JP3602690B2 - Solid-gas reaction filled container - Google Patents

Solid-gas reaction filled container Download PDF

Info

Publication number
JP3602690B2
JP3602690B2 JP18278797A JP18278797A JP3602690B2 JP 3602690 B2 JP3602690 B2 JP 3602690B2 JP 18278797 A JP18278797 A JP 18278797A JP 18278797 A JP18278797 A JP 18278797A JP 3602690 B2 JP3602690 B2 JP 3602690B2
Authority
JP
Japan
Prior art keywords
solid
gas
gas reaction
reaction
filled container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18278797A
Other languages
Japanese (ja)
Other versions
JPH1130397A (en
Inventor
敬司 藤
秀人 久保
信雄 藤田
博史 青木
宏之 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP18278797A priority Critical patent/JP3602690B2/en
Publication of JPH1130397A publication Critical patent/JPH1130397A/en
Application granted granted Critical
Publication of JP3602690B2 publication Critical patent/JP3602690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【産業上の利用分野】
本発明はたとえば熱交換器および水素吸蔵合金粉末を収蔵する水素吸蔵合金熱交換器のごとき固気反応充填容器体に関する。
【0002】
【従来の技術】
特開平7−330301号公報は、密閉容器に収容されて容器の外部との間で熱媒流体を授受する熱交換器と、固気反応により体積変化する性質を有して熱交換器内に充填される固気反応粉末と、この容器の外部と固気反応粉末との間で反応ガスを流通させる反応ガス通路とを備え、熱交換器が、図4に示すように、互いに平行に延設される一対のヘッダ100と、互いに平行に配置されて両端が両ヘッダ100に個別に一体接合される多数の扁平伝熱管200と、各扁平伝熱管200間の隙間300に配設されてこの隙間300を多数のセル400に分割するフィン500とを備える水素吸蔵合金熱交換器を提案している。なお、各扁平伝熱管200は水平方向に広がる姿勢で取り付けられている。
【0003】
この水素吸蔵合金熱交換器は、水素吸蔵合金粉末を多数のセルに分散して収蔵することができるので水素吸蔵合金粉末が局部的に偏在することがなく、水素吸蔵合金粉末と水素との反応および水素吸蔵合金粉末と熱交換器との熱伝達が空間位置によりばらつくことが少ないという利点を有している。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した公報が開示するフィン付き扁平伝熱管式水素吸蔵合金熱交換器では、各セルに個別に充填された水素吸蔵合金粉末が水素ガスの吸蔵、放出の度に膨張、収縮するので、扁平伝熱管200、特に上端側および下端側の扁平伝熱管200が、図4に示すようにヘッダ延在方向すなわち上方または下方へ湾曲変形を繰り返し、このため曲げ応力を受けて湾曲しようとする扁平伝熱管200と、この上下方向への外力に対しては剛体とみなせるヘッダ100との間の接合部600に曲げ応力が集中して、このろう付け部分のシ−ル性が低下し、熱媒流体が漏れるという問題があった。
【0005】
もちろん、扁平伝熱管200とフィン500とで区画される各セル内への水素吸蔵合金粉末の充填量を減らすことにより、上記応力を緩和することができるが、この水素吸蔵合金熱交換器の水素ガスの吸蔵、放出能力が低下してしまう。
本発明は上記問題点に鑑みなされたものであり、優れた熱交換性および固気反応能力を確保しつつ、固気反応粉末の体積変化に伴う耐久性の低下を回避可能な固気反応充填容器体を提供することを、その解決すべき課題としている。
【0006】
【課題を解決するための手段】
本願発明の固気反応充填容器体は、内部を密閉する密閉容器と、前記容器に収容されて容器の外部との間で熱媒流体を授受する熱交換器と、固気反応により体積変化する性質を有して前記密閉容器に充填される固気反応粉末と、前記容器の外部と前記固気反応粉末との間で反応ガスを流通させる反応ガス通路とを備え、前記熱交換器は、互いに平行に延設される一対のヘッダと、両端が前記一対のヘッダに一体に接合される扁平伝熱管と、前記扁平伝熱管の外表面に配設されるフィンとを備え、前記固気反応粉末は、水素ガスを吸収、放出して膨張、収縮する水素吸蔵合金粉末であり、前記反応ガスは水素ガスである固気反応充填容器体において、前記扁平伝熱管は、互いに平行に配置されて前記ヘッダの延在方向と略直角な第一方向へ延設される多数の直管部と、前記ヘッダ延在方向および前記第一方向に対してそれぞれ略直角な第二方向へ所定間隙を隔てて互いに隣接する前記直管部同士を連通させる多数の曲管部とからなる形状を有し、前記固気反応粉末は、前記フィン及び前記直管部により区切られて構成された各セルに個別に充填されるとともに前記反応ガスを吸収、放出して体積変化し、前記ヘッダは、前記固気反応粉末の体積変化による前記扁平伝熱管の変形に対して前記第一方向または前記第二方向へ追従可能に構成されていることを特徴としている。
すなわち、本発明の固気反応充填容器体は、いわゆるサ−ペンタイン構造の熱交換器を密閉容器内に内蔵し、そのフィンと扁平伝熱管とで区画される各セルに固気反応粉末が個別に充填される構造を採用している。
このようにすれば、扁平伝熱管は、総セル数に無関係にその両端部の2ヶ所でヘッダ(すなわち、入口管および出口管)と接合されるだけであり、接合箇所数が少ないので、上記漏れが生じる可能性を上記従来のフィン付き扁平伝熱管式水素吸蔵合金熱交換器に比べて格段に低減することができる。
【0007】
また、ガスの吸収、放出によるセル内の固気反応粉末の体積変化により、扁平伝熱管がその主面と直角な方向へ変形したとしても、一対のヘッダは、蛇行する扁平伝熱管の両端に個別に接合しているだけであるので、扁平伝熱管の上記微小変位に追従して容易に変位することができ、扁平伝熱管とヘッダとの接合部において扁平伝熱管にほとんど曲げ応力が生じることがなく、したがって、この接合部(一般にろう付け部分)が疲労して熱媒流体またはガスがリ−クすることがない。
【0008】
また、固気反応粉末は、各セルに分割収容されるとともに、各フィンおよび扁平伝熱管と十分に接するので、優れた熱交換性を確保することができるとともに、固気反応粉末が容器底部に沈降、偏在したりすることも防止できる。
更に、上述した接合部における熱媒流体やガスのリ−クの防止のために、固気反応粉末の充填量を減らす必要もないので、固気反応性能も低下することはない。
【0009】
更に、反応ガス通路を、容器内にヘッダの延在方向へ延設されるガス透過可能なガス透過管で構成することで、固気反応粉末とのガスの授受がより良好となる。このようにすれば、固気反応粉末とガスとの反応性を確保しつつ密閉容器内の固気反応粉末の充填密度を向上することができる。すなわち、密閉容器内の大部分の固気反応粉末は、熱交換器の熱媒流体などの漏れを招くことなく、熱交換器の各セルに個別に分散収容され得るので、固気反応粉末の膨張圧力は扁平伝熱管やフィンにより緩和され、密閉容器の耐圧を格段に向上することなく、固気反応粉末を密閉容器内にほぼ密実に充填することができる。
【0010】
好適な態様において、前記扁平伝熱管の直管部は、水平方向に延設されている。好適な態様において、前記反応ガス通路は、前記ヘッダの延在方向へ延設されている。好適な態様において、前記反応ガス通路は、多孔性焼結合金からなるフィルタを備える。
好適な態様において、フィンにガス通過用の開口を設けたので、各セル特にガス透過管から離れた位置のセル内の固気反応粉末とガスとの反応性能を向上させることができる。好適な態様において、前記フィンは、良熱伝導性金属により構成されて垂直方向かつ前後方向に延設されている。
好適な態様において、熱交換器の外周と密閉容器の内周との間に沈降防止板を横架しているので、固気反応粉末の沈降と密閉容器の底部における圧密化の抑止効果を更に向上することができる。
【0011】
【発明を実施するための形態】
本発明の好適な態様を以下の実施例を参照して説明する。
【0012】
【実施例】
(実施例1)
本発明の固気反応充填容器体の一例として金属水素化物粉末(水素吸蔵合金粉末)を収容する水素吸蔵合金熱交換器を図1及び図2を参照して説明する。図1はこの熱交換器の縦断面図、図2はその熱交換器部分の一部平面図である。
【0013】
1は、外形がほぼ直方体をなす密閉容器であって、その内部には熱交換器2、水素吸蔵合金粉末3および4本のガス透過管4が収容されている。
熱交換器2は、一対のヘッダ21、22と、両端がヘッダ21、22にろう付けされて蛇行し、ヘッダ21、22の延設方向に沿って複数設けられる扁平伝熱管23と、扁平伝熱管23の外表面にろう付けされる極めて多数のフィン24とからなる。
【0014】
ヘッダ21、22は、密閉容器1内部の互いに対角となる角部近傍に位置して前後方向に延設されており、密閉容器1の図示しない端壁を貫通して外部に突出している。ヘッダ21は外部から熱媒流体を供給され、ヘッダ22は外部に熱媒流体を還流している。
扁平伝熱管23は、合計5つの直管部23aと、直管部23aと一体に形成された合計4つの曲管部23bとからなり、それらの延設方向に対して直角な断面は極めて細長い扁平断面となっている。ヘッダ21、22の周壁にはその軸方向に長く開口された連通孔が形成され、扁平伝熱管23はこの連通孔に連通している。直管部23aは水平方向に延設されている。半円筒状に湾曲する曲管部23bは、上下に隣接する二つの直管部23aの左端部同士または右端部同士を連通している。これにより熱媒流体はヘッダ21から扁平伝熱管23を通じてヘッダ22に流れるようになっている。
【0015】
フィン24は、端部が扁平伝熱管23の外表面にろう付けされて垂直方向かつ前後方向に延設されている。
ヘッダ21、22、扁平伝熱管23およびフィン24はたとえばアルミ合金のような良熱伝導性をもつ金属で構成されている。各フィン24には水素ガス流通用の貫通孔24aがそれぞれ適数個設けられている。
【0016】
ガス透過管4は、熱交換器2の外側に位置してヘッダ21、22と同方向すなわち図1における前後方向に延設され、一端または両端が外部の水素ガス源に連通している。ガス透過管4は、多孔性焼結合金を素材とする円筒状のフィルタであって、これにより外部の水素ガス源と、密閉容器1とは水素ガス授受可能となっている。
【0017】
密閉容器1の上下の周壁部分1a、1bは、最上方および最下方のフィン24に近接しつつ水平に延設されており、これにより、隣接する任意の一対のフィン24間の空間は密閉容器1の上下の周壁部分1a、1bおよび扁平伝熱管23の直管部23aにより区切られて、小室すなわちセル5を構成している。
各セル5およびその熱交換器2の外側の空間には、水素吸蔵合金粉末3がほぼ密実に充填されている。
【0018】
このように構成した本実施例の水素吸蔵合金熱交換器によれば、以下の作用効果を奏することができる。
まず、扁平伝熱管23の両端がヘッダ21、22と個別に接合されるだけであり、接合箇所数が少ないので、水素吸蔵合金粉末3の膨張、収縮により、扁平伝熱管23の両端が変位したとしてもヘッダ21、22は前後方向を除いて上下方向または左右方向へ容易に追従することができ、それらの接合部7が疲労破壊することを大幅に低減することができる。
【0019】
また、水素吸蔵合金粉末3は、各セル5に分割収容されるとともに、各フィン24および扁平伝熱管23と十分に接するので、優れた熱交換性を確保することができるとともに、水素吸蔵合金粉末3が容器1の底部に沈降、偏在したりすることも防止できる。
更に、上述した接合部7における熱媒流体や水素ガスのリ−クの防止のために水素吸蔵合金粉末3の充填量を減らす必要もないので、水素吸蔵性能も向上することもできる。
【0020】
また、ヘッダ21、22の延在方向へ延設されるガス透過可能なガス透過管4をもつので、水素吸蔵合金粉末3の充填量を増大しても、水素吸蔵合金粉末3のガス授受性能の低下を抑止することができる。
また、水素吸蔵合金粉末3の大部分は、各セル5に分割充填されているので、その膨張圧力は扁平伝熱管23やフィン24により緩和されるので、水素吸蔵合金粉末3をほぼ密実に密閉容器1に充填したとしても、密閉容器1の必要耐圧を熱交換器2を用いない場合より格段に低下することができる。
【0021】
更に、フィン24にガス通過用の開口24aを設けたので、各セル5特にガス透過管4から離れた位置のセル5内の水素吸蔵合金粉末3と水素ガスとの反応性が向上する。
更にその上、各セル5が前後方向に連通しているので、熱交換器の作製時に、水素吸蔵合金粉末3の充填を容易に行うこともできる。
(実施例2)
他の実施例を図3を参照して説明する。
【0022】
この実施例の水素吸蔵合金熱交換器は、図1に示す実施例1の水素吸蔵合金熱交換器において、複数の沈降防止板8を追設したものである。
沈降防止板8は、一端が密閉容器1の周壁内面に接し、他端がフィン24に接して水平に延設される断面L字形状の長尺部材であり、各沈降防止板8は、上下方向へ所定距離隔てて配設され、これにより密閉容器1と熱交換器2との間の水素吸蔵合金粉末3の沈降防止効果を向上することができる。
【図面の簡単な説明】
【図1】本発明の固気反応充填容器体の縦断面図である。
【図2】図1の固気反応充填容器体の一部破断平面図である。
【図3】図1の固気反応充填容器体の他の実施例を示す縦断面図である。
【図4】従来のフィン付き扁平伝熱管式熱交換器を用いた水素吸蔵合金熱交換器の基本構成を示す模式図である。
【符号の説明】
1は密閉容器、2は熱交換器、3は水素吸蔵合金粉末(固気反応粉末)、4はガス透過管、5はセル、21、22はヘッダ、23は扁平伝熱管、24はフィン。
[0001]
[Industrial applications]
The present invention relates to a solid-gas reaction packed container such as a heat exchanger and a hydrogen storage alloy heat exchanger for storing hydrogen storage alloy powder.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. Hei 7-330301 discloses a heat exchanger which is housed in a closed container and exchanges a heat medium fluid with the outside of the container, and has a property of changing volume by a solid-gas reaction, so that a heat exchanger is provided in the heat exchanger. A solid-gas reaction powder to be filled and a reaction gas passage for flowing a reaction gas between the outside of the container and the solid-gas reaction powder are provided, and the heat exchangers extend parallel to each other as shown in FIG. A pair of headers 100 to be provided, a number of flat heat transfer tubes 200 which are arranged in parallel with each other and both ends of which are individually and integrally joined to the headers 100, and are disposed in gaps 300 between the flat heat transfer tubes 200. A hydrogen storage alloy heat exchanger including a fin 500 that divides the gap 300 into a number of cells 400 has been proposed. In addition, each flat heat transfer tube 200 is attached in a posture spreading in the horizontal direction.
[0003]
In this hydrogen storage alloy heat exchanger, the hydrogen storage alloy powder can be dispersed and stored in a large number of cells, so that the hydrogen storage alloy powder is not locally localized, and the reaction between the hydrogen storage alloy powder and hydrogen Also, there is an advantage that heat transfer between the hydrogen storage alloy powder and the heat exchanger hardly varies depending on the spatial position.
[0004]
[Problems to be solved by the invention]
However, in the flat heat transfer tube type hydrogen storage alloy heat exchanger with fins disclosed in the above-mentioned publication, the hydrogen storage alloy powder individually filled in each cell expands and contracts each time hydrogen gas is absorbed and released. The flat heat transfer tubes 200, particularly the flat heat transfer tubes 200 on the upper end side and the lower end side, repeatedly bend and deform in the header extending direction, that is, upward or downward as shown in FIG. Bending stress concentrates on the joint 600 between the heat transfer tube 200 and the header 100 which can be regarded as a rigid body against the external force in the vertical direction. There was a problem that fluid leaked.
[0005]
Of course, the stress can be reduced by reducing the filling amount of the hydrogen storage alloy powder in each cell defined by the flat heat transfer tube 200 and the fins 500. The ability to occlude and release gas is reduced.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a solid-gas reaction filling capable of avoiding a decrease in durability due to a volume change of a solid-gas reaction powder while securing excellent heat exchange property and solid-gas reaction capability. Providing a container is an issue to be solved.
[0006]
[Means for Solving the Problems]
The solid-gas reaction-filled container body of the present invention has a sealed container that seals the inside, a heat exchanger that is housed in the container and that exchanges a heat transfer fluid between the outside of the container, and a volume change due to the solid-gas reaction. A solid-gas reaction powder having properties and filled in the closed container, and a reaction gas passage for flowing a reaction gas between the outside of the container and the solid-gas reaction powder, the heat exchanger includes: A pair of headers extending parallel to each other, a flat heat transfer tube having both ends integrally joined to the pair of headers, and fins disposed on an outer surface of the flat heat transfer tube; The powder is a hydrogen storage alloy powder that absorbs, emits hydrogen gas, expands and contracts, and the reaction gas is a hydrogen-containing gas-solid reaction-filled container, wherein the flat heat transfer tubes are arranged in parallel with each other. Extends in a first direction substantially perpendicular to the extension direction of the header A large number of straight pipe portions, and a large number of curved pipe portions that connect the straight pipe portions adjacent to each other with a predetermined gap therebetween in a second direction substantially perpendicular to the header extending direction and the first direction. The solid-gas reaction powder is individually filled in each cell formed by being divided by the fins and the straight pipe portion, and absorbs and discharges the reaction gas to change its volume. The header is configured to be able to follow the deformation of the flat heat transfer tube due to a change in volume of the solid-gas reaction powder in the first direction or the second direction.
That is, the solid-gas reaction packed container body of the present invention has a so-called serpentine-structured heat exchanger built in a closed container, and the solid-gas reaction powder is individually supplied to each cell defined by the fins and the flat heat transfer tube. The structure that is filled in is adopted.
By doing so, the flat heat transfer tube is only joined to the header (ie, the inlet tube and the outlet tube) at two locations at both ends thereof regardless of the total number of cells, and the number of joints is small. The possibility of occurrence of leakage can be remarkably reduced as compared with the above-mentioned conventional finned flat heat transfer tube type hydrogen storage alloy heat exchanger.
[0007]
Also, even if the flat heat transfer tube is deformed in a direction perpendicular to the main surface due to the volume change of the solid-gas reaction powder in the cell due to gas absorption and release, a pair of headers are attached to both ends of the meandering flat heat transfer tube. Since it is only joined individually, it can easily be displaced following the above-mentioned minute displacement of the flat heat transfer tube, and almost bending stress occurs in the flat heat transfer tube at the joint between the flat heat transfer tube and the header. Therefore, the joint (generally the brazed portion) does not fatigue and the heat medium fluid or gas does not leak.
[0008]
In addition, since the solid-gas reaction powder is divided and accommodated in each cell and is in sufficient contact with each fin and the flat heat transfer tube, excellent heat exchange properties can be secured, and the solid-gas reaction powder is placed at the bottom of the container. Sedimentation and uneven distribution can also be prevented.
Further, since it is not necessary to reduce the filling amount of the solid-gas reaction powder in order to prevent the leakage of the heat medium fluid and the gas in the above-mentioned joint, the solid-gas reaction performance does not decrease.
[0009]
Further, by forming the reaction gas passage with a gas-permeable gas permeable tube extending in the direction in which the header extends in the container, the exchange of gas with the solid-gas reaction powder becomes better. In this case, the packing density of the solid-gas reaction powder in the closed container can be improved while ensuring the reactivity between the solid-gas reaction powder and the gas. That is, most of the solid-gas reaction powder in the closed container can be individually dispersed and accommodated in each cell of the heat exchanger without causing leakage of the heat medium fluid or the like of the heat exchanger. The expansion pressure is alleviated by the flat heat transfer tubes and the fins, and the solid-gas reaction powder can be almost completely filled in the closed container without significantly improving the pressure resistance of the closed container.
[0010]
In a preferred aspect, a straight tube portion of the flat heat transfer tube extends in a horizontal direction. In a preferred aspect, the reaction gas passage extends in a direction in which the header extends. In a preferred aspect, the reaction gas passage includes a filter made of a porous sintered alloy.
In a preferred aspect, since the gas passage opening is provided in the fin, the reaction performance between the gas and the solid-gas reaction powder in each cell, particularly in a cell at a position away from the gas permeable tube, can be improved. In a preferred aspect, the fin is made of a good heat conductive metal and extends vertically and longitudinally.
In a preferred embodiment, the sedimentation preventing plate is laid between the outer periphery of the heat exchanger and the inner periphery of the closed vessel, so that the effect of suppressing the sedimentation of the solid-gas reaction powder and the consolidation at the bottom of the closed vessel is further improved. Can be improved.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention will be described with reference to the following examples.
[0012]
【Example】
(Example 1)
A hydrogen storage alloy heat exchanger accommodating metal hydride powder (hydrogen storage alloy powder) will be described as an example of the solid-gas reaction filled container body of the present invention with reference to FIGS. FIG. 1 is a longitudinal sectional view of the heat exchanger, and FIG. 2 is a partial plan view of the heat exchanger.
[0013]
Reference numeral 1 denotes a closed container having a substantially rectangular parallelepiped outer shape, in which a heat exchanger 2, a hydrogen storage alloy powder 3 and four gas permeable tubes 4 are accommodated.
The heat exchanger 2 includes a pair of headers 21, 22, flat heat transfer tubes 23, both ends of which are brazed and meandered along the headers 21, 22, and a plurality of flat heat transfer tubes 23 provided along the extending direction of the headers 21, 22. It consists of an extremely large number of fins 24 brazed to the outer surface of the heat tube 23.
[0014]
The headers 21 and 22 extend in the front-rear direction near the corners that are diagonal to each other inside the closed container 1, and protrude to the outside through an end wall (not shown) of the closed container 1. The header 21 is supplied with a heat medium fluid from the outside, and the header 22 circulates the heat medium fluid to the outside.
The flat heat transfer tube 23 is composed of a total of five straight tube portions 23a and a total of four curved tube portions 23b formed integrally with the straight tube portion 23a, and the cross section perpendicular to the extending direction thereof is extremely elongated. It has a flat cross section. In the peripheral walls of the headers 21 and 22, there are formed communication holes which are long and open in the axial direction, and the flat heat transfer tubes 23 communicate with the communication holes. The straight pipe portion 23a extends in the horizontal direction. The curved tube portion 23b curved in a semi-cylindrical shape communicates the left end portions or the right end portions of two vertically adjacent straight tube portions 23a. Thereby, the heat medium fluid flows from the header 21 to the header 22 through the flat heat transfer tube 23.
[0015]
The fins 24 have their ends brazed to the outer surface of the flat heat transfer tube 23 and extend vertically and in the front-rear direction.
The headers 21, 22, the flat heat transfer tubes 23, and the fins 24 are made of a metal having good thermal conductivity, such as an aluminum alloy. Each fin 24 is provided with an appropriate number of through holes 24a for flowing hydrogen gas.
[0016]
The gas permeable tube 4 is located outside the heat exchanger 2 and extends in the same direction as the headers 21 and 22, that is, in the front-rear direction in FIG. 1, and has one or both ends communicating with an external hydrogen gas source. The gas permeation pipe 4 is a cylindrical filter made of a porous sintered alloy, so that an external hydrogen gas source and the sealed container 1 can exchange hydrogen gas.
[0017]
The upper and lower peripheral wall portions 1a and 1b of the closed container 1 are horizontally extended while being close to the uppermost and lowermost fins 24, whereby the space between any pair of adjacent fins 24 is closed. The upper and lower peripheral wall portions 1 a and 1 b and the flat tube portion 23 a of the flat heat transfer tube 23 constitute a small chamber, that is, a cell 5.
The space outside each cell 5 and the heat exchanger 2 thereof is almost completely filled with the hydrogen storage alloy powder 3.
[0018]
According to the hydrogen storage alloy heat exchanger of the present embodiment configured as described above, the following operational effects can be obtained.
First, since both ends of the flat heat transfer tube 23 are only joined individually to the headers 21 and 22 and the number of joints is small, both ends of the flat heat transfer tube 23 are displaced by expansion and contraction of the hydrogen storage alloy powder 3. However, the headers 21 and 22 can easily follow the vertical direction or the horizontal direction except for the front-rear direction, and it is possible to significantly reduce the fatigue fracture of the joint 7 thereof.
[0019]
In addition, since the hydrogen storage alloy powder 3 is separately housed in each cell 5 and is in sufficient contact with each fin 24 and the flat heat transfer tube 23, excellent heat exchange properties can be ensured, and the hydrogen storage alloy powder can be secured. 3 can be prevented from settling and unevenly distributed on the bottom of the container 1.
Further, since it is not necessary to reduce the filling amount of the hydrogen storage alloy powder 3 in order to prevent the heat medium fluid and the hydrogen gas from leaking at the above-mentioned joint 7, the hydrogen storage performance can be improved.
[0020]
Further, since the gas permeable tube 4 is provided in the direction in which the headers 21 and 22 extend, the gas permeable pipe 4 is capable of transmitting and receiving gas even if the filling amount of the hydrogen storage alloy powder 3 is increased. Can be suppressed.
In addition, since most of the hydrogen storage alloy powder 3 is divided and filled in each cell 5, the expansion pressure is relieved by the flat heat transfer tubes 23 and the fins 24, so that the hydrogen storage alloy powder 3 is almost completely sealed. Even if the container 1 is filled, the required pressure resistance of the closed container 1 can be significantly reduced as compared with the case where the heat exchanger 2 is not used.
[0021]
Further, since the gas passage opening 24a is provided in the fin 24, the reactivity between the hydrogen storage alloy powder 3 and the hydrogen gas in each cell 5, especially in the cell 5 at a position away from the gas permeable tube 4, is improved.
Furthermore, since the cells 5 communicate with each other in the front-rear direction, the hydrogen storage alloy powder 3 can be easily filled when the heat exchanger is manufactured.
(Example 2)
Another embodiment will be described with reference to FIG.
[0022]
The hydrogen storage alloy heat exchanger of this embodiment is obtained by adding a plurality of anti-settling plates 8 to the hydrogen storage alloy heat exchanger of the first embodiment shown in FIG.
The anti-settling plate 8 is a long member having an L-shaped cross section that has one end in contact with the inner surface of the peripheral wall of the closed container 1 and the other end in contact with the fin 24 and extends horizontally. This is disposed at a predetermined distance in the direction, whereby the effect of preventing the sedimentation of the hydrogen storage alloy powder 3 between the closed vessel 1 and the heat exchanger 2 can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a solid-gas reaction filled container body of the present invention.
FIG. 2 is a partially broken plan view of the solid-gas reaction filled container body of FIG.
FIG. 3 is a longitudinal sectional view showing another embodiment of the solid-gas reaction filled container body of FIG. 1;
FIG. 4 is a schematic diagram showing a basic configuration of a conventional hydrogen storage alloy heat exchanger using a conventional finned flat heat transfer tube type heat exchanger.
[Explanation of symbols]
1 is a closed container, 2 is a heat exchanger, 3 is a hydrogen storage alloy powder (solid-gas reaction powder), 4 is a gas permeable tube, 5 is a cell, 21 and 22 are headers, 23 is a flat heat transfer tube, and 24 is a fin.

Claims (7)

内部を密閉する密閉容器と、前記容器に収容されて容器の外部との間で熱媒流体を授受する熱交換器と、固気反応により体積変化する性質を有して前記密閉容器に充填される固気反応粉末と、前記容器の外部と前記固気反応粉末との間で反応ガスを流通させる反応ガス通路とを備え、前記熱交換器は、互いに平行に延設される一対のヘッダと、両端が前記一対のヘッダに一体に接合される扁平伝熱管と、前記扁平伝熱管の外表面に配設されるフィンとを備え、前記固気反応粉末は、水素ガスを吸収、放出して膨張、収縮する水素吸蔵合金粉末であり、前記反応ガスは水素ガスである固気反応充填容器体において、
前記扁平伝熱管は、互いに平行に配置されて前記ヘッダの延在方向と略直角な第一方向へ延設される多数の直管部と、前記ヘッダ延在方向および前記第一方向に対してそれぞれ略直角な第二方向へ所定間隙を隔てて互いに隣接する前記直管部同士を連通させる多数の曲管部とからなる形状を有し、
前記固気反応粉末は、前記フィン及び前記直管部により区切られて構成された各セルに個別に充填されるとともに前記反応ガスを吸収、放出して体積変化し、
前記ヘッダは、前記固気反応粉末の体積変化による前記扁平伝熱管の変形に対して前記第一方向または前記第二方向へ追従可能に構成されていることを特徴とする固気反応充填容器体。
A sealed container for hermetically sealing the inside, a heat exchanger accommodated in the container and exchanging a heat transfer fluid between the outside of the container, and a container which has a property of changing volume by a solid-gas reaction and is filled in the closed container. Solid-gas reaction powder, and a reaction gas passage for flowing a reaction gas between the outside of the container and the solid-gas reaction powder, wherein the heat exchanger includes a pair of headers extending in parallel with each other. A flat heat transfer tube having both ends integrally joined to the pair of headers, and fins disposed on an outer surface of the flat heat transfer tube , wherein the solid-gas reaction powder absorbs and discharges hydrogen gas. The hydrogen storage alloy powder that expands and contracts, wherein the reaction gas is a hydrogen- containing solid-gas reaction-filled container,
The flat heat transfer tubes, a number of the straight tube portion that extends in the extending direction substantially perpendicular first direction of said header are arranged parallel to each other physician, in the header extending direction and the first direction Has a shape consisting of a number of curved pipe portions that communicate the straight pipe portions that are adjacent to each other with a predetermined gap therebetween in a second direction that is substantially perpendicular to each other,
The solid-gas reaction powder is individually filled in each cell formed by being divided by the fin and the straight pipe portion, and absorbs and discharges the reaction gas to change its volume,
The solid-gas reaction-filled container body, wherein the header is configured to be able to follow the deformation of the flat heat transfer tube due to a volume change of the solid-gas reaction powder in the first direction or the second direction. .
請求項1記載の固気反応充填容器体において、
前記扁平伝熱管の直管部は、水平方向に延設されていることを特徴とする固気反応充填容器体。
The solid-gas reaction filled container according to claim 1,
A solid-gas reaction filled container body, wherein a straight pipe portion of the flat heat transfer tube extends in a horizontal direction.
請求項1又は2記載の固気反応充填容器体において、
前記反応ガス通路は、前記ヘッダの延在方向へ延設されていることを特徴とする固気反応充填容器体。
The solid-gas reaction filled container according to claim 1 or 2,
The solid-gas reaction-filled container body, wherein the reaction gas passage extends in a direction in which the header extends.
請求項1乃至3のいずれか記載の固気反応充填容器体において、
前記反応ガス通路は、多孔性焼結合金からなるフィルタを備えることを特徴とする固気反応充填容器体。
The solid-gas reaction filled container according to any one of claims 1 to 3,
The solid-gas reaction filled container body, wherein the reaction gas passage includes a filter made of a porous sintered alloy.
請求項1乃至4のいずれか記載の固気反応充填容器体において、
前記フィンはガス通過用の開口を有することを特徴とする固気反応充填容器体。
The solid-gas reaction filled container according to any one of claims 1 to 4,
The fin has an opening for gas passage.
請求項2記載の固気反応充填容器体において、
前記フィンは、良熱伝導性金属により構成されて垂直方向かつ前後方向に延設されていることを特徴とする固気反応充填容器体。
The solid-gas reaction filled container according to claim 2,
The fin is a solid-gas reaction filled container, wherein the fin is made of a good heat conductive metal and extends vertically and in the front-rear direction.
請求項1乃至6のいずれか記載の固気反応充填容器体において、
一端が前記フィンに接し、他端が前記密閉容器の内周面に接して横架されて前記固気反応粉末の沈降を防止する沈降防止板を有することを特徴とする固気反応充填容器体。
The solid-gas reaction filled container according to any one of claims 1 to 6,
A solid-gas reaction-filled container body having a sedimentation prevention plate that is laterally suspended at one end in contact with the fin and the other end is in contact with the inner peripheral surface of the closed container to prevent sedimentation of the solid-gas reaction powder. .
JP18278797A 1997-07-08 1997-07-08 Solid-gas reaction filled container Expired - Fee Related JP3602690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18278797A JP3602690B2 (en) 1997-07-08 1997-07-08 Solid-gas reaction filled container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18278797A JP3602690B2 (en) 1997-07-08 1997-07-08 Solid-gas reaction filled container

Publications (2)

Publication Number Publication Date
JPH1130397A JPH1130397A (en) 1999-02-02
JP3602690B2 true JP3602690B2 (en) 2004-12-15

Family

ID=16124418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18278797A Expired - Fee Related JP3602690B2 (en) 1997-07-08 1997-07-08 Solid-gas reaction filled container

Country Status (1)

Country Link
JP (1) JP3602690B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812792B2 (en) 1999-08-06 2006-08-23 株式会社豊田自動織機 Indirect heat exchanger filled with solid-gas reaction particles
JP3868162B2 (en) * 1999-09-21 2007-01-17 株式会社豊田自動織機 Hydrogen storage indirect heat exchanger

Also Published As

Publication number Publication date
JPH1130397A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
US5697428A (en) Tunnel-plate type heat pipe
US7115159B2 (en) Solid filling tank
JP2008281105A (en) Hydrogen gas storage device
JP3602690B2 (en) Solid-gas reaction filled container
US4815533A (en) Heat exchanger
JP4516462B2 (en) Hydrogen storage container and manufacturing method thereof
ES2907065T3 (en) Reactor for receiving a storage material and manufacturing method thereof
US6360811B1 (en) Hydrogen absorption indirect heat exchanger
JP3812792B2 (en) Indirect heat exchanger filled with solid-gas reaction particles
JP5713201B2 (en) Heat storage body, heat storage body manufacturing method, and heat storage device having heat storage body
CN113639575A (en) Fin unit and cold accumulator
JP2000170998A (en) Hydrogen storing container
KR20170119383A (en) Hydrogen storage device
JP5162944B2 (en) Thermal storage
CN213514501U (en) Magnetic regenerator and magnetic refrigeration device
JPS6334487A (en) Hydrogenated metal heat exchanger
JP2695615B2 (en) Heat exchanger
JP2009222200A (en) Hydrogen storage tank
CN217520330U (en) Special-shaped groove aluminum applied to plate-fin heat exchanger
JPS60232496A (en) Heat exchanger
JP3164399B2 (en) Hydrogen storage alloy storage tank
CN214892780U (en) Film heat exchange plate bundle and heat exchanger
CN214536870U (en) Novel heat exchanger
JPH0253362B2 (en)
JPS6029563A (en) Gas occluding solid container and heat exchanger and heat pump using said container

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040715

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees