JP3604305B2 - Bearing lubrication system for motors for vehicles - Google Patents

Bearing lubrication system for motors for vehicles Download PDF

Info

Publication number
JP3604305B2
JP3604305B2 JP27096199A JP27096199A JP3604305B2 JP 3604305 B2 JP3604305 B2 JP 3604305B2 JP 27096199 A JP27096199 A JP 27096199A JP 27096199 A JP27096199 A JP 27096199A JP 3604305 B2 JP3604305 B2 JP 3604305B2
Authority
JP
Japan
Prior art keywords
oil
chamber
bearing
lubricating oil
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27096199A
Other languages
Japanese (ja)
Other versions
JP2001090740A (en
Inventor
木 信 行 八
下 力 木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27096199A priority Critical patent/JP3604305B2/en
Publication of JP2001090740A publication Critical patent/JP2001090740A/en
Application granted granted Critical
Publication of JP3604305B2 publication Critical patent/JP3604305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用電動機の軸受給油装置に係り、特に鉄道車両用電動機の軸受給油装置に関する。
【0002】
【従来の技術】
一般に、鉄道車両用駆動電動機(以下モータという)における軸受の潤滑にはグリースが用いられているが、近年高速回転による小型軽量化と潤滑剤の更新のための分解周期の延長による省力化を図るため、軸受の油潤滑方式の開発が進められている。
【0003】
図10及び図11は、上記開発検討が進められている油潤滑方式の軸受の構造を示す図であって、モータ1はそのフレーム2の外部に設けられた支持部2a及び2bを台車枠3に固定することによって車両に支持されている。上記モータ1のフレーム2の内周面には円筒状の鉄心と複数のコイルからなるステータ4が取り付けられており、そのステータ4内にこれと同心的にロータ5が配設されている。
【0004】
上記フレーム2の駆動側端部にはブラケット6が取付けられ、反駆動側の端壁にはハウジング7が取付けられており、そのブラケット6及びハウジング7にそれぞれ取付けられた軸受8及び9に、前記ロータ5が取付けられたロータシャフト10が回転自在に軸支されている。上記ロータシャフト10の駆動側端部10aは機外に突出されており、そのロータシャフト10の駆動側端部10aは図示しない継手を介して駆動歯車装置に接続され、モータの回転力を伝達して車両を走行させるようにしてある。
【0005】
上記ブラケット6の外側面には、下部に潤滑油貯溜部11aが形成されるととに軸受8に連通する給油室11が設けられており、その給油室11内にはロータシャフト10に固着された直径Dの給油円板12が配設されている。そして、その給油円板12の下方外周部が潤滑油貯溜部11a内の潤滑油に浸されている。また、給油室11の上方には油受け13が設けられており、この油受け13の底部が、フレーム2の外部に設けられ、反駆動側に向って下方に傾斜するように給油管14を介して、反駆動側の軸受9の上方に設けられている給油孔15に接続されている。
【0006】
一方、ロータシャフト10の反駆動側端部には速度検出用の歯付円板16が取付けられており、その歯付円板16はハウジング7の外側面に装着された端蓋17によって被覆されている。上記端蓋17の上方外周部には速度検出センサ18が装着されており、その速度検出センサ18の先端面が歯付円板16の外周面に空隙をもって対向されている。
【0007】
また、上記軸受9の下方には排油口19が設けられており、この排油口19が、フレーム2外に設けられた駆動側に向って傾斜する油戻し管20を介して給油室11に連通されている。
【0008】
しかして、モータ1が駆動されると、そのモータ1の回転によりロータシャフト10を介して給油円板12が回転され、下部で給油円板12に付着した潤滑油が振り上げられ、給油室11の上方に設けられている油受け13に供給される。そして、油受け13に供給された油は給油管14内を流れて反駆動側軸受部の給油口15を経て軸受9内に達し、その軸受9を潤滑する。また、給油室11内で上方に振り上げられた潤滑油の一部は給油室11の内壁を伝わり駆動側の軸受8の内部に流入し、この潤滑油によって軸受8の潤滑が行われる。そして、上記軸受9を潤滑した潤滑油は軸受9の下方に設けられた排油口19から油戻し管20に流入し、給油室11の潤滑油貯溜部11aに返流される。また軸受8を潤滑した潤滑油もその軸受8の側面下方より上記給油室11の潤滑油貯溜部11aに排出される。
【0009】
このようにして、給油室11の潤滑油貯溜部11aに貯溜されている潤滑油が両軸受8,9に循環給油され、両軸受8,9の潤滑が行われる。なお、鉄道車両用モータは両方向回転の運転が行われるが、給油円板12と油受け13の構成により回転方向が変化しても給油作用は同様に行われる。
【0010】
【発明が解決しようとする課題】
このような軸受給油装置においては、反駆動側の軸受9の排油を油戻し管20によって給油室11に戻すように構成されているため、給油室11の潤滑油貯溜部11a内の油面高さとロータシャフト10の軸線との間には、軸受8の直径dの1/2と油戻し管20の傾斜を確保するための距離Hが必要である。このため、潤滑油貯溜部11a内の油面はロータシャフト10の軸心より下方に離れた位置に設定する必要があり、これに伴って給油円板12の直径Dはかなり大きなものとする必要がある。したがって、給油室11の上方に設けられる油受け13の位置も高くなり、潤滑油貯溜部の油面と油受け13間の間隔も大きくする必要がある。
【0011】
ところが、給油円板12が回転することにより潤滑油に浸っている部分で油への空気の巻込みによる泡立ち現象が生じるが、上述のように給油円板12の直径が大きくなると、回転時の周速が大きくなるためこの泡立ち現象が激しくなり、給油性能が不安定となったり、油の酸化劣化が促進される等の問題がある。
【0012】
また、鉄道車両用モータは、床下の台車内の限られたスペースに設ける必要があるため、モータの下方、横方向の寸法に制約があり、給油室11の潤滑油貯溜部11aのスペースも大幅に増大させることはできない。そのため、前記Hの寸法が大きくなる程給油室11の潤滑油貯溜部11a内に溜められる潤滑油の量は少なくなる。一方、軸受の潤滑により、潤滑油は次第に劣化するため、劣化限度に達したら潤滑油を交換する必要がある。したがって、上述のように潤滑油の保有量が少ないと、油の劣化時間が早くなるため、早期の油交換が必要になる等の問題がある。
【0013】
図12は、給油室の給油円板による反駆動側の軸受9への給油特性を示す図であり、図10等に示す軸受給油装置においては、曲線Aに示すように、回転数の増大に伴い1000rpm付近で給油量が最大となり、さらに回転数が増大すると給油量は減少し、2500rpmを過ぎると給油量は殆どなくなる。したがって、通勤形電車のように停車駅間が短い場合は、モータの平均回転数が2000rpm程度と低くなるので給油量は十分であるが、特急形電車のように駅間が長く、モータの平均回転数が高くなるものでは、給油量の不足を生ずる等の問題がある。また、高回転化により小形軽量化を図るモータにおいては、通勤形電車用でも給油量が不足気味となる。
【0014】
本発明は、このような点に鑑み、油の泡立ち現象の増大による給油不安定と油の劣化を改善でき、油の交換周期を長期化することができ、さらに高回転域での反駆動側軸受への給油量の不足が生ずることを防止し得るようにした軸受給油装置を得ることを目的とする。
【0015】
【課題を解決するための手段】
本発明の請求項1にかかる発明は、電動機の両側部に設けられた軸受の各外側面に隣接して、それぞれ対応する軸受に連通するとともにそれぞれ下方に潤滑油貯溜部が形成された給油室或は排油室を配設し、上記給油室及び排油室に形成された潤滑油貯溜部を機外に配設された連通路によって連通するとともに、上記給油室内におけるロータシャフトに下方の潤滑油貯溜部内の潤滑油に外周の一部が浸るように給油円板を取付け、上記給油円板の回転によって汲み上げられた潤滑油を給油管を介して排油室に連通する軸受に供給するようにしたことを特徴とする。
【0016】
請求項2にかかる発明は、請求項1にかかる発明において、給油円板の外周部に、回転軸線を中心とする周方向に延びる少なくとも1つの環状溝を設けたことを特徴とする。
【0017】
また、請求項3にかかる発明は、請求項1または2にかかる発明において、排油室の外側面に、回転軸に速度検出用の歯付円板を収容したセンサー室を区画形成するとともに、排油室の潤滑油貯溜部内の油面高さが、上記歯付円板の外周下端部より高い位置になるようにしたことを特徴とする。
【0018】
請求項4にかかる発明は、請求項1乃至3のいずれかにかかる発明において、軸受支持部材における軸受と電動機機内空間との間に、電動機軸を中心とする環状の油戻し室を形成するとともに、この油戻し室と給油室または排油室の潤滑油貯溜部とを油戻し穴によって連通し、上記油戻し穴の途中まで潤滑油が達するように上記潤滑油貯溜部の油面高さを設定したことを特徴とする。
【0019】
さらに、請求項5にかかる発明は、請求項1乃至4のいずれかにかかる発明において、給油室及び排油室の潤滑油貯溜部の下部を機外に配設された連通室によって接続するとともに、その連通室の底面に下方に向って傾斜する傾斜面を形成し、その傾斜面の最下部位置に必要に応じて開放可能な油抜き口を設けたことを特徴とする。
【0020】
請求項6にかかる発明は、請求項1乃至5のいずれかにかかる発明において、給油室と排油室の上部空間を連通路を介して連通したことを特徴とする。
【0021】
【発明の実施の形態】
以下、図1乃至図9を参照して本発明の実施の形態について説明する。なお、図中図10及び図11と同一部分には同一符号を付しその詳細な説明は省略する。
【0022】
図1乃至図3は、本発明の一実施の形態を示す図であって、モータ1のフレーム2の内周面にはステータ(図示せず)が取り付けられており、そのステータ内にはロータシャフト10に装着されたロータ(図示せず)が同心的に配設されている。
【0023】
上記フレーム2の駆動側端部にはブラケット6が、反駆動側端壁にはハウジング7が取付けられており、そのブラケット6及びハウジング7にそれぞれ上記ロータシャフト10を軸支する軸受8及び9が設けられている。
【0024】
上記ブラケット6の外側面には、下部に潤滑油貯溜部21aが形成されるとともに軸受8に連通する給油室21が設けられており、その給油室21内にはロータシャフト10に固着された直径D′の給油円板22が配設されている。上記給油円板22はその下方外周部が潤滑油貯溜部21a内の潤滑油に浸されており、その給油円板22の上方には上記給油円板22によって跳ね上げられた潤滑油を受ける油受け13が設けられている。
【0025】
上記油受け13の底部には、フレーム2の外部に設けられ、反駆動側に向って下方に傾斜された給油管14が接続され、その給油管14が反駆動側の軸受9の上方に設けられている給油口15に接続されている。
【0026】
一方、反駆動側のハウジング7には下部に潤滑油貯溜部23aが形成された排油室23が装着されている。この排油室23の上部空間には、潤滑油貯溜部23a内の潤滑油に浸されないような大きさの速度検出用の歯付円板16が配設されている。そして、上記排油室23の潤滑油貯溜部23aと給油室21の潤滑油貯溜部21aは、機外に設けられた連通管24によって連通されている。なお、図1において符号25は潤滑油貯溜部21a、23aに設けられたドレンボルトである。
【0027】
しかして、モータの回転に伴ない給油室21内の給油円板22が回転し、給油円板22の下方に付着した潤滑油が振り切られて上方に飛ばされ、上方の油受け13に供給される。この油受け13に供給された油は、給油管14内を流れ給油口15を経て軸受9内に流入し、軸受9を潤滑する。そして、軸受9を潤滑した潤滑油は軸受9から排油室23に排出され、潤滑油貯溜部23a内に貯溜される。
【0028】
一方、給油室21内において給油円板22で上方に飛ばされた潤滑油の一部は給油室21の内壁面に伝わって流下し軸受8内にも流入しその軸受8を潤滑し、その後潤滑油貯溜部21aに貯溜される。
【0029】
ところで、上記排油室23の下方に形成された潤滑油貯溜部23aに溜った潤滑油は連通管24を経て給油室21に戻り、以後同様にして潤滑油の循環が行われる。したがって、給油室21と排油室23の各潤滑油貯溜部21a及び23a内の油面の高さは同一高さとなる。
【0030】
しかして、この実施の形態においては、斜め下方に傾斜した油戻し管が不要となり、潤滑油貯溜部21a及び23a内の油面を従来より高くすることができ、油面とモータシャフトの中心までの距離H′を小さくすることができる。そのため、給油円板22の直径D′も従来より小さくすることができ、同時に給油室21内上方の油受け13の高さ位置も低くすることができる。
【0031】
このような構造の軸受給油装置における給油特性は図12の実線Bに示すようになる。すなわち、油面と油受け13の距離が近くなったことにより給油量が増大するとともに、回転数の増大に伴う給油量の減少度合がゆるやかになり、従来のものに比し回転数の高い領域まで給油量を十分確保することができる。
【0032】
また、給油円板22の直径D′が小径化されることにより、油に浸っている部分の周速が小さくなるので、油の泡立ち現象も少なくなり、給油特性の安定化と潤滑油の酸化劣化を少くすることができる。さらに、潤滑油貯溜部内の油面高さが高くなったことにより給油室21に溜められる油量が増大し、しかも排油室23の潤滑油貯溜部23aにも潤滑油が溜められるので、全体の油量が大幅に増大し、酸化劣化を少くすることと相まって油の劣化による交換周期を大幅に延長することができる。また、潤滑油の保有量が増えたことにより、油の消耗による油面の低下速度も比較的遅くなり、この点からも油の補充周期を延ばすことができる。
【0033】
ところで、上記実施の形態においては、給油円板22は平板状のものであるが、図4(a),(b)に示すように、給油円板26の外径部両側面に周方向に延びる同心状の環状溝27を形成してもよい。この場合には、給油円板26が潤滑油に浸ったときに上記環状溝27部に潤滑油が多く付着し、回転によって給油円板により油が振り切られるまでの時間が平板状のものに比し長くなるので、上方の油受けまで運ばれる油の量を増大させることができる。
【0034】
このようにしたものにおける給油特性は、図12の点線Cに示すようになり、給油量が増大すると同時に、高回転域にわたって給油量を増すことができる。
【0035】
図5は電車の運行状況を示す図であり、通勤形電車は各駅で停車するため、加速、減速時間が多くなり、高速域で走行する時間が短いため、モータの回転数の平均は2000rpm付近となる。一方、特急形電車は停止駅間が長くなるので、加速、減速を行っている時間に対し、高速で走る時間が長くなり、モータの平均回転数は3500rpm付近となる。
【0036】
したがって、図12のCに示すように、溝付き給油円板26を使用したものの給油特性では、3500rpmにおいても給油量が十分確保できることから、特急形電車のモータにもこの油潤滑方式の採用が可能になる。なお、この給油円板26の環状溝27は回転中心と同心状に形成されているので、給油円板の回転によって油を攪拌する作用は少く、油の泡立ちを増大させることはない。
【0037】
図6は本発明の他の実施の形態を示す図であり、排油室23の外側方にセンサ室30が壁31により区画形成されており、そのセンサ室30内に歯付き円板16が収容されている。そして、排油室23の潤滑油貯溜部23a内の油面高さが歯付き円板16の外周下端部より高い位置になるようにしてある。
【0038】
しかして、この場合、センサ室30が排油室23と完全に区画されているので、センサ室30内に潤滑油が流入することがなく、歯付き円板16が潤滑油に浸ることがない。そのため、潤滑油が歯付き円板16の歯部で攪拌されることがなく、歯付き円板として大径のものを使用することができ、しかも攪拌による油の劣化や、油が霧状になって漏出することを防止することができる。
【0039】
また、図7は本発明のさらに他の実施の形態を示す図であり、反駆動側軸受部のハウジング7の軸受9と機内との間に、軸受9に微小間隙32を介して連通する、ロータシャフト10を中心とする環状の油戻し室33が形成され、この油戻し室33の下部が油戻し穴34を介して排油室23の潤滑油貯溜部23aに連通されている。そして、上記潤滑油貯溜部23a内の油面高さが、油戻し穴34の途中まで潤滑油が到達するようにしてある。しかして、微小間隙32から油戻し室33に流入した油は、油戻し穴34を経て排油室23の潤滑油貯溜部23aに戻される。
【0040】
ところで、ロータシャフトの高速回転により、軸受9に給油されている潤滑油は攪拌されて霧状となり、この霧状の油がラビリンス部35より機内に漏れ易くなる。特に、車両用モータは回転数が高くなるため、機内の軸受近傍の内周側では大きな負圧が生じるため、軸受内で発生した霧状の油が機内に漏れ易くなる。
ところが、本実施の形態においては、油戻し穴34の途中まで潤滑油が充満しているので、軸受9内で発生した霧状の油が排油室23から油戻し穴34を経て逆流して油戻し室33に進入することが阻止され、霧状の油の油戻し室33への進入は円板状の微小間隙32部分からのものに限定され、油戻し室33からラビリンス部35を通って機内に漏れ出る霧状の油が最小とされる。
【0041】
図8は本発明の他の実施の形態を示す図であって、給油室11の潤滑油貯溜部11aと排油室23の潤滑油貯溜部23aとが、フレーム2の外側に設けられた比較的断面積が広い連通室36によって連通されており、その連通室36の底部はその中央部に向って下方に傾斜する傾斜面が形成され、傾斜面の最下部位置に油抜き口が設けられその油抜き口に油抜き栓37が取付けられている。
【0042】
しかして、この実施の形態においては、上記連通室36によって保有可能な潤滑油の量をさらに増大させることができる。したがって、油の消耗による補給周期を一層延長することができると共に、油の劣化による油の交換周期もさらに延長することができる。また油交換時の油抜き作業は1カ所の油抜き栓37を外すことにより全ての油を抜き取ることができ、作業性を向上することができる。
【0043】
また、図9は本発明のさらに他の実施の形態を示す図であって、反駆動側の軸受9の上方に設けられている給油孔15と排油室23の上部空間部が空気穴38によって連通されている。さらに、上記軸受9に潤滑油を供給する給油管14及び給油孔15はその径が大きくしてあり、給油される油が流通しても空間が生じるようにし、排油室23の空間部と給油室11の空間部とが連通されている。
【0044】
しかして、給油室11及び排油室23の空間部が空気穴38により常に連通されているので、両室内の圧力が同一に保たれ、両室の油面の高さを常に同一に保つことができる。
【0045】
空気穴38がない場合でも、給油室空間と排油室空間は、機内空間と軸受内空間とラビリンス部の微小間隙とで連通しているが、運転時は機内の圧力と軸受内の圧力が変化するため、両室の圧力が均等になりにくく、そのため反駆動側軸受への給油量が多いときに、排油室の油面のみが上昇し、油の攪拌増大による油洩れを生じ易い状態になることもある。
【0046】
しかしながら、本実施の形態においては空気穴38が設けられているので、排油室側の油面のみが上昇することが確実に防止される。なお、空気穴38の代りに、機外に空気連通管39を設け、その空気連通管39によって給油室と排油室の空間を連通させてもよい。
【0047】
【発明の効果】
以上説明したように、本発明は電動機の両側部に設けられた軸受の各外側面に隣接して設けられた給油室或は排油室の下部にそれぞれ潤滑油貯溜部を形成し、両潤滑油貯溜部を機外に配設された連通路によって連通したので、潤滑油の保有量を増大でき、潤滑油の補給周期や油の劣化による交換の周期を延ばすことができる。しかも、給油室に設ける給油円板の小径化が可能で、給油特性を向上させ安定した給油ができ、高回転域での給油が可能となり、特急形電車用モータにも適用できる。
【図面の簡単な説明】
【図1】本発明の軸受給油装置の縦断面図。
【図2】図1における給油室部の縦断側面図。
【図3】図1の排油室部の縦断側面図。
【図4】(a)、(b)は給油円板の他の例を示す部分図及び部分断面図。
【図5】車両の運行状況を説明する図。
【図6】本発明の他の実施の形態を示す、排油室部の縦断面図。
【図7】本発明の他の実施の形態を示す、排油室部の縦断部分図。
【図8】本発明の他の実施の形態を示す図。
【図9】本発明のさらに他の実施の形態を示す図。
【図10】従来の軸受給油装置の縦断面図。
【図11】従来の軸受給油装置の側面図。
【図12】軸受給油装置の給油特性を示す図。
【符号の説明】
2 フレーム
6 ブラケット
7 ハウジング
8,9 軸受
10 ロータシャフト
11,21 給油室
11a,23a 潤滑油貯溜部
12,22,26 給油円板
13 油受け
15 給油孔
23 排油室
24 連通管
27 環状溝
30 センサ室
33 油戻し室
34 油戻し穴
36 連通室
37 油抜き栓
38 空気穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bearing lubrication device for a motor for a vehicle, and more particularly to a bearing lubrication device for a motor for a railway vehicle.
[0002]
[Prior art]
In general, grease is used for lubrication of bearings in railway vehicle drive motors (hereinafter referred to as motors). In recent years, however, efforts have been made to reduce the size and weight by high-speed rotation and extend the disassembly cycle for renewing the lubricant to save labor. Therefore, development of an oil lubrication system for bearings is under way.
[0003]
FIGS. 10 and 11 are diagrams showing the structure of an oil-lubricated bearing whose development is being studied. The motor 1 is provided with support portions 2 a and 2 b provided outside the frame 2 on a bogie frame 3. And is supported by the vehicle. A stator 4 composed of a cylindrical iron core and a plurality of coils is mounted on the inner peripheral surface of the frame 2 of the motor 1, and a rotor 5 is disposed concentrically with the stator 4.
[0004]
A bracket 6 is attached to an end of the frame 2 on the drive side, and a housing 7 is attached to an end wall on the opposite side to the drive. Bearings 8 and 9 attached to the bracket 6 and the housing 7, respectively, A rotor shaft 10 to which the rotor 5 is attached is rotatably supported. The drive-side end 10a of the rotor shaft 10 protrudes out of the machine. The drive-side end 10a of the rotor shaft 10 is connected to a drive gear device via a joint (not shown) to transmit the torque of the motor. To run the vehicle.
[0005]
The outer surface of the bracket 6 is provided with an oil supply chamber 11 communicating with the bearing 8 when a lubricating oil storage portion 11a is formed at a lower portion, and is fixed to the rotor shaft 10 in the oil supply chamber 11. A refueling disk 12 having a diameter D is provided. The lower outer peripheral portion of the oil supply disk 12 is immersed in the lubricating oil in the lubricating oil storage portion 11a. Further, an oil receiver 13 is provided above the oil supply chamber 11, and the bottom of the oil receiver 13 is provided outside the frame 2 and the oil supply pipe 14 is tilted downward toward the non-drive side. It is connected to an oil supply hole 15 provided above the bearing 9 on the opposite side to the drive side.
[0006]
On the other hand, a toothed disk 16 for speed detection is attached to the opposite end of the rotor shaft 10 on the non-driving side, and the toothed disk 16 is covered by an end cover 17 mounted on the outer surface of the housing 7. ing. A speed detection sensor 18 is mounted on an upper outer peripheral portion of the end cover 17, and a distal end surface of the speed detection sensor 18 is opposed to an outer peripheral surface of the toothed disk 16 with a gap.
[0007]
An oil discharge port 19 is provided below the bearing 9, and the oil discharge port 19 is provided through an oil return pipe 20 provided outside the frame 2 and inclined toward a driving side. Is communicated to.
[0008]
Thus, when the motor 1 is driven, the rotation of the motor 1 rotates the oil supply disk 12 via the rotor shaft 10, and the lubricating oil attached to the oil supply disk 12 is swung up at the lower portion, and the oil supply chamber 11 The oil is supplied to an oil receiver 13 provided above. Then, the oil supplied to the oil receiver 13 flows through the oil supply pipe 14, reaches the inside of the bearing 9 through the oil supply port 15 of the non-drive side bearing part, and lubricates the bearing 9. Further, a part of the lubricating oil swung upward in the oil supply chamber 11 travels along the inner wall of the oil supply chamber 11 and flows into the inside of the drive-side bearing 8, and the bearing 8 is lubricated by the lubricating oil. Then, the lubricating oil that has lubricated the bearing 9 flows into the oil return pipe 20 from a drain port 19 provided below the bearing 9, and is returned to the lubricating oil reservoir 11 a of the oil supply chamber 11. Also, the lubricating oil that has lubricated the bearing 8 is discharged from the lower side of the bearing 8 to the lubricating oil reservoir 11 a of the oil supply chamber 11.
[0009]
In this way, the lubricating oil stored in the lubricating oil storage portion 11a of the oil supply chamber 11 is circulated and supplied to the bearings 8 and 9 to lubricate the bearings 8 and 9. Although the railway vehicle motor operates in bidirectional rotation, the lubrication operation is performed in the same manner even if the rotation direction changes due to the configuration of the lubrication disk 12 and the oil receiver 13.
[0010]
[Problems to be solved by the invention]
In such a bearing oil supply device, since the oil discharged from the bearing 9 on the non-drive side is configured to be returned to the oil supply chamber 11 by the oil return pipe 20, the oil level in the lubricating oil reservoir 11a of the oil supply chamber 11 is set. A distance H between the height and the axis of the rotor shaft 10 is required to ensure 1/2 of the diameter d of the bearing 8 and the inclination of the oil return pipe 20. For this reason, it is necessary to set the oil level in the lubricating oil storage portion 11a at a position below the axis of the rotor shaft 10, and accordingly, the diameter D of the oil supply disk 12 needs to be considerably large. There is. Therefore, the position of the oil receiver 13 provided above the oil supply chamber 11 is also increased, and the distance between the oil level of the lubricating oil storage part and the oil receiver 13 needs to be increased.
[0011]
However, when the oil supply disk 12 rotates, a bubbling phenomenon occurs due to the entrainment of air into the oil in a portion immersed in the lubricating oil. However, as described above, when the diameter of the oil supply disk 12 increases, Since the peripheral speed increases, the bubbling phenomenon becomes severe, and there are problems such as instability of the oil supply performance and acceleration of oil oxidative deterioration.
[0012]
In addition, since the railcar motor needs to be provided in a limited space in the bogie below the floor, there are restrictions on the size of the motor below and in the lateral direction, and the space for the lubricating oil storage portion 11a of the oil supply chamber 11 is also large. Cannot be increased. Therefore, the amount of lubricating oil stored in the lubricating oil storage portion 11a of the oil supply chamber 11 decreases as the dimension H increases. On the other hand, since the lubrication oil gradually deteriorates due to the lubrication of the bearing, it is necessary to replace the lubrication oil when the deterioration limit is reached. Therefore, as described above, if the amount of the retained lubricating oil is small, the deterioration time of the oil is shortened, and thus there is a problem that the oil needs to be replaced early.
[0013]
FIG. 12 is a diagram showing characteristics of lubrication of the bearing 9 on the opposite side to the drive by the oiling disk of the oiling chamber. In the bearing oiling device shown in FIG. Accordingly, the refueling amount becomes maximum around 1000 rpm, the refueling amount decreases when the rotation speed further increases, and the refueling amount almost disappears after 2500 rpm. Therefore, when the distance between the stopping stations is short as in the case of a commuter train, the average rotation speed of the motor is as low as about 2000 rpm, so that the refueling amount is sufficient. When the number of rotations is high, there is a problem that the amount of refueling is insufficient. In addition, in a motor that is reduced in size and weight by increasing the rotation speed, the amount of refueling tends to be insufficient even for a commuter train.
[0014]
In view of the above, the present invention can improve oil supply instability and oil deterioration due to an increase in oil bubbling phenomenon, can prolong the oil exchange cycle, and furthermore, can prevent the oil from being driven on the opposite side in a high rotation range. An object of the present invention is to provide a bearing lubricating device capable of preventing a shortage of lubrication amount to a bearing.
[0015]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an oil supply chamber adjacent to each outer surface of a bearing provided on both sides of an electric motor, communicating with a corresponding bearing, and having a lubricating oil reservoir formed below each. Alternatively, an oil discharge chamber is provided, and the lubricating oil reservoir formed in the oil supply chamber and the oil discharge chamber is communicated with a communication passage provided outside the machine. A lubrication disk is attached so that a part of the outer periphery is immersed in the lubricating oil in the oil reservoir, and lubricating oil pumped by the rotation of the lubricating disk is supplied to a bearing communicating with the oil drainage chamber through an oil supply pipe. It is characterized in that.
[0016]
The invention according to claim 2 is characterized in that, in the invention according to claim 1, at least one annular groove extending in a circumferential direction about the rotation axis is provided in an outer peripheral portion of the oil supply disk.
[0017]
According to a third aspect of the present invention, in the invention according to the first or second aspect, a sensor chamber accommodating a toothed disk for speed detection on a rotation shaft is formed on the outer surface of the oil drainage chamber, The oil level in the lubricating oil reservoir of the oil discharge chamber is higher than the lower end of the outer periphery of the toothed disk.
[0018]
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, an annular oil return chamber centered on the motor shaft is formed between the bearing in the bearing support member and the motor internal space. The oil return chamber communicates with the lubricating oil reservoir of the oil supply chamber or the drainage chamber through an oil return hole, and the oil level of the lubricating oil reservoir is adjusted so that the lubricating oil reaches the middle of the oil return hole. It is characterized by having been set.
[0019]
Further, according to the invention according to claim 5, in the invention according to any one of claims 1 to 4, the lower portions of the lubricating oil storage sections of the oil supply chamber and the oil discharge chamber are connected by a communication chamber disposed outside the machine. An inclined surface which is inclined downward is formed on the bottom surface of the communication chamber, and an oil drain port which can be opened as needed is provided at the lowest position of the inclined surface.
[0020]
The invention according to claim 6 is the invention according to any one of claims 1 to 5, characterized in that the upper space of the oil supply chamber and the oil discharge chamber is communicated through a communication passage.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In the drawings, the same parts as those in FIGS. 10 and 11 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0022]
1 to 3 show an embodiment of the present invention, in which a stator (not shown) is mounted on an inner peripheral surface of a frame 2 of a motor 1 and a rotor is provided in the stator. A rotor (not shown) mounted on the shaft 10 is disposed concentrically.
[0023]
A bracket 6 is attached to the drive-side end of the frame 2 and a housing 7 is attached to the non-drive-side end wall. Bearings 8 and 9 that support the rotor shaft 10 are mounted on the bracket 6 and the housing 7, respectively. Is provided.
[0024]
A lubricating oil reservoir 21a is formed at the lower portion of the outer surface of the bracket 6 and an oil supply chamber 21 communicating with the bearing 8 is provided. The oil supply chamber 21 has a diameter fixed to the rotor shaft 10 in the oil supply chamber 21. A refueling disk 22 of D 'is provided. The lubricating disk 22 has a lower outer peripheral portion immersed in lubricating oil in a lubricating oil storage portion 21a. Above the lubricating disk 22, an oil receiving the lubricating oil jumped up by the lubricating disk 22 is provided. A receiver 13 is provided.
[0025]
An oil supply pipe 14 provided outside the frame 2 and inclined downward toward the non-drive side is connected to the bottom of the oil receiver 13, and the oil supply pipe 14 is provided above the bearing 9 on the non-drive side. It is connected to the refueling port 15.
[0026]
On the other hand, an oil discharge chamber 23 having a lubricating oil storage portion 23a formed at a lower portion is mounted on the housing 7 on the non-drive side. In the upper space of the oil discharge chamber 23, there is provided a toothed disk 16 for speed detection which is large enough not to be immersed in the lubricating oil in the lubricating oil reservoir 23a. The lubricating oil reservoir 23a of the oil discharge chamber 23 and the lubricating oil reservoir 21a of the oil supply chamber 21 are communicated by a communication pipe 24 provided outside the machine. In FIG. 1, reference numeral 25 denotes a drain bolt provided in the lubricating oil reservoirs 21a and 23a.
[0027]
Thus, the lubricating disc 22 in the lubricating chamber 21 rotates with the rotation of the motor, and the lubricating oil adhered below the lubricating disc 22 is shaken off and blown upward, and supplied to the upper oil receiver 13. You. The oil supplied to the oil receiver 13 flows through the oil supply pipe 14, flows into the bearing 9 through the oil supply port 15, and lubricates the bearing 9. Then, the lubricating oil that has lubricated the bearing 9 is discharged from the bearing 9 to the oil discharge chamber 23 and stored in the lubricating oil storage part 23a.
[0028]
On the other hand, a part of the lubricating oil blown up by the oiling disk 22 in the oiling chamber 21 is transmitted to the inner wall surface of the oiling chamber 21 and flows down into the bearing 8 to lubricate the bearing 8 and thereafter lubricate the bearing 8 It is stored in the oil storage section 21a.
[0029]
By the way, the lubricating oil stored in the lubricating oil reservoir 23a formed below the oil discharge chamber 23 returns to the oil supply chamber 21 via the communication pipe 24, and thereafter the lubricating oil is circulated in the same manner. Therefore, the height of the oil level in each of the lubricating oil reservoirs 21a and 23a of the oil supply chamber 21 and the oil discharge chamber 23 is the same.
[0030]
Thus, in this embodiment, the oil return pipe inclined obliquely downward is unnecessary, the oil level in the lubricating oil reservoirs 21a and 23a can be made higher than before, and the oil level and the center of the motor shaft can be increased. Can be reduced. Therefore, the diameter D ′ of the oil supply disk 22 can be made smaller than before, and at the same time, the height position of the oil receiver 13 above the oil supply chamber 21 can be made lower.
[0031]
The lubrication characteristics of the bearing lubrication device having such a structure are as shown by a solid line B in FIG. That is, as the distance between the oil level and the oil receiver 13 becomes shorter, the amount of refueling increases, and the degree of decrease in the amount of refueling with the increase in the number of rotations becomes gentler. A sufficient amount of lubrication can be secured.
[0032]
In addition, as the diameter D 'of the lubrication disk 22 is reduced, the peripheral speed of the part immersed in the oil is reduced, so that the bubbling phenomenon of the oil is reduced, and the lubrication oil is stabilized and the lubrication oil is oxidized. Deterioration can be reduced. Further, since the oil level in the lubricating oil storage section is increased, the amount of oil stored in the oil supply chamber 21 increases, and the lubricating oil is also stored in the lubricating oil storage section 23a of the oil discharge chamber 23. The amount of oil greatly increases, and the exchange cycle due to oil deterioration can be greatly extended in combination with the reduction of oxidative deterioration. In addition, the increase in the amount of the lubricating oil increases the rate at which the oil level decreases due to the consumption of the oil, so that the oil replenishment cycle can be extended.
[0033]
By the way, in the above embodiment, the refueling disk 22 is of a flat plate shape. However, as shown in FIGS. An extended concentric annular groove 27 may be formed. In this case, when the lubricating disk 26 is immersed in the lubricating oil, a large amount of lubricating oil adheres to the annular groove 27, and the time until the oil is shaken off by the lubricating disk by rotation is shorter than that of the flat disk. As a result, the amount of oil carried to the upper oil pan can be increased.
[0034]
The lubrication characteristics in this case are as shown by the dotted line C in FIG. 12, and the lubrication amount can be increased over the high rotation range at the same time as the lubrication amount increases.
[0035]
FIG. 5 is a diagram showing the operation status of the train. Since the commuter train stops at each station, the acceleration and deceleration time increases, and the traveling time in the high-speed area is short, so that the average rotation speed of the motor is around 2000 rpm. It becomes. On the other hand, since the limited express train has a longer interval between stop stations, the running time at high speed is longer than the time during acceleration and deceleration, and the average rotational speed of the motor is around 3500 rpm.
[0036]
Accordingly, as shown in FIG. 12C, the oil lubrication characteristics of the grooved oil disk 26 can be sufficiently secured even at 3500 rpm, so that the oil lubrication method is also used for the motor of the limited express train. Will be possible. Since the annular groove 27 of the oil supply disk 26 is formed concentrically with the center of rotation, the effect of stirring the oil by the rotation of the oil supply disk is small and does not increase the bubbling of the oil.
[0037]
FIG. 6 is a view showing another embodiment of the present invention. A sensor chamber 30 is defined by a wall 31 outside a drain chamber 23, and a toothed disk 16 is formed in the sensor chamber 30. Is contained. The oil level in the lubricating oil reservoir 23a of the oil discharge chamber 23 is higher than the lower end of the outer periphery of the toothed disk 16.
[0038]
However, in this case, since the sensor chamber 30 is completely partitioned from the oil drain chamber 23, lubricating oil does not flow into the sensor chamber 30, and the toothed disk 16 does not immerse in the lubricating oil. . Therefore, the lubricating oil is not agitated at the teeth of the toothed disk 16, and a large-diameter disk can be used as the toothed disk. It can be prevented from leaking out.
[0039]
FIG. 7 is a view showing still another embodiment of the present invention. The bearing 9 communicates with the bearing 9 via a minute gap 32 between the bearing 9 of the housing 7 of the non-drive-side bearing and the inside of the machine. An annular oil return chamber 33 centered on the rotor shaft 10 is formed, and a lower portion of the oil return chamber 33 is connected to a lubricating oil storage 23 a of the oil discharge chamber 23 via an oil return hole 34. The oil level in the lubricating oil reservoir 23a is set such that the lubricating oil reaches halfway through the oil return hole 34. Thus, the oil flowing from the minute gap 32 into the oil return chamber 33 is returned to the lubricating oil reservoir 23a of the oil discharge chamber 23 via the oil return hole 34.
[0040]
By the way, the lubricating oil supplied to the bearing 9 is agitated by the high speed rotation of the rotor shaft and becomes a mist, and the mist oil easily leaks from the labyrinth portion 35 into the machine. In particular, since the rotational speed of the vehicle motor is high, a large negative pressure is generated on the inner peripheral side near the bearing in the machine, so that mist oil generated in the bearing easily leaks into the machine.
However, in the present embodiment, since the lubricating oil is filled halfway through the oil return hole 34, the mist oil generated in the bearing 9 flows backward from the oil discharge chamber 23 through the oil return hole 34. The entry into the oil return chamber 33 is prevented, and the entry of the atomized oil into the oil return chamber 33 is limited to that from the disc-shaped minute gap 32. Mist oil leaking into the cabin is minimized.
[0041]
FIG. 8 is a view showing another embodiment of the present invention, in which a lubricating oil storage portion 11a of an oil supply chamber 11 and a lubricating oil storage portion 23a of an oil discharge chamber 23 are provided outside a frame 2. The bottom of the communication chamber 36 is formed with a slope inclined downward toward the center thereof, and an oil drain port is provided at the lowest position of the slope. An oil drain plug 37 is attached to the oil drain port.
[0042]
Thus, in this embodiment, the amount of lubricating oil that can be held by the communication chamber 36 can be further increased. Therefore, the supply cycle due to oil consumption can be further extended, and the oil replacement cycle due to oil deterioration can be further extended. Further, in the oil draining operation at the time of oil replacement, all the oil can be extracted by removing the oil drain plug 37 at one place, and the workability can be improved.
[0043]
FIG. 9 is a view showing still another embodiment of the present invention, in which an oil supply hole 15 provided above the bearing 9 on the non-drive side and an upper space portion of the oil discharge chamber 23 are provided with air holes 38. Is communicated by Further, the oil supply pipe 14 and the oil supply hole 15 for supplying the lubricating oil to the bearing 9 are large in diameter, so that a space is created even when the oil to be supplied flows, and the space of the oil discharge chamber 23 is The space of the fueling chamber 11 is communicated.
[0044]
Since the spaces of the oil supply chamber 11 and the oil discharge chamber 23 are always communicated with each other by the air holes 38, the pressure in both chambers is kept the same, and the height of the oil level in both chambers is always kept the same. Can be.
[0045]
Even when there is no air hole 38, the oil supply chamber space and the oil discharge chamber space communicate with each other through the internal space of the machine, the internal space of the bearing, and the minute gap of the labyrinth portion. The pressure in both chambers is difficult to equalize because of the change, so when the amount of oil supplied to the non-drive side bearing is large, only the oil level in the oil discharge chamber rises and oil leakage due to increased oil agitation is likely to occur. Sometimes it becomes.
[0046]
However, in the present embodiment, since the air hole 38 is provided, only the oil level on the oil discharge chamber side is reliably prevented from rising. Instead of the air hole 38, an air communication pipe 39 may be provided outside the machine, and the space between the oil supply chamber and the oil discharge chamber may be communicated by the air communication pipe 39.
[0047]
【The invention's effect】
As described above, according to the present invention, a lubricating oil reservoir is formed at a lower portion of an oil supply chamber or a drainage chamber provided adjacent to each outer surface of a bearing provided at both sides of an electric motor. Since the oil reservoir is communicated with the communication path provided outside the machine, the amount of the lubricating oil can be increased, and the lubricating oil replenishment cycle and the replacement cycle due to oil deterioration can be extended. In addition, the diameter of the oiling disk provided in the oiling chamber can be reduced, the oiling characteristics can be improved, stable oiling can be performed, oiling in a high rotation range can be performed, and the present invention can also be applied to motors for limited express trains.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a bearing lubrication device of the present invention.
FIG. 2 is a longitudinal side view of a fuel supply chamber in FIG.
FIG. 3 is a vertical sectional side view of the oil discharge chamber portion of FIG. 1;
4 (a) and 4 (b) are a partial view and a partial sectional view showing another example of a refueling disk.
FIG. 5 is a diagram illustrating the operation status of a vehicle.
FIG. 6 is a longitudinal sectional view of an oil drainage chamber showing another embodiment of the present invention.
FIG. 7 is a vertical sectional view of an oil drainage chamber, showing another embodiment of the present invention.
FIG. 8 is a diagram showing another embodiment of the present invention.
FIG. 9 is a diagram showing still another embodiment of the present invention.
FIG. 10 is a longitudinal sectional view of a conventional bearing lubrication device.
FIG. 11 is a side view of a conventional bearing lubrication device.
FIG. 12 is a diagram showing lubrication characteristics of a bearing lubrication device.
[Explanation of symbols]
2 Frame 6 Bracket 7 Housing 8, 9 Bearing 10 Rotor shaft 11, 21 Lubricating chamber 11a, 23a Lubricating oil reservoir 12, 22, 26 Lubricating disk 13 Oil receiver 15 Lubrication hole 23 Drainage chamber 24 Communication pipe 27 Annular groove 30 Sensor chamber 33 Oil return chamber 34 Oil return hole 36 Communication chamber 37 Oil drain plug 38 Air hole

Claims (3)

電動機の両側部に設けられた軸受の各外側に隣接して、それぞれ対応する軸受に連通するとともにそれぞれ下方に潤滑油貯溜部が形成された給油室或は排油室を配設し、上記給油室及び排油室に形成された潤滑油貯溜部を機外に配設された連通路によって連通するとともに、上記給油室内におけるロータシャフトに下方の潤滑油貯溜部内の潤滑油に外周の一部が浸るように給油円板を取付け、排油室内におけるロータシャフトに取付けられた速度検出用の歯付円板はその外周下端部が上記排油室の潤滑油貯溜部内の潤滑油に接触しないような大きさとし、上記給油円板の回転によって汲み上げられた潤滑油を給油管を介して排油室に連通する軸受に供給するようにしたことを特徴とする、車両用電動機の軸受給油装置。An oil supply chamber or an oil discharge chamber, which is adjacent to each outer side of the bearings provided on both sides of the electric motor and communicates with the corresponding bearing, and in which a lubricating oil reservoir is formed below each, is provided. The lubricating oil reservoir formed in the oil chamber and the oil drainage chamber communicates with a communication passage provided outside the machine, and a part of the outer periphery of the lubricating oil in the lubricating oil reservoir below the rotor shaft in the oil supply chamber. A lubrication disk is mounted so as to be immersed, and the toothed disk for speed detection mounted on the rotor shaft in the oil discharge chamber is arranged such that the lower end of the outer periphery does not contact the lubricating oil in the lubricating oil storage section of the oil discharge chamber. the size Satoshi, characterized by being adapted to supply to the bearing for communicating lubricating oil pumped up by rotating the oil discharge chamber through the oil supply pipe of the oil supply disc, bearing oil supply device for a vehicle motor. 排油室にロータシャフトに取付けられた速度検出用の歯付円板を収容したセンサー室を区画形成するとともに、排油室の潤滑油貯溜部内の油面高さが、上記歯付円板の外周下端部より高い位置になるようにしたことを特徴とする、請求項1記載の車両用電動機の軸受給油装置。A sensor chamber accommodating a toothed disk for speed detection attached to the rotor shaft is formed in the oil drainage chamber, and the oil level in the lubricating oil reservoir of the oil drainage chamber is adjusted to the height of the toothed disk. characterized in that set to be higher than the outer peripheral lower end position, the bearing lubrication system of the motor vehicle of claim 1 Symbol placement. 給油室と排油室の上部空間を連通路を介して連通したことを特徴とする、請求項1または2記載の車両用電動機の軸受給油装置。The bearing oil supply device for a vehicle electric motor according to claim 1 or 2 , wherein the oil supply chamber and the upper space of the oil discharge chamber communicate with each other through a communication passage.
JP27096199A 1999-09-24 1999-09-24 Bearing lubrication system for motors for vehicles Expired - Fee Related JP3604305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27096199A JP3604305B2 (en) 1999-09-24 1999-09-24 Bearing lubrication system for motors for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27096199A JP3604305B2 (en) 1999-09-24 1999-09-24 Bearing lubrication system for motors for vehicles

Publications (2)

Publication Number Publication Date
JP2001090740A JP2001090740A (en) 2001-04-03
JP3604305B2 true JP3604305B2 (en) 2004-12-22

Family

ID=17493444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27096199A Expired - Fee Related JP3604305B2 (en) 1999-09-24 1999-09-24 Bearing lubrication system for motors for vehicles

Country Status (1)

Country Link
JP (1) JP3604305B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063512B2 (en) * 2008-07-02 2012-10-31 東洋電機製造株式会社 Bearing device for vehicle main motor
JP5288982B2 (en) * 2008-10-07 2013-09-11 株式会社東芝 Electric motor
JP2010161851A (en) * 2009-01-07 2010-07-22 Toyo Electric Mfg Co Ltd Bearing device in main motor for vehicle
CN108855881A (en) * 2018-06-20 2018-11-23 张潇洪 A kind of energy-saving vibrating screen device
CN114337113B (en) * 2021-11-30 2023-12-22 中车永济电机有限公司 Stator and rotor hybrid evaporative cooling motor structure
CN115126783B (en) * 2022-07-22 2023-11-28 中国航发湖南动力机械研究所 Double-fulcrum shared bearing support seat with oil supply device and engine comprising same

Also Published As

Publication number Publication date
JP2001090740A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US11434977B2 (en) Vehicle drive device
JP4657121B2 (en) Bearing device for vehicle main motor
JPH09226394A (en) Drive device for electric automobile
US3804476A (en) Bearing devices for rotary machines
US6988980B2 (en) Separator with bearing lubrication arrangement
JP2009506281A (en) Bearing device
CN111486220B (en) Transmission device for vehicle
JP3604305B2 (en) Bearing lubrication system for motors for vehicles
JP6215613B2 (en) Motor drive device
JP2021099107A (en) Vehicle power transmission lubrication device
JP4628190B2 (en) Railway motor drive motor
JP2003023747A (en) Lubricating structure for bearing in motor for vehicle
CN213619315U (en) All-terrain vehicle and hybrid power assembly thereof
JP5537251B2 (en) Bearing device for motor for driving vehicle
JP2003032946A (en) Structure of oil lubrication bearing for vehicle motor
JP2007028700A (en) Rotary electric machine
JP7380862B2 (en) drive device
JP3474327B2 (en) Bearing device for vehicle main motor
JP5041908B2 (en) Oil leakage suppression structure for vehicle main motors
JP7115518B2 (en) winch
JPS636530Y2 (en)
WO2023182403A1 (en) Traveling device for wheeled vehicle
JP2000152549A (en) Motor
JP4561065B2 (en) Oil lubrication structure of coaxial mechanism
JP3958492B2 (en) Rotating machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees