitrogen gas separation apparatus of the present invention, the conventional cooling tower is replaced with an air-cooled cooling tube, and instead of a dryer, water droplets are physically prevented from entering the adsorbent layer at the internal bottom of each adsorption tower. This problem can be solved by providing a water droplet removal device to prevent this problem.

従って、本発明窒素ガス分離装置は、少なくとも二基の
吸着塔と、各吸着塔の底部に空冷冷却管を介して連結さ
れた原料空気圧縮機と、各吸着塔底部に連結された真空
ポンプと、各吸着塔の上部に設けられたガス排出口に連
結されるバッファタンクとからなる窒素ガス分離装置で
あって、各吸着塔内の底部には物理的に吸着剤層への水
滴の侵入を防止する水滴除去装置を設け、該装置上部に
吸着剤を充填してなるという構成を有するものである。
Therefore, the nitrogen gas separation apparatus of the present invention includes at least two adsorption towers, a feed air compressor connected to the bottom of each adsorption tower via an air-cooled cooling pipe, and a vacuum pump connected to the bottom of each adsorption tower. , a nitrogen gas separation device consisting of a buffer tank connected to a gas outlet provided at the top of each adsorption tower, and a nitrogen gas separation device that physically prevents water droplets from entering the adsorbent layer at the bottom of each adsorption tower. It has a structure in which a water droplet removing device is provided to prevent water droplets, and an adsorbent is filled in the upper part of the device.

又、水滴除去装置として多数の金属小球から形成される
層またはパンチングメタルを採用するものである。
Further, a layer formed from a large number of metal globules or a punched metal is used as the water droplet removing device.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して詳細に説明する
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は請求項1発明の一実施例を示すもので、第2図
はそのフローシートを余すものである。図中1は窒素ガ
ス分離装置を示す、該装置1はケーシング2の内部に二
基の吸着塔3a、 3b、原料空気圧縮1a4、真空ポ
ンプ5及びバッファタンク6を備えている。原料空気圧
縮機4はケーシング2内部底面に設置され、該圧縮機4
からは長尺な冷却管7がケーシング2上部まで延び、上
部において渦巻状に延びた後、下降して分岐点8におい
て2方向に分離した後、電磁開閉弁9a、 9bを介し
て吸着塔3a、 3bの底部にそれぞれ連結されている
FIG. 1 shows an embodiment of the invention according to claim 1, and FIG. 2 shows the remaining flow sheet thereof. In the figure, reference numeral 1 indicates a nitrogen gas separation device. The device 1 is equipped inside a casing 2 with two adsorption towers 3a, 3b, a raw air compressor 1a4, a vacuum pump 5, and a buffer tank 6. The raw air compressor 4 is installed on the bottom inside the casing 2, and the compressor 4
From there, a long cooling pipe 7 extends to the upper part of the casing 2, extends in a spiral shape at the upper part, descends and separates into two directions at a branch point 8, and then passes through electromagnetic on-off valves 9a and 9b to the adsorption tower 3a. , 3b, respectively.

冷却管7の材質は熱伝導の比較的良い通常の使用状態で
加工性、耐蝕性の高いものであれば良く、例えば、銅、
アルミニウム、ステンレス等の金属或いはナイロン等の
合成樹脂が使用できる。
The material of the cooling pipe 7 may be any material as long as it has relatively good thermal conductivity and is highly workable and corrosion resistant under normal usage conditions, such as copper,
Metals such as aluminum and stainless steel, or synthetic resins such as nylon can be used.

又、真空ポンプ5もケーシング2内部底面に設置され、
該ポンプ5には電磁開閉弁9Cが連結され、該開閉弁9
cから分岐点10において2方向に分離した後電磁開閉
弁9d+9eを介して各吸着塔3a、 3bの底部に連
結されている。
In addition, a vacuum pump 5 is also installed on the bottom inside the casing 2,
An electromagnetic on-off valve 9C is connected to the pump 5, and the on-off valve 9C is connected to the pump 5.
It is separated into two directions at a branch point 10 from c and then connected to the bottom of each adsorption tower 3a, 3b via electromagnetic on-off valves 9d+9e.

又、電磁開閉弁9cと分岐点10の間には逆止弁11及
びサイレンサー12が連結されている。
Further, a check valve 11 and a silencer 12 are connected between the electromagnetic on-off valve 9c and the branch point 10.

各吸着塔3a、 3b内には第2図に示す如くその底部
には物理的に吸着剤層への水滴の侵入を防止する水滴除
去装置13が設けられ、該除去装置13の上部にゼオラ
イト層14及び分子篩炭層15の吸着剤層が設けられて
いる。水滴除去装置13は原料空気が圧縮され冷却され
た際凝集した水滴の吸着剤層への移行を防ぎ、ひいては
吸着剤への水分の蓄積を防止するものであり、熱伝導性
の良い材質で形成されていることが好ましい、その理由
として、次のことが挙げられる。即ち、吸着塔が酸素で
飽和される前に真空ポンプにより脱気が行われる際、水
滴が気化して水蒸気になり真空ポンプから排出されるが
、この時水の気化熱を吸着塔の外部から補うため良熱伝
導性であることが好ましいのである。
As shown in FIG. 2, each adsorption tower 3a, 3b is provided with a water droplet removing device 13 at its bottom to physically prevent water droplets from entering the adsorbent layer, and a zeolite layer is provided above the removing device 13. 14 and an adsorbent layer of molecular sieve carbon layer 15 are provided. The water droplet removing device 13 prevents water droplets that aggregate when the raw air is compressed and cooled from migrating to the adsorbent layer, and further prevents moisture from accumulating on the adsorbent, and is made of a material with good thermal conductivity. The reasons why it is preferable to do so include the following. That is, when the adsorption tower is degassed by a vacuum pump before being saturated with oxygen, water droplets are vaporized and turned into water vapor, which is discharged from the vacuum pump. At this time, the heat of vaporization of water is transferred from the outside of the adsorption tower. To compensate for this, it is preferable to have good thermal conductivity.

第3図に示す実施例ではこの水滴除去装置を多数の金属
小球から形成された層で構成している。
In the embodiment shown in FIG. 3, the water droplet removal device is constructed from a layer formed from a large number of metal globules.

第3図において16a、 16b、 16c、 16d
はそれぞれ金網を示し、吸着塔3の底部にスペーサー1
7を介して金m16aが載置され、その上に多数の金属
小球から形成された層18が設けられ、該層18上に金
M416bを介してゼオライト層14が、更に分子篩炭
層15が設けられている。又、分子篩炭層15の上部に
は金m16dが載置され、コイルスプリング19により
吸着塔3上面に押圧固定されている。金属小球はステン
レス、銅、アルミニウム等の熱伝導性の良好な金属0小
球で、その径が5〜20+u+程度のものを1〜7C1
程度の層として充填されている。
In Fig. 3, 16a, 16b, 16c, 16d
Each indicates a wire mesh, and a spacer 1 is placed at the bottom of the adsorption tower 3.
Gold m16a is placed on top of the layer 18 made of a large number of metal spherules, and a zeolite layer 14 is placed on the layer 18 with gold M416b placed thereon, and a carbon molecular sieve layer 15 is further provided on the layer 18. It is being Further, gold m16d is placed on the upper part of the molecular sieve coal layer 15, and is pressed and fixed to the upper surface of the adsorption tower 3 by a coil spring 19. Metal balls are metal balls with good thermal conductivity such as stainless steel, copper, and aluminum, and those with a diameter of about 5 to 20+U+ are 1 to 7C1.
It is filled as a layer of degree.

又、第4図に示す実施例では、水滴除去装置がパンチン
グメタルにより構成されている。第4図において、20
は水滴除去装置としてのパンチングメタルを示す、パン
チングメタル20は、ステンレス、銅、アルミニウム等
の熱伝導性の良好な金属板に開口面積が1〜5Il−2
程度の孔21を多数設けて構成されている。
Further, in the embodiment shown in FIG. 4, the water droplet removing device is constructed of punched metal. In Figure 4, 20
indicates a punched metal used as a water droplet removing device. The punching metal 20 is a metal plate with good thermal conductivity such as stainless steel, copper, or aluminum and has an opening area of 1 to 5Il-2.
It is configured by providing a large number of holes 21 of approximately 100 mL.

又、水滴除去装置として、上記金属小球から形成された
層、パンチングメタルの他、金属小球の焼結体、金網の
焼結体等が使用できる。これらの焼結体は微細空孔が多
数存在する板状体の形状をなしているものである。
Further, as the water droplet removing device, in addition to the layer formed from the metal globules and punched metal, a sintered body of metal globules, a sintered body of wire mesh, etc. can be used. These sintered bodies are in the form of a plate-like body in which a large number of micropores exist.

各吸着塔3a、 3b内に充填される吸着剤は主として
分子篩炭を使用することが好ましく、又、分子篩炭と少
量の他の吸着剤、例えばゼオライト、活性アルミナ等と
を併用すると更に好ましい。分子篩炭はゼオライト、活
性アルミナ等と比較した場合、吸着した水分の脱離が容
易である反面、水分を吸着した際の酸素吸着能が低下す
る為、下層に少量のゼオライト、活性アルミナ等の吸着
層を設け、ここで水蒸気を吸着し、分子篩炭に入る空気
をかなり乾燥したものとして供給することにより、効率
の良い窒素ガスの分離が行える。逆に、ゼオライト等を
主として使用した場合、水分の脱離が困難で時間がかか
る等の不具合があり効率の良い酸素ガスの吸着を行い難
い、従って、本発明では下層に少量の水分の吸着脱離性
能の高いゼオライトを充填し、上層に分子篩炭を充填す
る態様が最も好ましく、その際の充填量としては、ゼオ
ライト:分子篩炭=l:6〜1:15程度であることが
好ましい。
It is preferable to mainly use molecular sieve charcoal as the adsorbent filled in each adsorption tower 3a, 3b, and it is more preferable to use molecular sieve charcoal together with a small amount of other adsorbent such as zeolite, activated alumina, etc. When compared to zeolite, activated alumina, etc., molecular sieve charcoal can easily desorb adsorbed water, but on the other hand, its oxygen adsorption ability decreases when adsorbing water, so a small amount of zeolite, activated alumina, etc. should be adsorbed in the lower layer. By providing a layer in which water vapor is adsorbed and supplying fairly dry air that enters the molecular sieve charcoal, efficient nitrogen gas separation can be achieved. On the other hand, if zeolite or the like is mainly used, it is difficult to desorb water and it takes a long time, making it difficult to efficiently adsorb oxygen gas. The most preferable embodiment is to fill zeolite with high release performance and fill the upper layer with molecular sieve charcoal, and in this case, the filling amount is preferably about zeolite:molecular sieve charcoal=1:6 to 1:15.

各吸着等3a、3bの上部にはそれぞれガス排出口22
a、22bが設けられており、排出口22aは電磁開閉
弁9f、 9gを介してバッファタンク6の上部に連結
されており、又、排出口22bは電磁開閉弁9h。
At the top of each adsorption etc. 3a, 3b, there is a gas outlet 22.
The outlet 22a is connected to the upper part of the buffer tank 6 via electromagnetic on-off valves 9f and 9g, and the outlet 22b is connected to an electromagnetic on-off valve 9h.

9gを介してバッファタンク6の上部に連結されている
。又、バッファタンク6の底部からは減圧弁23、ニー
ドル弁24、流量計25を介してケーシング2外部の窒
素ガス取り出し口26に連結されており、該取り出し口
26より分離された窒素ガスが供給される。
It is connected to the upper part of the buffer tank 6 via 9g. Further, the bottom of the buffer tank 6 is connected to a nitrogen gas outlet 26 outside the casing 2 via a pressure reducing valve 23, a needle valve 24, and a flow meter 25, and the separated nitrogen gas is supplied from the outlet 26. be done.

尚、図中27は冷却管7を冷却するためのファンを、2
8は装置運転操作スイッチを示す。又、各電磁開閉弁、
或いはバルブ等のコントロールは公知のシーケンス制御
によって行われる。 上記の如く構成される装置lを用
いて窒素ガスの分離を行う方法について説明する。
In addition, 27 in the figure is a fan for cooling the cooling pipe 7.
8 indicates a device operation switch. In addition, each electromagnetic on-off valve,
Alternatively, control of valves and the like is performed by known sequence control. A method for separating nitrogen gas using the apparatus 1 configured as described above will be explained.

圧縮a4により圧縮された原料空気は冷却管7を通り直
接吸着塔3aに導かれる。冷却管7を通る圧縮空気は周
囲の雰囲気温度及びファン27により冷却され、室温程
度まで冷却される。圧縮された原料空気が冷却されると
、空気中の水分が飽和し、又、凝集して水滴となる。従
って、原料の圧縮空気は水滴を伴って吸着塔3aの底部
に導入される。
The raw material air compressed by the compression a4 passes through the cooling pipe 7 and is directly led to the adsorption tower 3a. The compressed air passing through the cooling pipe 7 is cooled by the ambient temperature and the fan 27, and is cooled to about room temperature. When the compressed raw air is cooled, the moisture in the air becomes saturated and condenses into water droplets. Therefore, the raw material compressed air is introduced into the bottom of the adsorption tower 3a together with water droplets.

吸着塔3aの底部に導入された圧縮空気中の水滴は水滴
除去装置13によりゼオライト層14への侵入を阻まれ
、吸着塔3a底部に液体のまま残る。水滴除去装置13
により水滴を除去された圧縮空気はゼオライト層14へ
入りここで圧縮空気中の水蒸気及び炭酸ガスが除去され
、分子篩家層15へ入る。従って分子篩炭層15へはか
なり乾燥した原料空気が導入されることとなる。吸着塔
3a内に導入された原料空気は一定時間(2秒〜10秒
)加圧された後、電磁開閉弁9r及び9gを開くと共に
吸着塔3aに原料空気を送り込みながらガス排出口22
aより窒素富化ガスをバッファタンク6に導入する。所
定時間経過後、即ち窒素富化ガスがバッファタンク6に
導入された後、吸着塔3aが酸素で飽和する直前に電磁
開閉弁9aを閉じ、電磁開閉弁9f及び9hを開いて吸
着塔3a及び3bを均圧する。均圧操作は、吸着塔3a
で製品にならない程度に不完全に濃縮された窒素ガスを
回収し、圧縮ガスの回収による圧縮動力費の軽減、製品
となる窒素ガスの圧力変動を小さくする、等の目的で行
われる。均圧操作時間は原料空気圧縮機の処理量、吸着
塔容量、吸着剤の量及び吸着容量、配管径、真空ポンプ
の処理量、吸着塔切り換え時間等により種々異なり、0
.5秒〜2秒程度の間の任意の時間を選択できる。
Water droplets in the compressed air introduced into the bottom of the adsorption tower 3a are prevented from entering the zeolite layer 14 by the water droplet removal device 13, and remain as a liquid at the bottom of the adsorption tower 3a. Water droplet removal device 13
The compressed air from which water droplets have been removed enters the zeolite layer 14, where water vapor and carbon dioxide gas in the compressed air are removed, and enters the molecular sieve layer 15. Therefore, fairly dry raw air is introduced into the molecular sieve coal layer 15. After the raw air introduced into the adsorption tower 3a is pressurized for a certain period of time (2 seconds to 10 seconds), the electromagnetic on-off valves 9r and 9g are opened and the gas outlet 22 is opened while feeding the raw air into the adsorption tower 3a.
Nitrogen enriched gas is introduced into the buffer tank 6 from a. After a predetermined period of time has elapsed, that is, after the nitrogen-enriched gas has been introduced into the buffer tank 6, and just before the adsorption tower 3a is saturated with oxygen, the electromagnetic on-off valve 9a is closed, and the electromagnetic on-off valves 9f and 9h are opened to open the adsorption tower 3a and the adsorption tower 3a. Equalize the pressure of 3b. The pressure equalization operation is carried out using the adsorption tower 3a.
This is done to recover nitrogen gas that has been incompletely concentrated to the extent that it cannot be used as a product, and to reduce compression power costs by recovering the compressed gas and to reduce pressure fluctuations in the nitrogen gas that becomes the product. The pressure equalization operation time varies depending on the throughput of the raw air compressor, the adsorption tower capacity, the amount and adsorption capacity of the adsorbent, the pipe diameter, the throughput of the vacuum pump, the adsorption tower switching time, etc.
.. Any time between about 5 seconds and 2 seconds can be selected.

均圧操作の終了後、電磁開閉弁9f及び9hが閉じ、開
閉弁9bが開き、圧縮空気は吸着塔3bに導入され、吸
着塔3bにおいて前記吸着塔3aと同様の操作が行われ
る。
After the pressure equalization operation is completed, the electromagnetic on-off valves 9f and 9h are closed, the on-off valve 9b is opened, compressed air is introduced into the adsorption tower 3b, and the same operation as in the adsorption tower 3a is performed in the adsorption tower 3b.

一方、吸着塔3aは開閉弁9dを開いて逆止弁11及び
サイレンサー12を介して常圧まで減圧された後、開閉
弁9cを開いて真空ポンプ5により脱気が行われる。真
空ポンプ5により減圧が行われるとゼオライトに吸着し
た水蒸気は脱離し、又、水滴除去装置13によって吸着
塔3a底部に残された水滴は気化して水蒸気になり真空
ポンプ5から排出される。
On the other hand, the adsorption tower 3a opens the on-off valve 9d and is reduced to normal pressure via the check valve 11 and silencer 12, and then opens the on-off valve 9c and is degassed by the vacuum pump 5. When the pressure is reduced by the vacuum pump 5, the water vapor adsorbed on the zeolite is desorbed, and the water droplets left at the bottom of the adsorption tower 3a are vaporized by the water droplet removing device 13 to become water vapor, which is discharged from the vacuum pump 5.

真空ポンプ5は通常、この種脱気に使用される酸素のみ
を排出するための規模ものものより処理量の多いものが
必要となり、例えば、冷凍式乾燥器を使用した場合より
3〜5%多い処理量を有するものが必要となる。
The vacuum pump 5 is usually required to have a higher throughput than the scale used for this type of degassing to exhaust only oxygen, for example, 3 to 5% more than when using a freeze dryer. A device with a throughput capacity is required.

この様に真空ポンプにより吸着塔3a内の再生処理を行
った後、前記した均圧処理を行い、順次吸着塔3a、3
bを利用することができる。
After regenerating the inside of the adsorption tower 3a using the vacuum pump in this way, the pressure equalization process described above is performed, and then the adsorption towers 3a, 3
b can be used.

本発明装置は空冷冷却管及び吸着塔内の水滴除去装置を
備えることにより装置全体をきわめてコンパクトに構成
できるものであり、0.1〜INrd/h程度の製品量
を製造する小型窒素分離装置とすることが可能である。
The device of the present invention is equipped with an air-cooled cooling pipe and a water droplet removal device in the adsorption tower, so that the entire device can be configured extremely compactly. It is possible to do so.

(発明の効果〕 以上説明した如く、本発明装置は、圧縮空気の冷却を空
冷冷却管により行い、又、吸着塔底部に水滴除去装置を
設けた為、従来のこの種装置では不可能であった小型化
を図れるものであり、又、その窒素ガス分離能も優れた
ものである。
(Effects of the Invention) As explained above, the device of the present invention cools the compressed air using an air-cooled condenser tube, and also has a water droplet removal device at the bottom of the adsorption tower, which is impossible with conventional devices of this type. It can be miniaturized, and its nitrogen gas separation ability is also excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は窒素ガス分離装置の一部切り欠き斜視図、第2
図は第1図のフローチャト、第3図は金属小球からなる
層により水滴除去装置を構成してなる吸着塔の断面図、
第4図はパンチングメタルにより水滴除去装置を構成し
てなる吸着塔の断面図である。 l・・・窒素ガス分離装置 3a、3b・・・吸着塔 4・・・原料空気圧縮機 5・・・真空ポンプ 6・・・バッファタンク 13・・・水滴除去装置 14・・・ゼオライト層 15・・・分子篩炭層 18・・・多数の金属小球から形成された層20・・・
パンチングメタル 22a、22b・・・ガス排出口 4・・・原料空気圧縮機   7・・・冷却官第  2
  図 13・・水滴除去装置 22a 、22b−・・排出口
Figure 1 is a partially cutaway perspective view of the nitrogen gas separator;
The figure is a flowchart of Figure 1, and Figure 3 is a cross-sectional view of an adsorption tower comprising a water droplet removal device made of a layer of metal globules.
FIG. 4 is a cross-sectional view of an adsorption tower whose water droplet removing device is made of punched metal. l... Nitrogen gas separation device 3a, 3b... Adsorption tower 4... Raw air compressor 5... Vacuum pump 6... Buffer tank 13... Water droplet removal device 14... Zeolite layer 15 ... Molecular sieve carbon layer 18 ... Layer 20 formed from a large number of metal globules...
Punching metal 22a, 22b...Gas discharge port 4...Raw material air compressor 7...Cooling officer No. 2
Figure 13...Water droplet removal devices 22a, 22b-...Discharge port

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも二基の吸着塔と、各吸着塔の底部に空
冷冷却管を介して連結された原料空気圧縮機と、各吸着
塔底部に連結された真空ポンプと、各吸着塔の上部に設
けられたガス排出口に連結されるバッファタンクとから
なる窒素ガス分離装置であって、各吸着塔内の底部には
物理的に吸着剤層への水滴の侵入を防止する水滴除去装
置を設け、該装置上部に吸着剤を充填してなることを特
徴とする窒素ガス分離装置。
(1) At least two adsorption towers, a feed air compressor connected to the bottom of each adsorption tower via an air-cooled cooling pipe, a vacuum pump connected to the bottom of each adsorption tower, and a vacuum pump connected to the top of each adsorption tower. This is a nitrogen gas separation device consisting of a buffer tank connected to a gas outlet, and a water droplet removal device is installed at the bottom of each adsorption tower to physically prevent water droplets from entering the adsorbent layer. A nitrogen gas separation device characterized in that the upper part of the device is filled with an adsorbent.
(2)水滴除去装置が多数の金属小球から形成される層
である請求項1記載の窒素ガス分離装置。
(2) The nitrogen gas separation device according to claim 1, wherein the water droplet removing device is a layer formed of a large number of metal globules.
(3)水滴除去装置がパンチングメタルである請求項1
記載の窒素ガス分離装置。
(3) Claim 1, wherein the water droplet removing device is made of punching metal.
Nitrogen gas separation device as described.
JP63075698A 1988-03-29 1988-03-29 Gaseous nitrogen separator Pending JPH01245827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63075698A JPH01245827A (en) 1988-03-29 1988-03-29 Gaseous nitrogen separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63075698A JPH01245827A (en) 1988-03-29 1988-03-29 Gaseous nitrogen separator

Publications (1)

Publication Number Publication Date
JPH01245827A true JPH01245827A (en) 1989-10-02

Family

ID=13583696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63075698A Pending JPH01245827A (en) 1988-03-29 1988-03-29 Gaseous nitrogen separator

Country Status (1)

Country Link
JP (1) JPH01245827A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512087A (en) * 1992-05-12 1996-04-30 Newport Petroleum Petroleum vapor control apparatus
US5531809A (en) * 1994-09-14 1996-07-02 Air Products And Chemicals, Inc. Pretreatment layer for CO-VSA
US5531807A (en) * 1994-11-30 1996-07-02 Airsep Corporation Apparatus and method for supplying oxygen to passengers on board aircraft
US5997617A (en) * 1997-01-31 1999-12-07 Healthdyne Technologies, Inc. Pressure swing absorption system with multi-chamber canister

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512087A (en) * 1992-05-12 1996-04-30 Newport Petroleum Petroleum vapor control apparatus
US5531809A (en) * 1994-09-14 1996-07-02 Air Products And Chemicals, Inc. Pretreatment layer for CO-VSA
US5531807A (en) * 1994-11-30 1996-07-02 Airsep Corporation Apparatus and method for supplying oxygen to passengers on board aircraft
US5997617A (en) * 1997-01-31 1999-12-07 Healthdyne Technologies, Inc. Pressure swing absorption system with multi-chamber canister
US6190441B1 (en) 1997-01-31 2001-02-20 Respironics Georgia, Inc. Pressure swing absorption system with multi-chamber canister

Similar Documents

Publication Publication Date Title
CA2079949C (en) Low temperature pressure swing adsorption with refrigeration
CA1050901A (en) Adsorption process
KR100227060B1 (en) Process and apparatus for gas purification
KR100858195B1 (en) Process and apparatus for producing nitrogen
CN111566044B (en) Adsorption process for recovery of xenon from gas or liquid streams at low temperature
JPS60227813A (en) Pressure swing method for adsorptive separation of gaseous mixture
US5658369A (en) Recovery of substances from exhaust streams
KR101099855B1 (en) Air separator
JPH11316082A (en) Method and device for producing clean and dry air
WO1986000693A1 (en) Apparatus for producing high-frequency nitrogen gas
JP4033591B2 (en) SF6 gas recovery device
JPH01245827A (en) Gaseous nitrogen separator
GB2281229A (en) An adsorber vessel
US5989314A (en) Pressure swing adsorption air prepurifier
EP0765681A2 (en) Pressure swing adsorption air prepurifier
JPS61228286A (en) Air separator
EP0122874B1 (en) Process for separating a mixed gas into oxygen and nitrogen under low temperature and low pressure conditions
JP3287607B2 (en) Method for producing an oxygen-enriched product stream
JPH0230607A (en) Production of highly pure nitrogen
JP2001033155A (en) Air separator
JPH09168715A (en) Pretreating device for air separation
JP3181286B2 (en) Method for producing ultra-high-purity nitrogen gas and apparatus used therefor
JPH1015331A (en) Heat regeneration type pressure swing adsorbing apparatus
JP3532466B2 (en) Air separation device
JPH0768041B2 (en) Oxygen-enriched gas manufacturing method