JP3602299B2 - Substrate for GaN-based crystal growth, method for producing the same, and application - Google Patents

Substrate for GaN-based crystal growth, method for producing the same, and application Download PDF

Info

Publication number
JP3602299B2
JP3602299B2 JP18877597A JP18877597A JP3602299B2 JP 3602299 B2 JP3602299 B2 JP 3602299B2 JP 18877597 A JP18877597 A JP 18877597A JP 18877597 A JP18877597 A JP 18877597A JP 3602299 B2 JP3602299 B2 JP 3602299B2
Authority
JP
Japan
Prior art keywords
gan
based crystal
substrate
layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18877597A
Other languages
Japanese (ja)
Other versions
JPH1135396A (en
Inventor
広明 岡川
洋一郎 大内
啓二 宮下
一行 只友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP18877597A priority Critical patent/JP3602299B2/en
Publication of JPH1135396A publication Critical patent/JPH1135396A/en
Application granted granted Critical
Publication of JP3602299B2 publication Critical patent/JP3602299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えばGaN系発光素子の基板やその他の部材として好ましく用いることができるGaN系結晶基板の製造方法に関するものである。
【0002】
【従来の技術】
一般的なGaN系半導体材料の厚膜成長方法としては、サファイア基板上にZnO等のバッファ層を形成し、その上にハイドライド気相エピタキシャル成長法(以下、「HVPE」)でGaN半導体材料を成長させる方法がある。また、その改良技術として、サファイア基板に代えて、スピネル、LGO、LAO、ZnO、SiC等の基板を用いる方法、易劈開性の基板を用いる方法、或いは基板表面にマスクを設けその上に選択成長させる方法等がある。
【0003】
【発明が解決しようとする課題】
しかしながら、GaN系半導体材料が厚膜に成長すると、GaNとサファイア基板との格子定数及び熱膨張係数の違いから界面に多大のストレスが掛かり、GaNが割れ大型基板が得られないといった問題点があった。また、転位密度が極めて大きい(1×10cm−2〜1×1010cm−2)基板しか得られないといった問題点があった。ここで転位とは、基板上に半導体層を成長させるときに、格子定数が合致していない(格子不整合)状態で成長させた場合に発生する欠陥であり、これら転位は結晶欠陥であるため非発光再結合中心として働いたり、そこが電流のパスとして働き漏れ電流の原因になるなど、当該GaN系半導体材料を発光素子に用いた場合に発光特性や寿命特性を低下させる原因となる。
【0004】
本発明の目的は、厚膜で、しかも転位などの欠陥を内包しない高品質なGaN系結晶基板を得ることができるGaN系結晶成長用基板の好ましい製造方法と、該製造方法によって得られるGaN系結晶成長用基板を用いたGaN系結晶基板の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、以下の特徴を有するものである。
(1)(i)化学式InGaAlN(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)で決定されるGaN系結晶が成長可能なベース基板の一方の面に、GaN系結晶の薄膜層を直接またはバッファ層を介して形成し、
(ii)GaN系結晶に対して選択的にエッチング除去可能な材料としてSiO、Si、GaAs、GaP、LGOまたはLAOからなり、かつ基板として利用可能な厚さを有する基板部材を、前記薄膜層上に接合することによって積層し、
(iii)前記GaN系結晶の薄膜層の両面のうちベース基板側の面を露出させ、
(iv)Si、Ti、TaおよびZrから選ばれる元素の窒化物または酸化物からなる非晶質体をマスク層の材料として用い、前記露出したGaN系結晶の薄膜層の面を該マスク層で部分的に覆うことによって該面にマスク領域と非マスク領域とを設ける工程を有することを特徴とするGaN系結晶成長用基板の製造方法。
(2)ベース基板が、C面サファイア基板である上記(1)記載のGaN系結晶成長用基板の製造方法。
(3)マスク領域と非マスク領域との境界線が、少なくとも、上記薄膜層のGaN系結晶の〈1−100〉方向の線分を有するものである上記(1)記載のGaN系結晶成長用基板の製造方法。
(4)上記(1)〜(3)のいずれかに記載の製造方法によって得られたGaN系結晶成長用基板を用い、該基板上の非マスク領域を出発点としてマスク層上を覆うまでGaN系結晶層を成長させた後、前記GaN系結晶成長用基板中の基板部材の層をエッチング除去する工程を有することを特徴とするGaN系結晶基板の製造方法。
(5)化学式InGaAlN(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)で決定されるGaN系結晶に対して、選択的にエッチング除去可能なSiO、Si、GaAs、GaP、LGOまたはLAOからなる基板部材上に、
該基板部材とは別途形成されたGaN系結晶の薄膜層が接合によって積層され、
さらに、該GaN系結晶の薄膜層の上面に、Si、Ti、TaおよびZrから選ばれる元素の窒化物または酸化物からなる非晶質体を材料としたマスク層が部分的に積層されてなることを特徴とするGaN系結晶成長用基板。
【0011】
【作用】
本明細書では、六方格子結晶であるGaN系結晶の格子面を4つのミラー指数(hkil)によって指定するに際し、記載の便宜上、指数が負である場合には、その指数の前にマイナス記号を付けて表記するものとし、この負の指数に関する表記方法以外は、一般的なミラー指数の表記方法に準じる。従って、GaN系結晶の場合では、C軸に平行なプリズム面(特異面)は6面あるが、例えば、その1つの面は(1−100)と表記し、6面を等価な面としてまとめる場合には{1−100}と表記する。また、前記{1−100}面に垂直でかつC軸に平行な面を等価的にまとめて{11−20}と表記する。また、(1−100)面に垂直な方向は〔1−100〕、それと等価な方向の集合を〈1−100〉とし、(11−20)面に垂直な方向は〔11−20〕、それと等価な方向の集合を〈11−20〉と表記する。但し、図面では、指数が負である場合には、その指数の上にマイナス記号を付けて表記し、ミラー指数の表記方法に全て準じる。
【0012】
「マスク領域」と「非マスク領域」は、ともに露出したGaN系結晶の薄膜層の面内の領域である。マスク層の上面の領域は、マスク領域に等しいものとみなし、同義として説明に用いる。
【0013】
本発明者らは、先にGaN系結晶(特にGaN結晶)とサファイア結晶基板との格子定数及び熱膨張係数の違いに起因するGaN系結晶層のクラック対策として、図2(a)に示すように、ベース基板1上に、格子状にパターニングしたマスク層2を設け、基板面が露出している非マスク領域11だけにGaN系結晶を成長させ、ベース基板面全体に対してチップサイズのGaN系結晶層30を点在させることによってクラックを防止することを提案している(特開平7−273367号公報)。
【0014】
その後、本発明者らがさらに研究を重ねた結果、点在的に成長させたGaN系結晶層30をさらに成長させると、図2(b)に示すように、厚さ方向だけでなく、各GaN系結晶層30からマスク層2上へ向けての横方向へも成長が行われることが確認された。しかも、厚さ方向(C軸方向)と同じ程度の成長速度があり、結晶方位依存性が判明した。
【0015】
さらに、GaN系結晶層30におけるGaN系結晶中に存在する転位は、ベース基板を含む下地から継承するか、何れかの成長界面で発生し、結晶成長と共に成長する特性があるが、図2(b)に示す如く、マスク領域(マスク層2の上に当たる領域)には発生源となる下地(成長界面)が存在しないので、無転位状態となることを知見した。また、上述の横方向の成長をさらに進めると、図2(c)に示す如く、GaN系結晶はマスク層2の上を完全に覆ってマスク層を埋め込み、この領域には非常に欠陥の少ない平坦でクラックの無い大型且つ厚膜のGaN系結晶3が得られる事を見いだした。
【0016】
図2に示すGaN系結晶の製造に用いられる図中のGaN系結晶成長用基板は、ベース基板1とマスク層2との積層体である。従って、通常では、GaN系結晶に対して格子整合性の良好な結晶基板をベース基板1に対して、マスク層2をサブトラクティブにまたはアディティブに積層するだけの手順で形成される。
【0017】
本発明者らは、このような通常の積層方法で得られたGaN系結晶成長用基板を用いて、GaN系結晶の厚膜を形成すると、ベース基板とGaN系結晶の厚膜との間の熱膨張係数の差によって積層体全体に反りが生じることを新たに見いだし、改善すべき問題とした。
【0018】
図2(c)に示す積層体を上記のように通常の積層方法で製造すると反りが生じるが、その反りのために研磨装置を用いてベース基板を除去することは困難となる結果、GaN系結晶層だけを得ることも困難となる。また、ベース基板は一般的にSiCやサファイア基板が用いられるが、このようなベース基板は、通常、GaN系結晶に対して選択的にエッチング除去することも困難である。「GaN系結晶に対して選択的にエッチング除去する」とは、GaN系結晶と他の材料とを同時に同一のエッチング加工をほどこしても、GaN系結晶は除去されず残り、他の材料だけがエッチングにて除去されることをいう。
【0019】
本発明ではGaN系結晶成長用基板を製造するに際し、先ず、最初の結晶基板にGaN系結晶の薄膜を設けた上に、別途形成された基板部材を接合することによって積層する。次に、最初の結晶基板を研磨で除去して裏返し、GaN系結晶の薄膜層を表面に有する基板部材を新たにベース基板とするという特殊な手順の後、該GaN系結晶の薄膜層上にマスク層を形成し、GaN系結晶成長用基板を得ている。
【0020】
上記工程中には、最初の結晶基板を研磨で除去して裏返すという特殊な手順が重要であるが、それ以外にも、▲1▼例えば、水ガラスなどを用いて、基板部材を反りなき温度で接合した点、▲2▼基板部材の材料として、GaN系結晶に対して選択的にエッチング除去可能な材料を用いた点、が重要である。前記▲1▼の特徴によって中間工程での反りが回避され、最初の結晶基板の研磨除去が可能となる。また、前記▲2▼の特徴によって、最終的にGaN系結晶の厚膜層が形成されて全体に反りが生じても、基板部材はエッチングで除去でき、反りのないGaN系結晶の厚膜層が得られる。
【0021】
【発明の実施の形態】
以下、図面を参照しながら、本発明の実施の形態につき説明する。本発明によるGaN系結晶成長用基板の製造方法は、先ず、図1(a)に示すように、ベース基板S1の一方の面に、GaN系結晶の薄膜層a2を、直接または図1のようにバッファ層a1を介して形成する。ベース基板S1は、GaN系結晶が成長可能な結晶基板である。次に、基板部材S2を、GaN系結晶の薄膜層a2上に、接合、積層する。さらに、図1(b)に示すように、ベース基板S1およびバッファ層a1を研磨によって除去し、GaN系結晶の薄膜層a2の片面a21を露出させる。この状態で、GaN系結晶の薄膜層a2と基板部材S2との積層体を、新たにベース基板1とみなし(以下、この新たにみなすベース基板を「新ベース基板」という)、図1(c)に示すように、新ベース基板1のGaN系結晶の薄膜層面a21上にマスク層2を部分的に設けてマスク領域12と非マスク領域11とを形成し、本発明によるGaN系結晶成長用基板を得る。
【0022】
ベース基板は、GaN系結晶が成長可能なものであればよく、例えば、従来からGaN系結晶を成長させる際に汎用されている、サファイア、水晶、SiC等を用いてもよい。なかでも、サファイアのC面、A面、6H−SiC基板、特にC面サファイア基板が好ましい。
【0023】
GaN系結晶は、薄膜層、マスク層上に厚膜に形成すべき目的の結晶層ともに、InGaAlN(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)で決定される2元以上の半導体の結晶である。特に、厚膜層として有用なものは、GaNである。
【0024】
ベース基板面へバッファ層を介してGaN系結晶の薄膜層を形成する場合、バッファ層は、AlN、GaN、InNまたはこれらの化合物、あるいはZnO、MgOなど公知のバッファ層材料を用いて、公知の手法で形成してよい。
【0025】
図1(a)に示すベース基板S1〜GaN系結晶の薄膜層a2の好ましい一例としては、C面サファイア基板S1上に、MOVPE法によりGaNやAlN等のバッファ層a1、次いでGaN又はGaAlNの薄膜層a2を順次成膜する例が挙げられる。このような組み合わせによって、薄膜層a2内、さらには目的のGaN系結晶の厚膜層内に新たに発生する転位の密度を低く抑える事が出来、非マスク領域上にも比較的良好な結晶性を得ることができる。
【0026】
基板部材の材料は、基板として利用でき、後述の厚膜のGaN系結晶層の成長開始時に薄膜層a2を支持し得、かつ、GaN系結晶に対して選択的にエッチング除去可能な材料であればよく、SiO、Si、GaAs、GaP、LGO、LAOなどが挙げられる。
【0027】
特に、基板部材の材料としてGaN系結晶が実質的に成長し得ないSiO、Siなどを用いた場合、得られるGaN系結晶成長用基板は、GaN系結晶に対して選択的にエッチング除去可能でかつGaN系結晶が実質的に成長し得ない材料からなる基板上に、GaN系結晶の薄膜層が積層され、さらに、その上にマスク層が部分的に積層されてなるという特殊な構成の基板となる。
【0028】
基板部材の厚さは限定されないが、最初の結晶基板を研磨除去した後に、新たな基板となり得る厚さであればよく、100μm以上が好ましい。
エッチング法としては、SiO基板部材に対しては酸によるエッチング、Si基板部材に対しては、ふっ酸+硝酸(ふっ硝酸)によるエッチングなどが挙げられる。
【0029】
基板部材と薄膜層との接合は、基板部材がSiOの場合は水ガラスを接合剤として用いた接合が好ましい。この水ガラスとしては、アルカリケイ酸塩の濃厚水溶液が挙げられる。
この水ガラスを接合剤として用い、85℃〜200℃程度の低温で、基板部材をGaN系結晶の薄膜層上に接合することによって、ベース基板と基板部材との、反りのない積層が可能となる。
基板部材として、SiやGaAs等を用いる場合、薄膜層との接合は、両者を鏡面仕上げして貼り合せ、その後加熱・加圧する等して行うことができる。
【0030】
GaN系結晶の薄膜層の片面(図1のa21)を露出させるための、ベース基板やバッファ層を除去する方法は、一般的な研磨法により行うことができる。
【0031】
マスク層は、新ベース基板表面からのGaN系結晶の成長を実質的に制限することを目的とする層であるので、該マスク層を構成する材料としては、それ自身の表面からは実質的にGaN系結晶が成長し得ないものであることが必要である。このような材料としては、例えば非晶質体が例示され、さらにこの非晶質体としてSi、Ti、Ta、Zr等の窒化物や酸化物等が例示される。特に、耐熱性に優れると共に成膜及びエッチング除去が比較的容易なSiO膜が好適に使用できる。
【0032】
マスク層は、例えば真空蒸着、スパッタ、CVD等の方法により基板全表面を覆うように形成した後、通常のフォトリソグラフィー技術によって光感光性レジストのパターニングを行い、エッチングによって基板の一部を露出させる等の手段で形成される。
【0033】
マスク領域と非マスク領域との境界線は、少なくとも新ベース基板上に成長するGaN系結晶の〈1−100〉方向(=新ベース基板表層のGaN系結晶の薄膜層の〈1−100〉方向)の線分を有するように形成するのが好ましい。これによって、GaN系結晶の{11−20}面が、マスク層の上面に沿って成長する面として確保される。{11−20}面は非安定 (off facet)な面であり、安定 (facet)な{1−100}面に比べて高速に成長する面である。
【0034】
本発明のGaN系結晶基板の製造方法は、上記説明のGaN系結晶成長用基板を用いてGaN系結晶を成長させた後、基板部材をエッチング除去し、GaN系結晶層を得る方法である。基板部材のエッチングは上記のとおりである。GaN系結晶の成長は、図1(c)に示す新ベース基板1の非マスク領域11が出発点となって始まる。成長を続けると、図2(a)に示すように、マスク層同士の間はGaN系結晶によって充填され、さらに図2(b)に示すように、GaN系結晶はマスク層の上面よりも高く膨出する。このとき、GaN系結晶は高さ方向(C軸方向)だけでなく、前記膨出部の側面を出発点として横方向へも成長が始まる。やがて隣の非マスク領域を出発点とする成長結晶と合流し、ついには図2(c)に示すように、マスク層2上を完全に覆うと共に厚さ方向への成長が継続して行き、GaN系結晶層3が形成される。
【0035】
GaN系結晶層は、図2(c)に示すように、非マスク領域上の部分には転位等の欠陥が継承されることがある。しかし、少なくともマスク領域上の部分は、膨出部の側面(転位等の欠陥が存在しない面)を出発点とする横方向成長にて形成されたものであるので、転位等の欠陥が存在しない極めて高品質な結晶である。しかもGaN系結晶層と新ベース基板との直接接触部位は非マスク領域のみであって接触面積は小さく、両者の熱膨脹係数の相違の影響をあまり受けないことから、厚肉のGaN系結晶層が容易に成長させ得るという利点もある。
【0036】
GaN系結晶の成長方法については制限はなく、HVPE、MOVPE法、MBE法等などが例示できるが、とりわけHVPEは成長速度が非常に大きいという利点があるため好ましい。
【0037】
【実施例】
実施例1
〔GaN系結晶成長用基板の製作〕
図1(a)に示すように、直径2インチ、厚さ330μm、C面サファイア基板S1上に、MOVPE装置を使って、厚さ20nmのAlNバッファ層a1を低温成長させ、続いて5μmのGaN結晶の薄膜層a2を成長させた。さらにその上に、厚さ150μmのSiO基板部材S2を、水ガラスを接着剤として用い積層した。次に、ラッピング、ポリッシングを行い、C面サファイア基板S1、AlNバッファ層a1を除去し、GaN結晶の薄膜層a2の片面a21を露出させ、図1(b)に示す新ベース基板1を得た。
【0038】
上記新ベース基板1の表面に、SiO薄膜からなるマスク層を直線状の縞模様となるようスパッタリング法で形成し、本発明によるGaN系結晶成長用基板を得た。マスク層は、〈1−100〉方向に延びる帯状として形成し、厚さ0.5μm、帯幅5μm、帯間の幅(非マスク領域の幅)10μmとした。
【0039】
〔GaN結晶層の形成〕
上記GaN系結晶成長用基板をHVPE装置に装填し、図2に示すように、非マスク領域を出発点として200μmのGaN結晶層を形成した。GaN結晶はマスク層上を横方向にも成長しマスク層を完全に覆った。
このとき、積層体全体に反りが発生した。
【0040】
〔基板部材の除去;GaN結晶基板の形成〕
基板部材をHF水溶液中に浸漬し、エッチングにて除去し、マスク層を内部に含む厚さ200μmのGaN結晶基板を得た。該GaN結晶基板の反りは戻り、平坦で高品質なGaN結晶基板であった。
【0041】
【発明の効果】
本発明の製造方法によって得られたGaN系結晶成長用基板は、GaN系結晶に対して選択的にエッチング除去可能な材料からなる基板部材を新ベース基板に有している。しかも、該基板部材は、GaN系結晶の成長が可能であるか不可能であるかを問わないので材料選択の幅が広い。
目的のGaN系結晶の厚膜層を形成した後、基板部材だけをエッチング除去することによって、GaN系結晶の厚膜層全体の反りは戻り、平坦で高品質のGaN系結晶基板が得られる。
【図面の簡単な説明】
【図1】本発明の製造方法を示す図である。
【図2】GaN系単結晶がマスク層上に成長する状態例を示す図である。
【符号の説明】
S1 ベース基板
a1 バッファ層
a2 GaN系結晶の薄膜層
S2 基板部材
2 マスク層
11 非マスク領域
12 マスク領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a GaN-based crystal substrate that can be preferably used as, for example, a substrate of a GaN-based light-emitting element or other members.
[0002]
[Prior art]
As a general method for growing a thick film of a GaN-based semiconductor material, a buffer layer such as ZnO is formed on a sapphire substrate, and a GaN semiconductor material is grown thereon by a hydride vapor phase epitaxial growth method (hereinafter, “HVPE”). There is a way. As an improvement technique, a method using a substrate of spinel, LGO, LAO, ZnO, SiC, or the like instead of a sapphire substrate, a method using an easily cleavable substrate, or a method of selectively growing a mask on a substrate surface is provided. There is a method to make it.
[0003]
[Problems to be solved by the invention]
However, when the GaN-based semiconductor material grows into a thick film, a large stress is applied to the interface due to the difference in the lattice constant and the thermal expansion coefficient between GaN and the sapphire substrate, and there is a problem that GaN is broken and a large substrate cannot be obtained. Was. Further, there is a problem that only a substrate having an extremely large dislocation density (1 × 10 9 cm −2 to 1 × 10 10 cm −2 ) can be obtained. Here, dislocations are defects that occur when a semiconductor layer is grown on a substrate in a state where lattice constants do not match (lattice mismatch), and these dislocations are crystal defects. When the GaN-based semiconductor material is used for a light-emitting element, it functions as a non-radiative recombination center or functions as a current path and causes a leakage current.
[0004]
An object of the present invention is to provide a preferable method of manufacturing a GaN-based crystal growth substrate capable of obtaining a high-quality GaN-based crystal substrate which is thick and does not include defects such as dislocations, and a GaN-based crystal obtained by the manufacturing method. An object of the present invention is to provide a method for manufacturing a GaN-based crystal substrate using a crystal growth substrate.
[0005]
[Means for Solving the Problems]
The present invention has the following features.
(1) (i) A base substrate on which a GaN-based crystal determined by the chemical formula In X Ga Y Al Z N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1) can be grown. Forming a GaN-based crystal thin film layer directly or via a buffer layer on one surface of
(ii) a substrate member made of SiO 2 , Si, GaAs, GaP, LGO or LAO as a material that can be selectively removed by etching with respect to the GaN-based crystal, and having a thickness usable as a substrate, Laminated by bonding on top,
(iii) exposing the surface on the base substrate side of both surfaces of the thin film layer of the GaN-based crystal,
(iv) Using an amorphous body made of a nitride or oxide of an element selected from Si, Ti, Ta and Zr as a material for the mask layer, and using the mask layer to expose the surface of the exposed GaN-based crystal thin film layer. Providing a mask region and a non-mask region on the surface by partially covering the surface.
(2) The method of manufacturing a GaN-based crystal growth substrate according to (1), wherein the base substrate is a C-plane sapphire substrate.
(3) The GaN-based crystal growth method according to (1), wherein the boundary between the mask region and the non-mask region has at least a line segment in the <1-100> direction of the GaN-based crystal of the thin film layer. Substrate manufacturing method.
(4) Using the GaN-based crystal growth substrate obtained by the manufacturing method according to any one of the above (1) to (3), starting from a non-mask region on the substrate as a starting point and covering GaN until the mask layer is covered. A method of manufacturing a GaN-based crystal substrate, comprising a step of etching and removing a layer of a substrate member in the GaN-based crystal growth substrate after growing the base-crystal layer.
(5) Selective etching removal of a GaN-based crystal determined by the chemical formula In X Ga Y Al Z N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1) On a substrate member made of possible SiO 2 , Si, GaAs, GaP, LGO or LAO,
A thin film layer of a GaN-based crystal formed separately from the substrate member is laminated by bonding ,
Further, a mask layer made of an amorphous material made of a nitride or oxide of an element selected from Si, Ti, Ta and Zr is partially laminated on the upper surface of the GaN-based crystal thin film layer. A GaN-based crystal growth substrate, characterized in that:
[0011]
[Action]
In this specification, when the lattice plane of a GaN-based crystal, which is a hexagonal lattice crystal, is designated by four Miller indices (hkil), for convenience of description, if the index is negative, a minus sign is placed before the index. Except for the notation method for the negative exponent, the notation method conforms to the general Miller exponent notation method. Therefore, in the case of a GaN-based crystal, there are six prism surfaces (singular surfaces) parallel to the C axis. For example, one of the surfaces is expressed as (1-100), and the six surfaces are grouped as equivalent surfaces. In this case, it is described as {1-100}. Also, planes perpendicular to the {1-100} plane and parallel to the C axis are equivalently collectively denoted as {11-20}. The direction perpendicular to the (1-100) plane is [1-100], the set of equivalent directions is <1-100>, and the direction perpendicular to the (11-20) plane is [11-20]. A set of directions equivalent to this is denoted as <11-20>. However, in the drawings, when the exponent is negative, the exponent is indicated by adding a minus sign to the exponent, and all the notations of the Miller exponent are followed.
[0012]
The “mask region” and the “non-mask region” are in-plane regions of the GaN-based crystal thin film layer both exposed. The region on the upper surface of the mask layer is regarded as being equal to the mask region, and is used in the description as synonymous.
[0013]
As a countermeasure against cracking of a GaN-based crystal layer caused by a difference in lattice constant and thermal expansion coefficient between a GaN-based crystal (especially, a GaN crystal) and a sapphire crystal substrate, as shown in FIG. Then, a mask layer 2 patterned in a lattice pattern is provided on a base substrate 1, a GaN-based crystal is grown only in the non-mask region 11 where the substrate surface is exposed, and a chip-size GaN is formed on the entire base substrate surface. It has been proposed to prevent cracks by interspersing the system crystal layers 30 (Japanese Patent Laid-Open No. 7-273667).
[0014]
Then, as a result of further research by the present inventors, as shown in FIG. 2B, when the GaN-based crystal layer 30 that has been scattered is further grown, It was confirmed that growth was also performed in the lateral direction from the GaN-based crystal layer 30 onto the mask layer 2. In addition, the growth rate was about the same as that in the thickness direction (C-axis direction), and the crystal orientation dependence was found.
[0015]
Further, the dislocations existing in the GaN-based crystal in the GaN-based crystal layer 30 have a property of being inherited from the base including the base substrate or occurring at any of the growth interfaces and growing together with the crystal growth. As shown in b), it has been found that since there is no underlying layer (growth interface) as a source in the mask region (the region on the mask layer 2), a dislocation-free state is obtained. Further, when the above-described lateral growth is further advanced, as shown in FIG. 2C, the GaN-based crystal completely covers the mask layer 2 and embeds the mask layer, and this region has very few defects. It has been found that a large, thick GaN-based crystal 3 that is flat and free from cracks can be obtained.
[0016]
The GaN-based crystal growth substrate in the figure used for manufacturing the GaN-based crystal shown in FIG. 2 is a laminate of a base substrate 1 and a mask layer 2. Therefore, usually, a crystal substrate having good lattice matching with the GaN-based crystal is formed on the base substrate 1 by a procedure in which the mask layer 2 is subtractively or additively laminated.
[0017]
The present inventors have formed a GaN-based crystal thick film using the GaN-based crystal growth substrate obtained by such a normal lamination method, and have found that the thickness between the base substrate and the GaN-based crystal thick film is low. It has been newly found that warpage occurs in the entire laminate due to the difference in thermal expansion coefficient, and this is a problem to be improved.
[0018]
When the laminate shown in FIG. 2C is manufactured by the normal lamination method as described above, warpage occurs. However, it is difficult to remove the base substrate using a polishing apparatus due to the warpage. It is also difficult to obtain only a crystal layer. In addition, a SiC or sapphire substrate is generally used as the base substrate. However, it is generally difficult to selectively remove such a base substrate from a GaN-based crystal by etching. “Selectively removing a GaN-based crystal by etching” means that even if the same etching process is performed on the GaN-based crystal and another material at the same time, the GaN-based crystal is not removed and only the other material remains. It means that it is removed by etching.
[0019]
In the present invention, when manufacturing a GaN-based crystal growth substrate, first, a GaN-based crystal thin film is provided on the first crystal substrate, and then a separately formed substrate member is joined to laminate. Next, after the first crystal substrate is removed by polishing and turned inside out and a substrate member having a GaN-based crystal thin film layer on its surface as a new base substrate, a special procedure is performed. A mask layer is formed to obtain a GaN-based crystal growth substrate.
[0020]
During the above process, a special procedure of removing the first crystal substrate by polishing and turning it over is important, but in addition, (1) the temperature at which the substrate member is not warped using, for example, water glass. It is important that (2) a material that can be selectively etched away from the GaN-based crystal is used as the material of the substrate member. Due to the above feature (1), warpage in the intermediate step is avoided, and the first crystal substrate can be polished and removed. According to the feature (2), even if a thick film layer of a GaN-based crystal is finally formed and the whole is warped, the substrate member can be removed by etching, and the thick film layer of the GaN-based crystal without the warp can be obtained. Is obtained.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the method of manufacturing a substrate for growing a GaN-based crystal according to the present invention, first, as shown in FIG. 1A, a thin film layer a2 of a GaN-based crystal is directly or directly formed on one surface of a base substrate S1 as shown in FIG. Is formed via a buffer layer a1. The base substrate S1 is a crystal substrate on which a GaN-based crystal can be grown. Next, the substrate member S2 is joined and laminated on the GaN-based crystal thin film layer a2. Further, as shown in FIG. 1B, the base substrate S1 and the buffer layer a1 are removed by polishing to expose one surface a21 of the GaN-based crystal thin film layer a2. In this state, a laminate of the GaN-based crystal thin film layer a2 and the substrate member S2 is newly regarded as a base substrate 1 (hereinafter, this newly regarded base substrate is referred to as a “new base substrate”), and FIG. As shown in ()), the mask layer 2 is partially provided on the thin film layer surface a21 of the GaN-based crystal of the new base substrate 1 to form the mask region 12 and the non-mask region 11, and the GaN-based crystal growth according to the present invention is performed. Obtain a substrate.
[0022]
The base substrate may be any substrate as long as a GaN-based crystal can be grown. For example, sapphire, quartz, SiC, or the like, which has been widely used when growing a GaN-based crystal, may be used. Among them, the sapphire C-plane, A-plane, and 6H-SiC substrate, particularly the C-plane sapphire substrate are preferable.
[0023]
The GaN-based crystal includes In X Ga Y Al Z N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, both the target crystal layer to be formed as a thick film on the thin film layer and the mask layer). X + Y + Z = 1) is a binary or more semiconductor crystal determined by (1). In particular, GaN is useful as a thick film layer.
[0024]
When a thin film layer of a GaN-based crystal is formed on a base substrate surface via a buffer layer, the buffer layer is formed using a known buffer layer material such as AlN, GaN, InN, or a compound thereof, or ZnO, MgO. It may be formed by a technique.
[0025]
As a preferred example of the base substrate S1 to the GaN-based crystal thin film layer a2 shown in FIG. 1A, a buffer layer a1, such as GaN or AlN, is formed on a C-plane sapphire substrate S1 by MOVPE, and then a GaN or GaAlN thin film An example in which the layer a2 is sequentially formed. By such a combination, the density of dislocations newly generated in the thin film layer a2 and further in the target thick film layer of the GaN-based crystal can be kept low, and relatively good crystallinity can be obtained even on the non-mask region. Can be obtained.
[0026]
The material of the substrate member should be a material that can be used as a substrate, can support the thin film layer a2 at the start of the growth of a thick GaN-based crystal layer described later, and can be selectively etched away from the GaN-based crystal. For example, SiO 2 , Si, GaAs, GaP, LGO, LAO, etc. may be used.
[0027]
In particular, when SiO 2 , Si, or the like, in which a GaN-based crystal cannot substantially grow, is used as the material of the substrate member, the obtained GaN-based crystal growth substrate can be selectively removed by etching with respect to the GaN-based crystal. And a special structure in which a thin film layer of a GaN-based crystal is laminated on a substrate made of a material that cannot substantially grow a GaN-based crystal, and a mask layer is partially laminated thereon. It becomes a substrate.
[0028]
The thickness of the substrate member is not limited, but may be any thickness that can become a new substrate after the first crystal substrate is polished and removed, and is preferably 100 μm or more.
Examples of the etching method include etching with an acid for a SiO 2 substrate member and etching with a hydrofluoric acid + nitric acid (hydrofluoric nitric acid) for a Si substrate member.
[0029]
The bonding between the substrate member and the thin film layer is preferably performed using water glass as a bonding agent when the substrate member is SiO 2 . Examples of the water glass include a concentrated aqueous solution of an alkali silicate.
By using the water glass as a bonding agent and bonding the substrate member onto the GaN-based crystal thin film layer at a low temperature of about 85 ° C. to 200 ° C., the base substrate and the substrate member can be laminated without warpage. Become.
When Si, GaAs, or the like is used as the substrate member, the bonding with the thin film layer can be performed by mirror-finish-bonding the two, followed by heating and pressing.
[0030]
The method of removing the base substrate and the buffer layer for exposing one surface (a21 in FIG. 1) of the GaN-based crystal thin film layer can be performed by a general polishing method.
[0031]
Since the mask layer is a layer intended to substantially limit the growth of GaN-based crystals from the surface of the new base substrate, the material constituting the mask layer is substantially from its own surface. It is necessary that the GaN-based crystal cannot grow. As such a material, for example, an amorphous body is exemplified, and as the amorphous body, a nitride or an oxide such as Si, Ti, Ta, or Zr is exemplified. In particular, a SiO 2 film which is excellent in heat resistance and relatively easy to form and remove by etching can be preferably used.
[0032]
The mask layer is formed so as to cover the entire surface of the substrate by a method such as vacuum deposition, sputtering, or CVD, and then the photosensitive resist is patterned by a normal photolithography technique, and a part of the substrate is exposed by etching. And the like.
[0033]
The boundary line between the mask region and the non-mask region is at least in the <1-100> direction of the GaN-based crystal growing on the new base substrate (= the <1-100> direction of the thin film layer of the GaN-based crystal on the surface layer of the new base substrate). ) Is preferably formed. Thus, the {11-20} plane of the GaN-based crystal is secured as a plane that grows along the upper surface of the mask layer. The {11-20} plane is an unstable face, and is a face that grows faster than the stable {1-100} face.
[0034]
The method of manufacturing a GaN-based crystal substrate according to the present invention is a method of growing a GaN-based crystal using the above-described GaN-based crystal growth substrate, and then removing the substrate member by etching to obtain a GaN-based crystal layer. The etching of the substrate member is as described above. The growth of the GaN-based crystal starts with the non-mask region 11 of the new base substrate 1 shown in FIG. When the growth is continued, the space between the mask layers is filled with the GaN-based crystal as shown in FIG. 2A, and the GaN-based crystal is higher than the upper surface of the mask layer as shown in FIG. 2B. Swell. At this time, the GaN-based crystal starts growing not only in the height direction (C-axis direction) but also in the lateral direction starting from the side surface of the bulging portion. Eventually, it merges with the growing crystal starting from the adjacent non-mask region, and eventually, as shown in FIG. 2C, completely covers the mask layer 2 and continues to grow in the thickness direction. A GaN-based crystal layer 3 is formed.
[0035]
In the GaN-based crystal layer, as shown in FIG. 2C, a portion such as a dislocation may be inherited in a portion on the non-mask region. However, since at least the portion on the mask region is formed by lateral growth starting from the side surface of the bulging portion (the surface on which no defect such as dislocation exists), there is no defect such as dislocation. It is a very high quality crystal. Moreover, the direct contact portion between the GaN-based crystal layer and the new base substrate is only the non-mask region, the contact area is small, and the GaN-based crystal layer is hardly affected by the difference in the coefficient of thermal expansion. There is also an advantage that it can be easily grown.
[0036]
The method of growing the GaN-based crystal is not limited, and examples thereof include HVPE, MOVPE, and MBE. Among them, HVPE is particularly preferable because it has an advantage that the growth rate is very high.
[0037]
【Example】
Example 1
[Manufacture of GaN-based crystal growth substrate]
As shown in FIG. 1A, a 20-nm-thick AlN buffer layer a1 is grown at a low temperature on a C-plane sapphire substrate S1 having a diameter of 2 inches and a thickness of 330 μm using a MOVPE apparatus. A crystalline thin film layer a2 was grown. Further thereon, a 150 μm thick SiO 2 substrate member S2 was laminated using water glass as an adhesive. Next, lapping and polishing are performed to remove the C-plane sapphire substrate S1 and the AlN buffer layer a1, exposing one surface a21 of the GaN crystal thin film layer a2, and obtaining a new base substrate 1 shown in FIG. 1B. .
[0038]
A mask layer composed of a SiO 2 thin film was formed on the surface of the new base substrate 1 by a sputtering method so as to form a linear stripe pattern, thereby obtaining a GaN-based crystal growth substrate according to the present invention. The mask layer was formed as a band extending in the <1-100> direction, and had a thickness of 0.5 μm, a band width of 5 μm, and a width between bands (width of the non-mask region) of 10 μm.
[0039]
[Formation of GaN crystal layer]
The GaN-based crystal growth substrate was loaded into an HVPE apparatus, and as shown in FIG. 2, a 200 μm GaN crystal layer was formed starting from a non-mask region. The GaN crystal grew also on the mask layer in the lateral direction and completely covered the mask layer.
At this time, the entire laminate was warped.
[0040]
[Removal of substrate member; formation of GaN crystal substrate]
The substrate member was immersed in an aqueous HF solution and removed by etching to obtain a 200 μm-thick GaN crystal substrate including a mask layer therein. The warp of the GaN crystal substrate returned, and the GaN crystal substrate was flat and high quality.
[0041]
【The invention's effect】
The GaN-based crystal growth substrate obtained by the manufacturing method of the present invention has a new base substrate having a substrate member made of a material that can be selectively removed by etching with respect to the GaN-based crystal. Moreover, the substrate member has a wide range of material choices, regardless of whether GaN-based crystals can be grown or not.
After the target GaN-based crystal thick film layer is formed, only the substrate member is removed by etching, whereby the entire GaN-based crystal thick film layer is restored from warping, and a flat, high-quality GaN-based crystal substrate is obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a manufacturing method of the present invention.
FIG. 2 is a diagram showing an example of a state in which a GaN-based single crystal grows on a mask layer.
[Explanation of symbols]
S1 Base substrate a1 Buffer layer a2 Thin film layer of GaN-based crystal S2 Substrate member 2 Mask layer 11 Non-mask region 12 Mask region

Claims (5)

(i)化学式In Ga Al N(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)で決定されるGaN系結晶が成長可能なベース基板の一方の面に、GaN系結晶の薄膜層を直接またはバッファ層を介して形成し、
(ii)GaN系結晶に対して選択的にエッチング除去可能な材料としてSiO 、Si、GaAs、GaP、LGOまたはLAOからなり、かつ基板として利用可能な厚さを有する基板部材を、前記薄膜層上に接合することによって積層し、
(iii)前記GaN系結晶の薄膜層の両面のうちベース基板側の面を露出させ、
(iv)Si、Ti、TaおよびZrから選ばれる元素の窒化物または酸化物からなる非晶質体をマスク層の材料として用い、前記露出したGaN系結晶の薄膜層の面を該マスク層で部分的に覆うことによって該面にマスク領域と非マスク領域とを設ける工程を有することを特徴とするGaN系結晶成長用基板の製造方法。
(i) One of the base substrates on which a GaN-based crystal determined by the chemical formula In X Ga Y Al Z N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1) can be grown A GaN-based thin film layer is formed directly or via a buffer layer on the surface,
(ii) a substrate member made of SiO 2 , Si, GaAs, GaP, LGO or LAO as a material that can be selectively removed by etching with respect to the GaN-based crystal , and having a thickness usable as a substrate, Laminated by bonding on top,
(iii) exposing the surface on the base substrate side of both surfaces of the thin film layer of the GaN-based crystal,
(iv) Using an amorphous body made of a nitride or oxide of an element selected from Si, Ti, Ta and Zr as a material for the mask layer , and using the mask layer to expose the exposed surface of the thin film layer of the GaN-based crystal. Providing a mask region and a non-mask region on the surface by partially covering the surface.
ベース基板が、C面サファイア基板である請求項1記載のGaN系結晶成長用基板の製造方法。2. The method according to claim 1, wherein the base substrate is a C-plane sapphire substrate. マスク領域と非マスク領域との境界線が、少なくとも、上記薄膜層のGaN系結晶の〈1−100〉方向の線分を有するものである請求項1記載のGaN系結晶成長用基板の製造方法。2. The method of manufacturing a GaN-based crystal growth substrate according to claim 1, wherein a boundary between the masked region and the unmasked region has at least a line segment in the <1-100> direction of the GaN-based crystal of the thin film layer. . 上記請求項1〜のいずれかに記載の製造方法によって得られたGaN系結晶成長用基板を用い、該基板上の非マスク領域を出発点としてマスク層上を覆うまでGaN系結晶層を成長させた後、前記GaN系結晶成長用基板中の基板部材の層をエッチング除去する工程を有することを特徴とするGaN系結晶基板の製造方法。A GaN-based crystal layer is grown using the GaN-based crystal growth substrate obtained by the method according to any one of claims 1 to 3 until a mask layer is covered starting from a non-mask region on the substrate. Forming a GaN-based crystal substrate on the GaN-based crystal growth substrate by etching. 化学式InGaAlN(0≦X≦1、0≦Y≦1、0≦Z≦1、X+Y+Z=1)で決定されるGaN系結晶に対して、選択的にエッチング除去可能なSiO、Si、GaAs、GaP、LGOまたはLAOからなる基板部材上に、
該基板部材とは別途形成されたGaN系結晶の薄膜層が接合によって積層され、
さらに、該GaN系結晶の薄膜層の上面に、Si、Ti、TaおよびZrから選ばれる元素の窒化物または酸化物からなる非晶質体を材料としたマスク層が部分的に積層されてなることを特徴とするGaN系結晶成長用基板。
SiO that can be selectively etched away from a GaN-based crystal determined by the chemical formula In X Ga Y Al Z N (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z = 1) 2 , on a substrate member made of Si, GaAs, GaP, LGO or LAO,
A thin film layer of a GaN-based crystal formed separately from the substrate member is laminated by bonding ,
Further, a mask layer made of an amorphous material made of a nitride or oxide of an element selected from Si, Ti, Ta and Zr is partially laminated on the upper surface of the GaN-based crystal thin film layer. A GaN-based crystal growth substrate, characterized in that:
JP18877597A 1997-07-14 1997-07-14 Substrate for GaN-based crystal growth, method for producing the same, and application Expired - Fee Related JP3602299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18877597A JP3602299B2 (en) 1997-07-14 1997-07-14 Substrate for GaN-based crystal growth, method for producing the same, and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18877597A JP3602299B2 (en) 1997-07-14 1997-07-14 Substrate for GaN-based crystal growth, method for producing the same, and application

Publications (2)

Publication Number Publication Date
JPH1135396A JPH1135396A (en) 1999-02-09
JP3602299B2 true JP3602299B2 (en) 2004-12-15

Family

ID=16229577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18877597A Expired - Fee Related JP3602299B2 (en) 1997-07-14 1997-07-14 Substrate for GaN-based crystal growth, method for producing the same, and application

Country Status (1)

Country Link
JP (1) JP3602299B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232605B2 (en) 2003-10-30 2009-03-04 住友電気工業株式会社 Nitride semiconductor substrate manufacturing method and nitride semiconductor substrate
WO2012128375A1 (en) * 2011-03-22 2012-09-27 日本碍子株式会社 Method for producing gallium nitride layer and seed crystal substrate used in same

Also Published As

Publication number Publication date
JPH1135396A (en) 1999-02-09

Similar Documents

Publication Publication Date Title
JP3721674B2 (en) Method for producing nitride III-V compound semiconductor substrate
JPH1143398A (en) Substrate for growing gallium nitride-based crystal and use thereof
CA2412999C (en) Nitride semiconductor substrate and method for manufacturing the same, and nitride semiconductor device using nitride semiconductor substrate
JP2003165798A (en) Method for producing gallium nitride single crystal substrate, free standing substrate for epitaxial growth of gallium nitride single crystal, and device element formed on the same
JP3823775B2 (en) Manufacturing method of nitride semiconductor substrate
JP4206629B2 (en) Semiconductor device manufacturing method, semiconductor device, and semiconductor substrate manufacturing method
JP4333466B2 (en) Manufacturing method of semiconductor substrate and manufacturing method of free-standing substrate
JP2019134101A (en) Method for manufacturing semiconductor device
KR101426319B1 (en) Method for manufacturing a single crystal of nitride by epitaxial growth on a substrate preventing growth on the edges of the substrate
JP2017522721A (en) Method of manufacturing a semiconductor material including a semipolar group III nitride layer
JP4396793B2 (en) Substrate manufacturing method
JP3569111B2 (en) Manufacturing method of GaN-based crystal substrate
JP3780832B2 (en) Manufacturing method of semiconductor crystal
JPH1140849A (en) Gan crystal-growing substrate and its use
JP2023162378A (en) Semiconductor device
JP3602299B2 (en) Substrate for GaN-based crystal growth, method for producing the same, and application
US7468103B2 (en) Method of manufacturing gallium nitride-based single crystal substrate
JP4385504B2 (en) Nitride semiconductor substrate and manufacturing method thereof
JP3757339B2 (en) Method for manufacturing compound semiconductor device
JPH1192296A (en) Substrate for growing gallium nitride crystal and its use
JP3416042B2 (en) GaN substrate and method of manufacturing the same
JP3350855B2 (en) Method for manufacturing group III nitride semiconductor substrate
JP2000173929A (en) Substrate to grow gallium nitride crystal and its use
JPH10229218A (en) Manufacture of nitride semiconductor substrate and nitride semiconductor substrate
JP2008273792A (en) Method for manufacturing metal nitride layer, group iii nitride semiconductor, method of manufacturing the same, and substrate for manufacturing group iii nitride semiconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees