JP3604496B2 - Particle catcher of photoelectric particle concentration measuring device - Google Patents

Particle catcher of photoelectric particle concentration measuring device Download PDF

Info

Publication number
JP3604496B2
JP3604496B2 JP06891196A JP6891196A JP3604496B2 JP 3604496 B2 JP3604496 B2 JP 3604496B2 JP 06891196 A JP06891196 A JP 06891196A JP 6891196 A JP6891196 A JP 6891196A JP 3604496 B2 JP3604496 B2 JP 3604496B2
Authority
JP
Japan
Prior art keywords
light
duct
cylinder
air supply
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06891196A
Other languages
Japanese (ja)
Other versions
JPH09236545A (en
Inventor
敏文 田中
八郎 瀬賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA ELECTRIC LABORATORY CO., LTD.
Original Assignee
TANAKA ELECTRIC LABORATORY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANAKA ELECTRIC LABORATORY CO., LTD. filed Critical TANAKA ELECTRIC LABORATORY CO., LTD.
Priority to JP06891196A priority Critical patent/JP3604496B2/en
Publication of JPH09236545A publication Critical patent/JPH09236545A/en
Application granted granted Critical
Publication of JP3604496B2 publication Critical patent/JP3604496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ダクト内で浮遊もしくは圧送される煤塵、ダスト、タービン発電用微粉炭燃焼ガス等の気中粒子の濃度を測定するために、ダクト壁面に取付けられた基部に、光ファイバを通して搬送された発光を先端部からダクト内へ投光する投光用筒体と、先端部に入射した気中粒子の散乱光を搬送する光ファイバが接続した受光用筒体とが互の光軸をダクト内で交差させるように取付けられた光電式粒子濃度測定装置の粒子キャッチャに関するものである。
【0002】
【従来の技術】
この種の粒子キャッチャは、ダクト壁面の開口部に取付けられて、光電式粒子濃度測定装置の装置本体に粒子濃度に比例する散乱光を入射させ、光電式に粒子濃度を測定させる。この場合、投受光部をダクトの両側の壁に互いに対向させて取付けることにより、透光の減衰量を基に粒子濃度を測定する周知の別方式に対して、互いの位置関係の調整が不要になるメリットがあり、最近では廃棄する煙道の煤塵等に限らず、タービン駆動用の高温・高圧の燃焼ガス中の煤塵濃度測定等にも用途が広がっている。
【0003】
【発明が解決しようとする課題】
しかしながら、このような最近の高温・高圧の粒子を対象とする場合、筒体の光ファイバが高温で変形したり或はファイバ素子を束状に接合する接着剤を変質させたり、高圧の粒子が露出状態の光ファイバの先端に侵入し易くなる問題がある。さらに、別の問題として、ダクト内に有害物が存在する場合、保守時に粒子キャッチャの取り外しのためにダクト内へ入る際には安全性を配慮する必要がある。
【0004】
本発明は、このような点に鑑みて、高温及び高圧下での使用にも耐え、かつ保守も容易になる光電式粒子濃度測定装置の粒子キャッチャを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、この目的を達成するために、請求項1により、ダクト内の粒子による散乱光を基に粒子濃度を測定する光電式粒子濃度測定装置の装置本体から搬送された発光をダクト内へ投光し、ダクト内の粒子で反射された散乱光を装置本体へ搬送するために、ダクト壁面の開口部に取付けられた基部に、発光を搬送する光ファイバが接続して先端部からダクト内へ投光する投光用筒体と、先端部に入射した散乱光を搬送する光ファイバが接続した受光用筒体とがそれぞれの光軸を交差させるように取付けられた光電式粒子濃度測定装置の粒子キャッチャにおいて、投光用及び受光用筒体が、基部に取付けられる外筒と、この外筒に背後からねじ込まれると共に光ファイバが挿入された内筒とから構成され、この内筒の先端部には、中心開口部に気密状態で透光窓が設けられ、かつこの透光窓の表面に沿って吐出する複数対のノズルが形成されたキャップがねじ込まれると共に、各対の一方のノズルが他方のノズルに透光窓の中心部に向けて互いに対向し、かつ互いに光軸方向へオフセットされ、キャップの外周面と外筒の内周面との間に、ノズルの基端部が連通するリング状給気路が形成されると共に、このリング状給気路及び外筒の側部に設けられたガス取入れ口間における内筒の外周面に、外筒の内径に相当する直径のディスク状放熱フィンが光軸方向へ複数枚形成され、ガス取入れ口から取入れたガスをリング状給気路の一部分に誘導する給気路が、ディスク状放熱フィンの端部を切欠くことにより形成されたことを特徴とする。
【0006】
測定中、内筒及び外筒間の給気路を通過するガスが、内筒を冷却する放熱フィンに沿ってその切欠を通って、キャップの外周面のリング状給気路に、その一部から誘導され、複数のノズルから2層のガス幕により透光窓の表面に沿って隙間及び乱流を抑制してダクト内の圧力よりも高い圧力で吐出される。光ファイバ、ノズル或は透光窓を点検したい場合、外筒を残したままで光ファイバが装着された内筒が背後に取り外される。光ファイバを内筒から抜くこともできる。透光窓及びノズルを備えたキャップは、内筒からねじにより取外すことができる。
【0007】
【発明の実施の形態】
図1乃至図3を基に本発明の一実施形態による光電式粒子濃度測定装置の粒子キャッチャを説明する。図3において、9は、基部11に投光用筒体7及び受光用筒体8を45°で貫通させて互の光軸A、Bが直交するように溶接して構成された粒子キャッチャである。基部11は、微粉炭燃焼ガス等を搬送するダクト1の壁面の開口部1aの周囲に突設された枠形状の座部2に、耐熱性を呈するアスベスト製のパッキン12を介してねじ貫通孔11aでねじ止めされる。15はデフレクタであり、投光用筒体7からの投光が受光用筒体8に対して干渉しないように遮光する。
【0008】
これらの筒体7、8は同一構造であり、図1に示すように、側部に防塵用ガスがフィルタを通して供給されるガス取り入れ口13を備え、前面に開口部14を備えた外筒10と、接着剤で束状に接合された光ファイバ4が挿入され、かつねじ部20aでシリコン系のOリング29を介して外筒10にねじ込まれる内筒20とより構成されている。光ファイバ4は、そのスリーブ4aを段部21へ当接させた状態で、リング状ねじ23を耐熱性を呈するシリコン系のOリング27を介してねじ部23aでねじ止めすることにより、内筒20に装着される。
【0009】
内筒20の先端部には、キャップ30がねじ部30aでねじ込まれる。その中心開口部32には、高温に耐えるように石英製の透光窓31が、表面をリング状のテフロン製パッキン37で、また裏面をシリコン系のOリング39で気密にされて嵌め込まれ、またキャップ30は透光窓31の周囲からその表面に沿って防塵用ガスを吐出する。
【0010】
このガス吐出のために、キャップ30の段状外周面と、外筒10の内周面との間にはリング状給気路38が形成されると共に、この給気路に基端部が連通したノズル33が、透光窓31の中心に向けて放射方向に8個等間隔で形成されている。これらのノズルは、2個づつ透光窓31の中心部に向けて互いに対向方向に対をなして複数対配列されると共に、各対の一方のノズル33が他方のノズル33に対して光軸A、Bの方向へその内径寸法よりも僅かに小さくオフセットされている。即ち、図2Cにおいて、例えば下側4個が上側よりも透光窓31に対して僅かに大きく離間し、互いの干渉が抑制された2層のガス幕を形成するようになっている。
【0011】
内筒20の外周面には、光軸A、Bの方向へ離間し、かつ外筒10の内径に相当する直径を有する2枚のディスク形状の放熱フィン25、26が形成されると共に、図2A、Bに示すように、ガス取り入れ口13から見て両側部及び下部に切欠部25a、26aが形成されることにより、外筒10の内周面との間にガスをリング状給気路38の下部に誘導する給気路38aを形成している。以上説明したこれらの外筒10及び内筒20の各部はステンレス製である。
【0012】
図4は、このように構成された粒子キャッチャ9と共に、粒子濃度測定装置を構成する装置本体としての発光部40及び受光信号処理装置50の構成を示す。発光部40は、ハロゲンランプ41と、その発光をCds43で受光してその受光信号が帰還されることによりハロゲンランプ41を所定の発光量に自動制御するように駆動する電源42と、モータで回転駆動され、ハロゲンランプ41の発光を断続光波に変換するチョッパ44と、その断続光波を同期信号用に送出する受光素子45とを備えている。この断続光波は、同時に光ファイバ4を通して投光用筒体7に搬送される。
【0013】
受光信号処理部50は、受光用筒体8の光ファイバ4で搬入された受光信号を光電変換する受光素子53と、その増幅器53aによる増幅信号を同期信号と位相を揃えるための移相調整回路54と、受光素子45の送出信号を微小レベルでスライスして波形整形することにより、同期信号を発生する整形回路51と、入力する同期信号に同期した受光信号を検波する同期検波回路52と、その同期検波された信号の増幅器52aで増幅された増幅出力をハイカットするローパスフィルタ52bと、そのハイカット信号を積分する積分回路55と、その直流状になった出力信号を濃度としてメータ或は数値等で指示する出力手段56と、出力信号レベルが所定レベルを越えると、音もしくは光で警報を行う警報手段57と、整形回路51の同期信号が基準レベルを下廻ると、発光部40の異常を警報する警報手段58とを備えている。
【0014】
このように構成された粒子キャッチャ9を有する光電式粒子濃度測定装置の動作は次の通りである。粒子キャッチャ9は、その基部11でパッキン12を介して200℃程度の微粉炭燃焼ガス等をタービンに圧送するダクト1の開口部1aに装着される。この状態で、透光窓31はパッキン37及びOリング39と共にダクト1内の圧力に対して内筒20を気密状態に保持する。
【0015】
ガス取り入れ口13から供給される常温のガス、例えばエアが放熱フィン25の両側から侵入し、放熱フィン26の下端部を通ってリング状給気路38の下部へ流入し、両側へ分かれて上方へ流れる過程でノズル33から順にダクト1内の圧力よりも高い圧力で吐出される。筒体7、8の給気路38aのガス流は、切欠部25a、26aの位置設定により、ガス取り入れ口13から見てリング状給気路38の下部から両側の上方へ誘導され、スムーズに吐出される。その際、内筒20の内周面及び放熱フィン25、26の表面にエアの整流が生じ、常温へ向けて効率良く冷却され、光ファイバ4の加熱が回避される。対向する対状のノズル33が複数対放射状にオフセット状態で配列され、透光窓31の表面に沿った乱れの少ない逆方向2層の隙間のない防塵幕が形成され、微粉炭燃焼ガス等に含まれるダストの透光窓31への侵入が防止され、また付着が確実に清掃される。
【0016】
このような状態で、チョッパ44の断続光波は光ファイバ4を通して投光用筒体7に導光され、透光窓31を通して光軸Aに沿った光束を光照射する。ダクト1内の粒子でほぼ直交方向へ反射された散乱光は受光用筒体8の透光窓31を通してその光ファイバ4に入射し、受光信号処理部50の受光素子53で電気信号に変換される。このパルス状の受光信号は、同期検波回路52で受光素子45から供給されて波形整形された同期信号により同期検波され、同期関係のない雑音が除去される。さらに、ローパスフィルタ52b及び積分回路55でダクト内粒子の濃度に比例したレベルの直流状の信号に変換され、出力手段56でダクト内粒子の濃度が指示される。
【0017】
出力レベルが予め設定した濃度を越えると、警報手段57が濃度の異常を報知する。警報手段58は、発光部40の異常によりチョッパ44から断続光が発生しないかもしくはそのレベルが低下すると、装置の異常を報知する。内筒20が外筒10をダクト1に残して取り外すことができる。ダクト1の圧送稼働中も透光窓31で気密にされた内筒20を残して、リング状ねじ23を外して光ファイバ4を抜くことができる。
【0018】
尚、このような粒子キャッチャ9は、例えば圧力2.6kg/cm2程度の製鉄所高炉Bガスを圧送するダクトの側壁に取付けて、その粒子濃度を測定することもできる。その際、吐出されるガスは相応に4kg/cm2程度に設定する。また、前述の実施形態に代えて、内筒20の内周面には、一層スムーズなガス誘導を行うように、スクリュウ状に形成することも考えられる。さらに、粒子キャッチャ9は、高温・高圧の粒子に限らず、通常の温度及び圧力下の粒子の濃度測定にも当然使用可能である。
【0019】
【発明の効果】
本発明によれば、キャップの外周面にリング状給気路が形成され、この給気路に放熱フィンを冷却しつつガスが整流状態で誘導され、2層のガス幕を形成する複数のノズルから乱流を生じることなくスムーズな吐出が行われ、透光窓への粒子の付着が確実、かつ効率良く防止もしくは除去され、測定精度が損なわれることがない。光ファイバを装着させる複数枚の放熱フィン付きの内筒が、有効に冷却されることにより、ダクト内が高温であっても光ファイバが損なわれることがない。内筒が外筒を残して取り外し可能になることにより、ダクト内での作業を要することなく、粒子キャッチャの主要部を取外すことが可能になる。例えば、微粉端燃焼ガス等がダクト内を圧送中でも、内筒先端部の透光窓によって気密が保たれているために、光ファイバのみを外して装置本体の電気的校正も可能である。透光窓及びノズルが設けられたキャップが内筒の先端部に着脱可能になることにより、製造上有利となるだけでなく、これらの保守も容易になる。
【図面の簡単な説明】
【図1】本発明の一実施形態によるキャッチャの縦断面図である。
【図2】同キャッチャの各部の横断面図である。
【図3】同キャッチャの外観を示すもので、同図Aは平面図、同図Bは側面図である。
【図4】同キャッチャに接続する装置本体の回路構成を示す図である。
【符号の説明】
1 ダクト
4 光ファイバ
9 粒子キャッチャ
10 外筒
11 基部
13 ガス取り入れ口
20 内筒
25、26 放熱フィン
30 キャップ
31 透光窓
33 ノズル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a method for measuring the concentration of airborne particles such as dust, dust floating in a duct, and dust, and combustion gas for pulverized coal for turbine power generation, which is transported through an optical fiber to a base attached to the duct wall. The light emitting cylinder that emits the emitted light from the tip into the duct and the light receiving cylinder that is connected to the optical fiber that carries the scattered light of airborne particles that have entered the tip are ducted with each other's optical axis. The present invention relates to a particle catcher of a photoelectric particle concentration measuring device which is mounted so as to intersect with each other.
[0002]
[Prior art]
This type of particle catcher is attached to an opening of a duct wall surface, and scatters light proportional to the particle concentration into the main body of the photoelectric particle concentration measuring device to measure the particle concentration photoelectrically. In this case, by mounting the light emitting and receiving parts on both sides of the duct so as to face each other, there is no need to adjust the positional relationship between each other as compared with a known method of measuring the particle concentration based on the attenuation of light transmission. In recent years, the application has been expanded to not only dust and the like in a flue to be discarded but also measurement of a dust concentration in a high-temperature and high-pressure combustion gas for driving a turbine.
[0003]
[Problems to be solved by the invention]
However, when targeting such recent high-temperature and high-pressure particles, the optical fiber of the cylindrical body is deformed at a high temperature, or the adhesive for joining the fiber elements in a bundle is deteriorated, or the high-pressure particles are generated. There is a problem that the tip of the optical fiber in the exposed state is easily penetrated. Further, as another problem, when harmful substances are present in the duct, it is necessary to consider safety when entering the duct to remove the particle catcher during maintenance.
[0004]
In view of the above, an object of the present invention is to provide a particle catcher for a photoelectric particle concentration measuring device that can withstand use at high temperatures and high pressures and that can be easily maintained.
[0005]
[Means for Solving the Problems]
In order to achieve this object, according to the present invention, according to the present invention, the light emitted from the main body of the photoelectric particle concentration measuring device for measuring the particle concentration based on the scattered light by the particles in the duct is introduced into the duct. In order to project light and transport the scattered light reflected by the particles in the duct to the main unit, an optical fiber that transports light is connected to the base attached to the opening on the duct wall. A photoelectric particle concentration measuring device in which a light-projecting cylinder that projects light to a light source and a light-receiving cylinder that is connected to an optical fiber that conveys scattered light that has entered the tip end are mounted so that their optical axes intersect. In the particle catcher of (1), the light projecting and light receiving cylinders are composed of an outer cylinder attached to the base, and an inner cylinder screwed into the outer cylinder from behind and into which an optical fiber is inserted. The part has a central opening A light-transmitting window is provided in an airtight state, and a cap formed with a plurality of pairs of nozzles for discharging along the surface of the light-transmitting window is screwed, and one nozzle of each pair is connected to the other nozzle by a light-transmitting window. A ring-shaped air supply passage is formed between the outer peripheral surface of the cap and the inner peripheral surface of the outer cylinder, which is opposed to each other toward the center of the nozzle and offset from each other in the optical axis direction, and communicates with the base end of the nozzle. At the same time, a disk-shaped radiating fin having a diameter corresponding to the inner diameter of the outer cylinder is provided in the optical axis direction on the outer peripheral surface of the inner cylinder between the ring-shaped air supply passage and the gas intake port provided on the side of the outer cylinder. A plurality of air supply paths for guiding the gas taken in from the gas inlet to a part of the ring-shaped air supply path are formed by notching the ends of the disk-shaped heat radiation fins.
[0006]
During the measurement, the gas passing through the air supply passage between the inner cylinder and the outer cylinder partially passes through the notch along the radiation fin that cools the inner cylinder, into the ring-shaped air supply passage on the outer peripheral surface of the cap. From the plurality of nozzles, the gap and turbulence are suppressed along the surface of the light-transmitting window by the two-layer gas curtain and discharged at a pressure higher than the pressure in the duct. When it is desired to inspect the optical fiber, the nozzle or the light-transmitting window, the inner cylinder having the optical fiber attached thereto is removed behind while the outer cylinder is left. The optical fiber can be pulled out of the inner cylinder. The cap provided with the light-transmitting window and the nozzle can be removed from the inner cylinder with a screw.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
A particle catcher of a photoelectric particle concentration measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS. In FIG. 3, reference numeral 9 denotes a particle catcher formed by penetrating the light projecting cylinder 7 and the light receiving cylinder 8 through the base 11 at 45 ° and welding the optical axes A and B to be orthogonal to each other. is there. The base portion 11 is provided with a screw through hole through a heat-resistant asbestos packing 12 in a frame-shaped seat portion 2 protruding around an opening 1a on a wall surface of a duct 1 for conveying pulverized coal combustion gas or the like. It is screwed at 11a. Reference numeral 15 denotes a deflector that blocks light so that light emitted from the light projecting cylinder 7 does not interfere with the light receiving cylinder 8.
[0008]
These cylinders 7 and 8 have the same structure, and as shown in FIG. 1, an outer cylinder 10 having a gas inlet 13 through which dustproof gas is supplied through a filter and an opening 14 at the front. And an inner tube 20 into which the optical fibers 4 joined in a bundle with an adhesive are inserted and screwed into the outer tube 10 via a silicon-based O-ring 29 with a screw portion 20a. The optical fiber 4 is formed by screwing a ring-shaped screw 23 with a screw portion 23a via a silicon-based O-ring 27 exhibiting heat resistance in a state where the sleeve 4a is in contact with the step portion 21. 20.
[0009]
A cap 30 is screwed into the distal end of the inner cylinder 20 with a screw portion 30a. A transparent window 31 made of quartz is fitted into the center opening 32 so as to withstand a high temperature by sealing the front surface with a ring-shaped Teflon packing 37 and the back surface with a silicon-based O-ring 39, The cap 30 discharges a dustproof gas from the periphery of the light transmitting window 31 along the surface thereof.
[0010]
For this gas discharge, a ring-shaped air supply passage 38 is formed between the stepped outer peripheral surface of the cap 30 and the inner peripheral surface of the outer cylinder 10, and a base end portion communicates with this air supply passage. Nozzles 33 are formed at equal intervals in the radial direction toward the center of the light transmitting window 31. A plurality of these nozzles are arranged in pairs facing each other toward the center of the light-transmitting window 31, and one nozzle 33 of each pair has an optical axis with respect to the other nozzle 33. It is offset slightly smaller than its inner diameter in the directions of A and B. That is, in FIG. 2C, for example, the four lower sides are slightly larger than the upper side with respect to the light transmitting window 31 to form a two-layer gas curtain in which mutual interference is suppressed.
[0011]
On the outer peripheral surface of the inner cylinder 20, two disk-shaped radiating fins 25 and 26 having a diameter separated from the optical axes A and B and having a diameter corresponding to the inner diameter of the outer cylinder 10 are formed. As shown in FIGS. 2A and 2B, cutouts 25 a and 26 a are formed on both sides and a lower part when viewed from the gas inlet 13, so that gas can be supplied between the inner peripheral surface of the outer cylinder 10 and a ring-shaped air supply passage. An air supply passage 38a is formed at a lower portion of the air supply 38. Each part of the outer cylinder 10 and the inner cylinder 20 described above is made of stainless steel.
[0012]
FIG. 4 shows the configuration of the light emitting unit 40 and the received light signal processing device 50 as a device main body constituting the particle concentration measuring device together with the particle catcher 9 thus configured. The light emitting section 40 includes a halogen lamp 41, a power supply 42 that receives the light emission by the Cds 43, and drives the halogen lamp 41 to automatically control the halogen lamp 41 to a predetermined light emission amount by feeding back the light reception signal, and a motor. It is provided with a chopper 44 that is driven and converts the light emitted from the halogen lamp 41 into an intermittent lightwave, and a light receiving element 45 that sends out the intermittent lightwave for a synchronization signal. This intermittent light wave is simultaneously conveyed to the light projecting cylinder 7 through the optical fiber 4.
[0013]
The light receiving signal processing unit 50 includes a light receiving element 53 for photoelectrically converting the light receiving signal carried in by the optical fiber 4 of the light receiving cylinder 8, and a phase shift adjusting circuit for aligning the amplified signal by the amplifier 53a with the synchronization signal in phase. 54, a shaping circuit 51 for generating a synchronization signal by slicing a transmission signal of the light receiving element 45 at a minute level and shaping the waveform, a synchronization detection circuit 52 for detecting a light reception signal synchronized with an input synchronization signal, A low-pass filter 52b for high-cutting the amplified output of the synchronously-detected signal amplified by the amplifier 52a; an integrating circuit 55 for integrating the high-cut signal; , An alarm means 57 for giving an alarm by sound or light when the output signal level exceeds a predetermined level, and a synchronizing circuit 51. No. is the Shitamawaru a reference level, and a warning means 58 to alert the abnormality of the light emitting portion 40.
[0014]
The operation of the photoelectric particle concentration measuring device having the particle catcher 9 configured as described above is as follows. The particle catcher 9 is attached to the opening 1a of the duct 1 for feeding the pulverized coal combustion gas at about 200 ° C. to the turbine via the packing 12 at the base 11 thereof. In this state, the light transmitting window 31 together with the packing 37 and the O-ring 39 keeps the inner cylinder 20 airtight against the pressure in the duct 1.
[0015]
Normal-temperature gas, such as air, supplied from the gas inlet 13 enters from both sides of the radiating fin 25, flows into the lower part of the ring-shaped air supply passage 38 through the lower end of the radiating fin 26, and is divided into two sides to be upward. In the process of flowing into the duct 1, the liquid is sequentially discharged from the nozzle 33 at a pressure higher than the pressure in the duct 1. The gas flow in the air supply passage 38a of the cylinders 7 and 8 is guided upward from both sides from the lower part of the ring-shaped air supply passage 38 when viewed from the gas intake 13 by the position setting of the notches 25a and 26a. Discharged. At that time, air rectification occurs on the inner peripheral surface of the inner cylinder 20 and the surfaces of the radiating fins 25 and 26, so that the air is efficiently cooled to room temperature and the heating of the optical fiber 4 is avoided. A plurality of pairs of opposed nozzles 33 are arranged in a radially offset manner so as to form a dust-free curtain with no gaps in two opposite layers along the surface of the light-transmitting window 31 with little turbulence. Intrusion of the dust contained in the light transmitting window 31 is prevented, and the adhesion is reliably cleaned.
[0016]
In such a state, the intermittent light wave of the chopper 44 is guided to the light projecting cylinder 7 through the optical fiber 4 and irradiates a light beam along the optical axis A through the light transmitting window 31. The scattered light reflected by the particles in the duct 1 in a substantially orthogonal direction enters the optical fiber 4 through the light transmitting window 31 of the light receiving cylinder 8 and is converted into an electric signal by the light receiving element 53 of the light receiving signal processing unit 50. You. The pulse-shaped light receiving signal is synchronously detected by the synchronous signal supplied from the light receiving element 45 by the synchronous detecting circuit 52 and subjected to waveform shaping, and noise having no synchronous relation is removed. Further, the signal is converted into a DC signal having a level proportional to the concentration of the particles in the duct by the low-pass filter 52b and the integrating circuit 55, and the concentration of the particles in the duct is indicated by the output means 56.
[0017]
When the output level exceeds the preset density, the alarm means 57 notifies the abnormality of the density. The alarm unit 58 notifies the abnormality of the apparatus when the chopper 44 does not generate the intermittent light or its level is lowered due to the abnormality of the light emitting unit 40. The inner cylinder 20 can be removed while leaving the outer cylinder 10 in the duct 1. The optical fiber 4 can be pulled out by removing the ring-shaped screw 23 while the duct 1 is being pumped, leaving the inner cylinder 20 hermetically sealed by the translucent window 31.
[0018]
In addition, such a particle catcher 9 can be attached to a side wall of a duct for feeding a blast furnace B gas at a pressure of, for example, about 2.6 kg / cm 2 to measure the particle concentration. At that time, the gas to be discharged is set to about 4 kg / cm 2 accordingly. Further, instead of the above-described embodiment, it is conceivable that the inner peripheral surface of the inner cylinder 20 is formed in a screw shape so as to more smoothly guide the gas. Further, the particle catcher 9 can naturally be used not only for high-temperature and high-pressure particles but also for measuring the concentration of particles under ordinary temperature and pressure.
[0019]
【The invention's effect】
According to the present invention, a ring-shaped air supply path is formed on the outer peripheral surface of the cap, and the gas is guided in a rectified state while cooling the radiation fins in the air supply path, and a plurality of nozzles forming a two-layer gas curtain are formed. Smooth ejection is performed without generating turbulent flow, and adhesion of particles to the light-transmitting window is reliably and efficiently prevented or removed, and the measurement accuracy is not impaired. By effectively cooling the inner cylinder with a plurality of radiation fins to which the optical fibers are mounted, the optical fibers are not damaged even if the inside of the duct is at a high temperature. The fact that the inner cylinder can be removed while leaving the outer cylinder allows the main part of the particle catcher to be removed without the need for work in the duct. For example, even when the fine powder end combustion gas or the like is pressure-fed in the duct, since the airtightness is maintained by the light-transmitting window at the tip of the inner cylinder, it is possible to electrically calibrate the apparatus body by removing only the optical fiber. Since the cap provided with the light-transmitting window and the nozzle can be attached to and detached from the distal end portion of the inner cylinder, not only is it advantageous in manufacturing but also maintenance thereof is facilitated.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a catcher according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of each part of the catcher.
3A and 3B show an appearance of the catcher, wherein FIG. 3A is a plan view and FIG. 3B is a side view.
FIG. 4 is a diagram showing a circuit configuration of an apparatus main body connected to the catcher.
[Explanation of symbols]
1 Duct 4 Optical Fiber 9 Particle Catcher 10 Outer Cylinder 11 Base 13 Gas Inlet 20 Inner Cylinder 25, 26 Radiation Fin 30 Cap 31 Transparent Window 33 Nozzle

Claims (1)

ダクト内の粒子による散乱光を基に粒子濃度を測定する光電式粒子濃度測定装置の装置本体から搬送された発光をダクト内へ投光し、ダクト内の粒子で反射された散乱光を装置本体へ搬送するために、ダクト壁面の開口部に取付けられた基部に、発光を搬送する光ファイバが接続して先端部からダクト内へ投光する投光用筒体と、先端部に入射した散乱光を搬送する光ファイバが接続した受光用筒体とがそれぞれの光軸を交差させるように取付けられた光電式粒子濃度測定装置の粒子キャッチャにおいて、
投光用及び受光用筒体が、基部に取付けられる外筒と、この外筒に背後からねじ込まれると共に光ファイバが挿入された内筒とから構成され、
この内筒の先端部には、中心開口部に気密状態で透光窓が設けられ、かつこの透光窓の表面に沿って吐出する複数対のノズルが形成されたキャップがねじ込まれると共に、各対の一方の前記ノズルが他方の前記ノズルに前記透光窓の中心部に向けて互いに対向し、かつ互いに光軸方向へオフセットされ、
前記キャップの外周面と前記外筒の内周面との間に、前記ノズルの基端部が連通するリング状給気路が形成されると共に、このリング状給気路及び前記外筒の側部に設けられたガス取入れ口間における前記内筒の外周面に、前記外筒の内径に相当する直径のディスク状放熱フィンが前記光軸方向へ複数枚形成され、
前記ガス取入れ口から取入れたガスを前記リング状給気路の一部分に誘導する給気路が、前記ディスク状放熱フィンの端部を切欠くことにより形成されたことを特徴とする光電式粒子濃度測定装置の粒子キャッチャ。
Light emitted from the main body of the photoelectric particle concentration measurement device that measures the particle concentration based on the scattered light from the particles in the duct is projected into the duct, and the scattered light reflected by the particles in the duct is used as the main body of the device. An optical fiber for transmitting light is connected to the base attached to the opening of the duct wall to convey the light into the duct, and the light projecting cylinder that projects light from the tip into the duct, and the scattering incident on the tip In the particle catcher of the photoelectric particle concentration measurement device, which is attached so that the light receiving cylinder to which the optical fiber carrying the light is connected and the respective optical axes cross each other,
Light-emitting and light-receiving cylinders are composed of an outer cylinder attached to the base, and an inner cylinder into which an optical fiber is inserted while being screwed into the outer cylinder from behind,
At the tip of the inner cylinder, a light-transmitting window is provided in an airtight state at the center opening, and a cap formed with a plurality of pairs of nozzles for discharging along the surface of the light-transmitting window is screwed in. One of the nozzles of the pair faces the other of the nozzles toward the center of the light-transmitting window, and is offset from each other in the optical axis direction;
Between the outer peripheral surface of the cap and the inner peripheral surface of the outer cylinder, a ring-shaped air supply passage through which the base end of the nozzle communicates is formed, and a side of the ring-shaped air supply passage and the outer cylinder is formed. A plurality of disk-shaped radiating fins having a diameter corresponding to the inner diameter of the outer cylinder are formed in the optical axis direction on the outer peripheral surface of the inner cylinder between the gas intake ports provided in the portion,
An air supply path for guiding gas taken in from the gas inlet to a part of the ring-shaped air supply path is formed by notching an end of the disk-shaped heat radiation fin, wherein the photoelectric particle concentration is Measurement device particle catcher.
JP06891196A 1996-03-01 1996-03-01 Particle catcher of photoelectric particle concentration measuring device Expired - Fee Related JP3604496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06891196A JP3604496B2 (en) 1996-03-01 1996-03-01 Particle catcher of photoelectric particle concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06891196A JP3604496B2 (en) 1996-03-01 1996-03-01 Particle catcher of photoelectric particle concentration measuring device

Publications (2)

Publication Number Publication Date
JPH09236545A JPH09236545A (en) 1997-09-09
JP3604496B2 true JP3604496B2 (en) 2004-12-22

Family

ID=13387319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06891196A Expired - Fee Related JP3604496B2 (en) 1996-03-01 1996-03-01 Particle catcher of photoelectric particle concentration measuring device

Country Status (1)

Country Link
JP (1) JP3604496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200292420A1 (en) * 2008-08-29 2020-09-17 Research International, Inc. Particle concentrator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057200A (en) * 2001-08-20 2003-02-26 Kansai Ootomeishiyon Kk Concentration measuring apparatus for powder particles
JP5946733B2 (en) * 2012-09-24 2016-07-06 三菱日立パワーシステムズ株式会社 Combustor gap measuring device and gap measuring method
CN105422161B (en) * 2015-11-19 2017-10-24 湖南有色冶金劳动保护研究院 A kind of working face in the pit temperature-reduction dust-removal system
CN105842133A (en) * 2016-03-23 2016-08-10 东南大学 Optical-fiber endoscopic coal combustion ultralow emission fly ash concentration measuring device
CN109142178A (en) * 2018-10-26 2019-01-04 常熟市德虞矿山机电有限公司 A kind of calibration method of direct-reading dust concentration detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200292420A1 (en) * 2008-08-29 2020-09-17 Research International, Inc. Particle concentrator

Also Published As

Publication number Publication date
JPH09236545A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
AU2003236420B2 (en) Sampling tube-type smoke detector
HK1060426A1 (en) Fire detection method and fire detector for its implementation
US5467188A (en) Particle detection system
JP3604496B2 (en) Particle catcher of photoelectric particle concentration measuring device
US11761854B2 (en) Optical particle sensor, in particular, exhaust gas sensor
US20120037326A1 (en) Device for determining the water content of a target
US20130273483A1 (en) Flame sensor
GB2379977B (en) High sensitivity particle detection
JP4599181B2 (en) Dust concentration detector
US5929450A (en) High temperature gas stream optical flame sensor and method for fabricating same
AU2006293722B2 (en) Scattering centre detector assembly and method
US10126164B2 (en) Flame sensing
CN102288555A (en) Bijection type high-temperature smoke sensor and real-time detection method
USRE33213E (en) Light scattering particle detector for wafer processing equipment
KR102142248B1 (en) An Apparatus for Measuring a Particle of a Compressed Air
KR20200107317A (en) Optical scattering detection device with an anti-contamination tube
CN114324095B (en) Monitoring device for particle impurity concentration in gas pipeline
JPH01269060A (en) Method and apparatus for detecting rotational speed
CN111337400A (en) Particulate matter measuring chamber structure of forward scattering method
JP3997502B2 (en) Optical probe assembly
US7139075B2 (en) Method and apparatus for measuring the size distribution and concentration of particles in a fluid
CN216097882U (en) Laser protection gas circuit structure of lathe laser tool setting appearance
KR102479592B1 (en) Devices for detecting heat and smoke
CN211927626U (en) Particulate matter measuring chamber structure of forward scattering method
KR20150101949A (en) A multi-point gas detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees