JP3602861B2 - 金属ケイ化物膜の形成方法 - Google Patents

金属ケイ化物膜の形成方法 Download PDF

Info

Publication number
JP3602861B2
JP3602861B2 JP23787493A JP23787493A JP3602861B2 JP 3602861 B2 JP3602861 B2 JP 3602861B2 JP 23787493 A JP23787493 A JP 23787493A JP 23787493 A JP23787493 A JP 23787493A JP 3602861 B2 JP3602861 B2 JP 3602861B2
Authority
JP
Japan
Prior art keywords
metal silicide
target
erosion
film
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23787493A
Other languages
English (en)
Other versions
JPH0790577A (ja
Inventor
潤 森本
一仁 関野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP23787493A priority Critical patent/JP3602861B2/ja
Publication of JPH0790577A publication Critical patent/JPH0790577A/ja
Application granted granted Critical
Publication of JP3602861B2 publication Critical patent/JP3602861B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、金属ケイ化物ターゲットをカソードし、マグネトロンスパッタリングにより基板上に金属ケイ化物膜を形成する方法に関するものである。
【0002】
【従来の技術】
従来、スパッタリングによる金属ケイ化物膜を形成する方法としては合金スパッタターゲットを使用する方法がよく知られている。そしてこのような方法を実施するために使用されるスパッタリング装置としては、高成膜速度を得るために永久磁石や電磁石を用いたマグネトロンスパッタ源を備え、直交電磁界中における電子のサイクロイド運動を利用して電離効率を高めるようにしたものが知られており、電磁石方式では、膜厚分布を適正化するために電磁石コイルに流す電流値を周期的に掃引してエロージョン領域を制御する方法が採られている。
【0003】
このような従来法の一例として特開昭58− 71372号公報には、複数の磁極を有する一つの磁力線源を設け、複数の磁極の一部に発生する磁力線を制御して残りの磁極によって形成される磁力線分布位置すなわちプラズマ発生領域の位置を移動させる電磁石を備えたプレーナマグネトロン電極を用い、電磁石に所定の周期をもつ電流を流し、プレーナマグネトロン電極の外周部と中央部とに設けた陽極に接地に近い電位を与えて基板への荷電粒子の流入を低く抑えた状態で、プラズマ発生領域を所定の周期で少なくとも1回以上移動させて、それぞれのプラズマ発生領域で得られる成膜膜厚を合成して成膜を行うようにしたものか開示されている。この方法によって使用するターゲットの寿命を伸ばすことができ、膜厚分布を制御でき、さらには荷電粒子の基板への流入の低減による基板の損傷の低減が得られる。
【0004】
【発明が解決しようとする課題】
ところで、主に半導体プロセスにおける電極材料、配線として利用されるシリコンとモリブデンやタングステン等の金属との合金の薄膜は、膜質として基板上の膜厚及び膜組成比の均一な分布をもちしかも十分なシリコン組成をもちかつまた低い比抵抗値をもつことが要求される。しかし、シリコンと金属とはスパッタリングイールド及びスパッタ粒子の飛散角度が違うために所望の膜組成比分布と膜厚分布とを合わせもって成膜することは非常に困難である。
上記で挙げたような従来のマグネトロン方式では、ターゲット表面上のエロージョン領域の調整に限界があるため、侵食面領域と不侵食面領域との分布が生じることになり、ターゲット表面の不侵食面領域にはスパッタ膜が堆積することになる。
一方金属ケイ化物膜は主としてモリブデンやタングステン等の高ストレスを有する薄膜合金であるために、非常に剥離し易く、その剥離物が対向する基板上に付着するという問題がある。この剥離物の基板への付着は製品の歩留まりを著しく低下させることになり、特に半導体素子製品の量産プロセスにおいては致命的となる。
また、従来のスパッタリング法ではターゲット材全面をスパッタリングできないため、膜組成比の適正化についても限界がある。
【0005】
そこで、本発明は、上記の問題点を解決して、均一なシリコン・金属組成及び膜厚分布をもち、十分なシリコン組成をもちしかも比抵抗値の低い金属ケイ化物膜の形成法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明による金属ケイ化物膜の形成方法は、金属ケイ化物ターゲットをカソードとし、カソードの裏側に設けた複数の電磁石コイルに電流を流してマグネトロンスパッタリングにより基板上に金属ケイ化物膜を形成するに際して、予備データとして各電磁石コイルの励磁電流値を設定し、エロージョン領域を最内径位置、最外径位置及び中間径位置に固定させると共に、スパッタ電極を成す直流電源の出力を各エロージョン領域においてそれぞれ所定の値に設定して成膜し、それぞれの場合のSi/金属膜組成比を測定し、そして、ターゲットの最内径位置、最外径位置及び中間径位置に固定した三つのエロージョン領域のデータを合成することによって適正な膜組成比を得るのに必要な三つの各位置におけるエロージョン領域の滞在時間比を算出して、その算出結果に基き、エロージョン領域を各位置に移動させ、前記所定の値のスパッタ電源を成す直流電源の出力で、算出した滞在時間のとおりにスパッタ成膜を実施することを特徴としている。
好ましくは、直流電源の出力は、エロージョン領域が金属ケイ化物ターゲットの中心部に集中している時は下がり、一方エロージョン領域が金属ケイ化物ターゲットの外周に拡がる時は上がるように制御され得る。
また、金属ケイ化物ターゲットのエロージョン領域はターゲットのほぼ全域に渡ってのび、そしてターゲット上の異なった予定位置におけるエロージョン領域の滞在時間はそれぞれ設定され得る。
【0007】
【作用】
このように構成した本発明による金属ケイ化物膜の形成方法においては、カソードの裏側に設けた複数の電磁石コイルに予定の周期をもった電流を流して金属ケイ化物ターゲットのエロージョン領域を周期的に制御することにより、基板の中心部においても十分なシリコン組成が得られるようになり、また電磁石コイルの励磁電流の掃引制御とスパッタ電源の出力制御とを同期させて行なうことにより、ターゲットの放電面積に対するスパッタ放電電力密度を適正に制御できるようになる。
【0008】
【実施例】
以下添付図面を参照して本発明の実施例について説明する。
図1には本発明に従って金属ケイ化物膜を形成するのに用いられる装置の一例を示し、1は真空チャンバであり、排気系2に接続されている。真空チャンバ1内には基板3を支持する基板ホルダー4が配置され、基板ホルダー4には基板3を加熱するヒータ5及び基板搬送系6が設けられている。また基板3を囲んで防着板7、8が配設されている。さらに真空チャンバ1にはアルゴン等の不活性ガス導入部9が接続されている。
真空チャンバ1の頂部には基板3に対向する位置に絶縁体10を介してスパッタ源11が連接されている。このスパッタ源11はカソード電極12を有し、その表面にはターゲット13が装着され、ターゲット13の外周縁部はアースシールド14で囲まれている。ターゲット13は円形平板型で、粉末冶金法により製造されるある一定の組成をもつシリサイド合金ターゲットから成っている。
カソード電極12の裏側には、三つの独立した円環状電磁石コイル15、16、17が設けられ、電磁石ケース18で覆われている。各コイル15〜17は励磁電源19に接続され、またカソード電極12は定電力制御特性をもつ直流電源20に接続されている。これら両電源には出力制御装置21が接続され、この出力制御装置21は各電磁石コイル15、16、17への励磁電流の供給を予定のプログラムに応じて任意の周期で制御すると共に、この励磁電流の供給に同期させて直流電源20の出力を制御するようにされている。
このように構成した装置を用いて本発明により半導体電極配線材料であるモリブデンケイ化物(MoSix )の薄膜をシリコンウエハ上に均一な膜組成で形成する実施例について説明する。
まず、予備データとして各電磁石コイル15、16、17の励磁電流値を設定し、エロージョン領域を最内径位置、最外径位置及び中間径位置に固定させた場合の成膜試料をスパッタし、それぞれのSi/Moの膜組成比を測定した。
図2にはそれぞれのエロージョン領域固定時のウエハ上におけるSi/Moの膜組成比の分布を示す。図2からわかるように、エロージョン領域を最内径位置壁に固定した時(この時のスパッタパワーは0.5kW )にはウエハ中心部が高シリコン組成をもつ山型の分布を示し、中間径位置に固定した時(この時のスパッタパワーは2.0kW )にはウエハの中間部で高シリコン組成となり、そしてウエハの外周部では低シリコン組成となるM型の分布を示し、また、最外径位置に固定した時(この時のスパッタパワーは2.0kW )にはウエハの外周部で高シリコン組成となり、そしてウエハの中心部で低シリコン組成となる極端な谷型を示している。
【0009】
同じ条件の元で従来の二重極型に代表される電磁石コイルを用いて得ることのできるエロージョンの範囲は中間径と最外径との間であり、従って従来技術ではウエハ中心部におけるシリコン組成の補正は実質的に不可能である。これに対して本発明の方法ではターゲットの中心部までエロージョン領域を拡げることにより、ウエハ中心部におけるシリコン組成を補正することが可能となった。
またスパッタ粒子の蒸発方向はターゲット金属と入射エネルギによって変化するため、本発明の方法においてはターゲット上のエロージョンの位置に同期させて直流電源20の出力を調整し、すなわちエロージョン領域がターゲットの中心に集中している時には直流電源20の出力を相対的に下げ、反対にエロージョン領域がターゲットの外周に拡がっていく時には直流電源20の出力を相対的に上げるようする。実際の条件の一例としては、ターゲット中心部のエロージョン領域のスパッタリングパワーを0.5kW とし、ターゲット外周部にエロージョン領域が拡がっていく時にスパッタリングパワーを2.0kW に上げるといった条件が有効であった。これにより各ターゲット放電面積に対するスパッタリングパワー密度を適正にすることができる。
そしてターゲットの最内径位置、最外径位置及び中間径位置に固定した三つエロージョン領域のデータを合成することによって適正な膜組成比を得るのに必要な三つ各位置におけるエロージョン領域の滞在時間比が算出され得る。現在及び将来にわたる本成膜の用途である半導体プロセスでは、基板となるシリコンウエハの口径が拡がる方向に進んでおり、今日では150mm さらには200mm となっている。そのように拡がる口径基板への成膜において外周部でのシリコン組成を確保するためには、主にターゲット外周部でのエロージョン滞在比を調整することにより、150mm さらには200mm のように拡がる口径基板への対応が可能かつ有効であり、合成計算結果もそのようになる。実際の計算の一例として、最内径位置におけるエロージョン領域の滞在時間:中間径位置におけるエロージョン領域の滞在時間:最外径位置におけるエロージョン領域の滞在時間=49:34:136 (約分して 1.4:1:4)が得られた。この時間比に基いてエロージョン領域を各位置に移動させしかもそれに応じて直流電源20の出力を調整しながらスパッタ成膜を実施して得られた薄膜の特性すなわち膜厚、Si/Moの膜組成比及び比抵抗を、図3、図4及び図5にそれぞれ従来技術による方法の場合と比較しながら示す。これらの図面において従来技術による方法におけるスパッタパワーは1.5kW とし、一方本発明による方法ではスパッタパワーは0.5 〜2.0kW とした。
これら測定データから、Si/Moの膜組成比の150mm ウエハ上における分布は±1.6 %、膜厚分布は±2.15%、比抵抗は1079μΩcmが得られた。これに対して従来技術による方法の場合にはSi/Moの膜組成比の150mm ウエハ上における分布は±8.05%、膜厚分布は±3.28%、比抵抗は1297μΩcmであった。
また、ターゲット表面は全面に渡りスパッタリング跡が認められ、再スパッタ膜の堆積は認められなかった。
さらに、この条件におけるスパッタリング速度は223nm/分であり、これは量産ベースに十分対応できる速度である。
【0010】
ところで、上記実施例においては、モリブデンシリサイド膜を形成する場合について説明してきたが、本発明はWSiのようなその他の金属ケイ化物の膜の形成にも同様に実施することができる。
また上記実施例ではターゲットが上側、基板が下側に位置し、ターゲットから下向きに基板上に成膜を行なういわゆるスパッタダウン方式を利用しているが、当然ターゲットを下側に、基板を上側にしたスパッタアップ方式や、ターゲット及び基板を垂直に配列したスパッタサイド方式で実施することも可能である。 さらに、本発明は三極マグネトロン方式だけでなく、他のマグネトロン方式にも応用することができる。
【0012】
【発明の効果】
以上説明してきたように、本発明による金属ケイ化物膜の形成法においては、カソードの裏側に設けた複数の電磁石コイルに予定の周期をもって電流を流して金属ケイ化物ターゲットのエロージョン領域を周期的に制御すると共に、スパッタ電源を成す直流電源の出力を電磁石コイルに流す電流に同期させて制御しているので、シリコンと金属とのスパッタリングイールド及びスパッタ粒子の飛散角度の違いによる基板上の膜組成比の分布のばらつきを容易に解消することができると共にターゲット表面上における膜の堆積をなくしてシリコン・金属組成比及び膜厚分布にすぐれ低比抵抗値をもつ金属ケイ化物膜を得ることができるようになる。
またエロージョン領域をターゲットの外周部から中心部までの広範囲にひろけげることができるので、高価な金属ケイ化物ターゲットの使用効率を大幅に向上させることができるようになる。
【図面の簡単な説明】
【図1】本発明の方法を実施しているマグネトロンスパッタ装置の一例を示す概略線図。
【図2】エロージョン領域を異なった位置に固定した時のSi/Mo膜組成比のウエハ上における分布を示すグラフ。
【図3】本発明による方法で得られた金属ケイ化物膜の膜厚分布を従来法によるものと比較して示すグラフ。
【図4】本発明による方法で得られた金属ケイ化物膜のSi/Mo膜組成比分布を従来法によるものと比較して示すグラフ。
【図5】本発明による方法で得られた金属ケイ化物膜の比抵抗値分布を従来法によるものと比較して示すグラフ。
【符号の説明】
1:真空チャンバ
2:排気系
3:基板
4:基板ホルダー
5:ヒータ
6:基板搬送系
7:防着板
8:防着板
9:不活性ガス導入部
10:絶縁体
11:スパッタ源
12:カソード電極
13:ターゲット
14:アースシールド
15:円環状電磁石コイル
16:円環状電磁石コイル
17:円環状電磁石コイル
18:電磁石ケース
19:励磁電源
20:直流電源
21:出力制御装置

Claims (3)

  1. 金属ケイ化物ターゲットをカソードとし、カソードの裏側に設けた複数の電磁石コイルに電流を流してマグネトロンスパッタリングにより基板上に金属ケイ化物膜を形成する方法において、
    予備データとして各電磁石コイルの励磁電流値を設定し、エロージョン領域を最内径位置、最外径位置及び中間径位置に固定させると共に、スパッタ電極を成す直流電源の出力を各エロージョン領域においてそれぞれ所定の値に設定して成膜し、それぞれの場合のSi/金属膜組成比を測定し、 そして、ターゲットの最内径位置、最外径位置及び中間径位置に固定した三つエロージョン領域のデータを合成することによって適正な膜組成比を得るのに必要な三つ各位置におけるエロージョン領域の滞在時間比算出して、その算出結果に基き、エロージョン領域を各位置に移動させ、前記所定の値のスパッタ電源を成す直流電源の出力で、算出した滞在時間のとおりにスパッタ成膜を実施することを特徴とする金属ケイ化物膜の形成方法。
  2. エロージョン領域が金属ケイ化物ターゲットの中心部に集中している時は直流電源の出力が下がり、一方エロージョン領域が金属ケイ化物ターゲットの外周に拡がる時は直流電源の出力が上がるように直流電源の出力を制御する請求項1に記載の金属ケイ化物膜の形成方法。
  3. 金属ケイ化物ターゲットのエロージョン領域がターゲットのほぼ全域に渡ってのび、そしてターゲット上の異なった予定位置におけるエロージョン領域の滞在時間をそれぞれ設定している請求項1に記載の金属ケイ化物膜の形成方法。
JP23787493A 1993-09-24 1993-09-24 金属ケイ化物膜の形成方法 Expired - Lifetime JP3602861B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23787493A JP3602861B2 (ja) 1993-09-24 1993-09-24 金属ケイ化物膜の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23787493A JP3602861B2 (ja) 1993-09-24 1993-09-24 金属ケイ化物膜の形成方法

Publications (2)

Publication Number Publication Date
JPH0790577A JPH0790577A (ja) 1995-04-04
JP3602861B2 true JP3602861B2 (ja) 2004-12-15

Family

ID=17021700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23787493A Expired - Lifetime JP3602861B2 (ja) 1993-09-24 1993-09-24 金属ケイ化物膜の形成方法

Country Status (1)

Country Link
JP (1) JP3602861B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383364A1 (en) * 2009-01-20 2011-11-02 Shin-Etsu Polymer Co. Ltd. Radio wave-transmitting decorative member and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021011756A1 (en) * 2019-07-16 2021-01-21 Applied Materials, Inc. Em source for enhanced plasma control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383364A1 (en) * 2009-01-20 2011-11-02 Shin-Etsu Polymer Co. Ltd. Radio wave-transmitting decorative member and method for producing same
EP2383364A4 (en) * 2009-01-20 2013-05-15 Shinetsu Polymer Co RADIOWELLEN TRANSMITTING JEWELER AND METHOD OF MANUFACTURING THEREOF
US8816932B2 (en) 2009-01-20 2014-08-26 Shin-Etsu Polymer Co., Ltd. Radio wave transmitting decorative member and the production method thereof

Also Published As

Publication number Publication date
JPH0790577A (ja) 1995-04-04

Similar Documents

Publication Publication Date Title
TWI285681B (en) Improved magnetron sputtering system for large-area substrates
EP0070574B1 (en) Film forming method
EP2164091B1 (en) Method for manufacturing sputter-coated substrates, magnetron source and sputtering chamber with such source
US5616225A (en) Use of multiple anodes in a magnetron for improving the uniformity of its plasma
EP0148470B1 (en) Planar magnetron sputtering with modified field configuration
KR20110033184A (ko) 스퍼터링 장치 및 스퍼터링 방법
JP3602861B2 (ja) 金属ケイ化物膜の形成方法
US6495000B1 (en) System and method for DC sputtering oxide films with a finned anode
JPS6128029B2 (ja)
JPH0352535B2 (ja)
JPH01119667A (ja) スパッタ膜形成装置
US20080023319A1 (en) Magnetron assembly
US20230067466A1 (en) Physical vapor deposition process apparatus and method of optimizing thickness of a target material film deposited using the same
JP2984746B2 (ja) イオンビームスパッタ装置
JPH07307289A (ja) スパッタリング方法
JPH0250958A (ja) スパッタリング法による成膜装置
JP2001262338A (ja) スパッタ製膜装置
JP5795002B2 (ja) スパッタリング方法
JPH0611029B2 (ja) スパツタタ−ゲツトおよびスパツタリング方法
JPS637367A (ja) バイアススパツタ装置
JPS61207574A (ja) スパツタ装置
JPS62127465A (ja) スパツタ装置
JPH10259478A (ja) スパッタ装置及びスパッタ方法、並びにそのスパッタターゲット
JPH02148722A (ja) 半導体集積回路装置の製造方法
JPH01123064A (ja) スパッタ装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9