JP3601163B2 - Fluid-filled cylindrical mount and method of manufacturing the same - Google Patents

Fluid-filled cylindrical mount and method of manufacturing the same Download PDF

Info

Publication number
JP3601163B2
JP3601163B2 JP4166996A JP4166996A JP3601163B2 JP 3601163 B2 JP3601163 B2 JP 3601163B2 JP 4166996 A JP4166996 A JP 4166996A JP 4166996 A JP4166996 A JP 4166996A JP 3601163 B2 JP3601163 B2 JP 3601163B2
Authority
JP
Japan
Prior art keywords
cylinder member
cylindrical
fluid
cylindrical member
intermediate cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4166996A
Other languages
Japanese (ja)
Other versions
JPH09229130A (en
Inventor
真彰 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP4166996A priority Critical patent/JP3601163B2/en
Publication of JPH09229130A publication Critical patent/JPH09229130A/en
Application granted granted Critical
Publication of JP3601163B2 publication Critical patent/JP3601163B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
本発明は、内部に封入された流体の流動作用に基づいて防振効果を発揮する、自動車用エンジンマウントやブッシュ等に好適に用いられる流体封入式筒型マウントと、その製造方法に関するものである。
【0002】
【従来技術】
振動伝達系を構成する部材間に介装される防振連結体の一種として、特開昭61−270533号公報等に開示されているように、連結すべき一方の部材に取り付けられる支軸部材の周りに所定距離を隔てて中間筒部材を配設すると共に、それら支軸部材と中間筒部材の間に本体ゴムを介装せしめて支軸部材と中間筒部材を弾性的に連結する一方、本体ゴムに複数のポケット部を形成し、それらのポケット部をそれぞれ中間筒部材に形成された窓部を通じて外周面に開口せしめると共に、連結すべき他方の部材に取り付けられる外筒部材を中間筒部材に外嵌固定して各窓部を閉塞せしめることにより、内部に非圧縮性流体が封入された複数の流体室を形成し、更にそれらの流体室を相互に連通するオリフィス通路を設けてなる構造の流体封入式筒型マウントが知られている。このような筒型マウントにおいては、内部に封入された非圧縮性流体の共振作用等の流動作用に基づいて、ゴム弾性体だけでは得られ難い防振効果を容易に得ることが可能であることから、従来から、自動車用エンジンマウントやブッシュ等として用いられている。
【0003】
ところで、このような筒型マウントでは、封入流体の外部空間に対する十分な流体密性が要求されることから、一般に、前記公開公報にも記載されているように、中間筒部材と外筒部材の間にシール材を介在せしめて、それら中間筒部材と外筒部材の間で挟圧するようにした構造が採用されている。
【0004】
ところが、かくの如き従来構造の筒型マウントにおいては、中間筒部材と外筒部材の間でシール材を挟圧するために、金属製の外筒部材を採用して中間筒部材に外挿せしめた後、該外筒部材を絞り加工して中間筒部材の外周面に圧着させなければならず、絞り加工のための設備が大がかりとなり、作業が面倒で製作コストもかかるという問題があった。
【0005】
また、従来構造の筒型マウントでは、金属製の外筒部材を採用する必要があるために重いという不具合も有していた。
【0006】
【解決課題】
ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、封入流体の外部空間に対する優れた流体密性を簡単な構造によって得ることが出来ると共に、軽量化が有利に図られ得る、新規な構造の流体封入式筒型マウントとその有利な製造方法を提供することにある。
【0007】
【解決手段】
そして、かかる課題を解決するために、本発明の特徴とするところは、支軸部材の周りに所定距離を隔てて中間筒部材を配設すると共に、それら支軸部材と中間筒部材の間に本体ゴムを介装せしめて該支軸部材と該中間筒部材を弾性的に連結する一方、該本体ゴムに複数のポケット部を形成し、それらのポケット部をそれぞれ該中間筒部材に形成された窓部を通じて外周面に開口せしめると共に、該中間筒部材に外筒部材を外嵌固定して前記各窓部を閉塞せしめることにより、内部に非圧縮性流体が封入された複数の流体室を形成し、更にそれらの流体室を相互に連通するオリフィス通路を設けた流体封入式筒型マウントにおいて、前記中間筒部材および前記外筒部材を熱可塑性合成樹脂製とすると共に、該中間筒部材の軸方向一方の端部を該外筒部材に重ね合わせて周方向に連続して溶着せしめる一方、該中間筒部材の軸方向他方の端部を厚肉部として該中間筒部材の外周面を周方向に連続して延びる環状段差面を形成することにより、該環状段差面と該環状段差面の内周側または外周側に連接する筒状外周面とからなる二つの当接面を構成し、かかる二つの当接面にそれぞれ前記外筒部材を重ね合わせると共に、軸方向外側に位置する該一方の当接面と前記外筒部材との重ね合わせ面を周方向に連続して溶着せしめる一方、軸方向内側に位置する該他方の当接面と前記外筒部材との重ね合わせ面に周方向に延びる凹溝を設けて重ね合わせて覆蓋することにより前記オリフィス通路を形成したことにある。
【0008】
このような本発明に従う構造とされた流体封入式筒型マウントにおいては、中間筒部材と外筒部材が、軸方向両側部分において、それぞれ周方向に連続して溶着されることとなる。それ故、中間筒部材と外筒部材の間が完全に密閉されて、封入流体の外部空間に対する優れた流体密性が発揮されるのである。
【0009】
また、かかる流体封入式筒型マウントにおいては、中間筒部材と外筒部材の少なくとも何れか一方に形成された凹溝によって、それら中間筒部材と外筒部材の重ね合わせ面間を周方向に延びるオリフィス通路が形成されることとなる。それ故、特別なオリフィス形成用の部材を必要とすることなく、オリフィス通路長さを有利に確保することが出来るのである。
【0010】
更にまた、かかる流体封入式筒型マウントにおいては、中間筒部材と外筒部材の何れもが、熱可塑性合成樹脂製とされることから、金属製の外筒部材が用いられる従来構造のものに比して、軽量化が有利に図られ得る。なお、熱可塑性合成樹脂材料としては、特に、強度や材料費等の点からナイロン66やPBT(ポリブチレンテレフタレート),PPS(ポリフェニレンスルフィド)、或いはそれらを繊維強化したもの等が好適に採用され得る。
【0011】
さらに、かかる流体封入式筒型マウントにおいては、外筒部材の中間筒部材に対する溶着によって流体密性が確保されることから、大がかりな装置が必要とされる絞り加工等が不要となり、製造が容易で低コスト化が図られるといった利点もある。
【0012】
また、本発明の好ましい態様においては、請求項2に記載されているように、外筒部材に対して、該外筒部材を他部材に取り付けるための取付部が一体形成される。即ち、このような取付部を外筒部材に一体形成することによって、外筒部材がブラケットとしても機能することから、特別なブラケット部材が不要となり、より一層の部品点数の削減と構造の簡略化が達成され得る。
【0013】
また、本発明の好ましい態様においては、請求項3に記載されているように、中間筒部材の厚肉側とは反対側の軸方向一方の端部に溶着される外筒部材の軸方向端部に対して、本体ゴムの軸方向外方を支軸部材側に向かって延び出し、該支軸部材に対して軸直角方向に所定距離を隔てて対向位置するストッパ部が一体形成される。即ち、かかるストッパ部の支軸部材側への当接によって、外筒部材と支軸部材との軸直角方向の相対的変位量が制限されて本体ゴムの過大な変形が防止されるのであり、このようなストッパ部を外筒部材に一体形成することによって、特別なストッパ部材を用いることなく簡単な構造をもってストッパ機構が構成され得るのである。
【0014】
また、本発明の好ましい態様においては、請求項4に記載されているように、外筒部材に重ね合わせられて該外筒部材との間にオリフィス通路を形成する中間筒部材の当接面に対して、シールゴム層が設けられて外筒部材との間で挟圧される。このようなシールゴム層を設ければ、オリフィス通路のシール性が向上されてオリフィス通路の短絡等に起因する防振性能の低下などの不具合が防止される。なお、シールゴム層は、本体ゴムと一体形成することによって、容易に形成することが出来る。
【0015】
また、本発明の好ましい態様においては、請求項5に記載されているように、環状段差面と外筒部材との重ね合わせ面間にオリフィス通路が形成される一方、該環状段差面の外周側に連接する厚肉部の筒状外周面と外筒部材との重ね合わせ面が周方向に連続して溶着せしめられる。このような構造を採用すれば、環状段差面と外筒部材との重ね合わせ面に大きな当接力を及ぼしてオリフィス通路のシール性を有利に確保することが容易となる。
【0016】
また、本発明の好ましい態様においては、請求項6に記載されているように、中間筒部材の軸方向両側における外筒部材との溶着部分が、接着剤によって接着される。このような構造を採用すれば、中間筒部材と外筒部材が溶着と接着によって接合されることから、より大きな接合強度と流体密性を安定して得ることが出来、信頼性の向上が図られ得る。
【0017】
また、本発明の好ましい態様においては、請求項7に記載されているように、中間筒部材の軸方向両側における、互いに溶着される中間筒部材と外筒部材の重ね合わせ面に軸方向の圧接部が設けられる。このような圧接部を設けることによって、溶着を安定して有利に行うことが可能となり、溶着による接合強度を流体密性をより安定して得ることが出来る。
【0018】
また、本発明の好ましい態様においては、請求項8に記載されているように、中間筒部材が、軸直角方向寸法が周方向で変化する異形断面とされる。即ち、本発明に従う構造とされた流体封入式筒型マウントにおいては、外筒部材に絞り加工等を施す必要がないことから、真円筒断面形状を採用しなくても製作性等に大きな悪影響を及ぼすことがないのであり、異形断面を採用することによって、ゴム本体の肉厚を周方向に異ならせて軸直角方向のばね比を容易に且つ大きな自由度をもってチューニングすることが出来る。
【0019】
また、中間筒部材と外筒部材の溶着部分は、超音波溶着によって溶着することが可能であるが、その他、請求項9に記載されているように、中間筒部材と外筒部材との溶着部分に金属リングを配設することによって、誘電溶着することも可能である。
【0020】
また、本発明の好ましい態様においては、請求項10に記載されているように、中間筒部材が本体ゴムの外周面上で形成されて、中間筒部材の成形樹脂圧力が本体ゴムに圧縮力として及ぼされる。即ち、このような構成を採用すれば、特別な工程を必要とすることなく、本体ゴムに対して予圧縮を加えることが出来るのであり、それによって本体ゴムの耐久性の向上が図られ得る。
【0021】
さらに、本発明は、請求項1に記載の流体封入式筒型マウントを製造するに際して、前記本体ゴムの外周面上で前記中間筒部材を成形せしめて、該中間筒部材の成形樹脂材料の充填圧力を該本体ゴムに圧縮力として及ぼした後、非圧縮性流体中において、該中間筒部材の厚肉側とは反対側の軸方向端部から前記外筒部材を外挿し、それら中間筒部材と外筒部材を軸方向両側の重ね合わせ面において周方向に連続して溶着する流体封入式筒型マウントの製造方法をも、特徴とするものである。
【0022】
このような本発明方法に従えば、中間筒部材の本体ゴムに対する接着と、本体ゴムに対する予圧縮が、何れも、特別な工程を必要とすることなく、中間筒部材の成形と同時に為されるのであり、特に、中間筒部材の形状に拘わらず、本体ゴムに対して有効な予圧縮を及ぼすことが出来ることから、例えば、軸直角方向ばね比のチューニング自由度の確保等のために軸直角方向寸法が周方向で変化する異形断面の中間筒部材を採用した場合でも、本体ゴムに対して有効な予圧縮を及ぼしめて耐久性の向上を図ることが可能となるのである。
【0023】
【発明の実施の形態・実施例】
以下、本発明を更に具体的に明らかにするために、本発明の実施例について、図面を参照しつつ、詳細に説明する。
【0024】
先ず、図1〜4には、本発明の一実施例としてのエンジンマウント10が、示されている。このエンジンマウント10は、支軸部材としての内筒部材12と外筒部材14が、それらの間に介装された本体ゴム16によって弾性的に連結されており、内筒部材12および外筒部材14が、図示しないパワーユニット側およびボデー側の各一方に取り付けられることによって、パワーユニットをボデーに対して防振支持せしめるようになっている。
【0025】
より詳細には、内筒部材12は、小径円筒形状を有しており、内部に挿通される取付ボルト等によって、図示しないパワーユニット側に取り付けられるようになっている。また、内筒部材12の軸方向中央部分には、中心孔18を有する略小判形のストッパ部材20が外嵌固定されて、内筒部材12の径方向外方に突出せしめられている。なお、内筒部材12およびストッパ部材20は、金属や合成樹脂等の硬質材によって形成されている。
【0026】
さらに、内筒部材12の径方向外方には、大径円筒形状の中間筒部材22が、所定距離を隔てて略同軸的に配設されている。なお、かかる中間筒部材22は、繊維補強されたポリアミド樹脂等、要求される強度や耐蝕性等を考慮して決定された所定の熱可塑性合成樹脂によって形成されている。また、中間筒部材22の外周面には、径方向に広がる円環形状の段差面24が形成されており、この段差面24を挟んで、軸方向一方の側(図1中、左側)が薄肉筒壁部26とされていると共に、軸方向他方の側が外径寸法の大きい厚肉筒壁部28とされている。なお、段差面24は、軸方向において、厚肉筒壁部28側に偏倚しており、薄肉筒壁部26よりも厚肉筒壁部28の方が、軸方向長さが短くされている。
【0027】
また、薄肉筒壁部26には、内外周面に貫通する第一の窓部30と第二の窓部32が、径方向一方向に対向位置して形成されている。更にまた、薄肉筒壁部26および厚肉筒壁部28は、第一及び第二の窓部30,32の軸方向両側において、それぞれ、周方向に連続した円筒形状とされており、これらの円筒形状部分の外周面には、それぞれ、小さな段差部34が形成されている(図5参照)。なお、段差部34,34は、何れも、薄肉筒壁部26側である軸方向一方の側(図1中、左側)に向かって形成されている。
【0028】
さらに、これら内筒部材12と中間筒部材22の間に、略厚肉円筒形状の本体ゴム16が配設されており、該本体ゴム16の内外周面に対して、内筒部材12と中間筒部材22が加硫接着されている。また、本体ゴム16には、内筒部材12を挟んで軸直角方向で対向位置する部分に、第一のポケット部35と第二のポケット部36が形成されており、中間筒部材22に設けられた第一の窓部30と第二の窓部32を通じて、それぞれ外周面上に開口せしめられている。更に、本体ゴム16は、第一及び第二の窓部30,32を通じて、中間筒部材22の段差面24上にまでまわされており、それによって、該段差面24を略全面に亘って覆う薄肉のシールゴム層37が、本体ゴム16と一体的に形成されている。
【0029】
なお、本体ゴム16は、内筒部材12と中間筒部材22の間で加硫成形することにより、形成と同時に内筒部材12と中間筒部材22に加硫接着せしめることも可能であるが、その他、先ず、内筒部材12を加硫成形型にセットして本体ゴム16を加硫成形することにより、内筒部材12に加硫接着せしめた後、かかる本体ゴム16を中間筒部材22の成形型にセットし、本体ゴム16の外周面上に樹脂材料を充填して中間筒部材22を形成すると同時に、該中間筒部材22を本体ゴム16の外周面に接着せしめることによって形成することも可能である。そして、後者の製造方法を採用すれば、中間筒部材22の成形時に、該中間筒部材22の成形樹脂圧力を本体ゴム16の外周面に及ぼしめて、中間筒部材22の形成と同時に本体ゴム16に予圧縮を加えることが出来るのであり、それによって、特別な工程を必要とすることなく、本体ゴム16の耐久性向上が図られ得るのである。なお、本体ゴム16と内筒部材12および中間筒部材22との接着部位には、必要に応じて、適当な接着剤が塗布される。
【0030】
さらに、このようにして形成された本体ゴム16と内筒部材12,中間筒部材22の一体接着品に対して、外筒部材14が外挿され、中間筒部材22に固着されている。外筒部材14は、中間筒部材22と同様、適当な熱可塑性合成樹脂材料によって形成されており、略円筒形状を有する筒体部38と、該筒体部38の外周面から一体的に突設された略平板形状の取付部39とを有し、取付部39に固着されたボルト挿通スリーブ40に挿通される取付ボルト等によって、図示しないボデー側に取り付けられるようになっている。
【0031】
また、外筒部材14における筒体部38の内周面には、径方向に広がる円環形状の段差面42が形成されており、この段差面42を挟んで、軸方向一方の側(図1中、左側)が内径寸法の小さい厚肉筒壁部44とされていると共に、軸方向他方の側が内径寸法の大きい薄肉筒壁部46とされている。更に、外筒部材14には、段差面42に開口して周方向に一周弱の長さで延びる凹溝48が形成されていると共に、かかる凹溝48の周方向両端部が、連通孔50,50によって、内周面に開口せしめられている。なお、段差面42は、軸方向において、薄肉筒壁部46側に偏倚しており、厚肉筒壁部44よりも薄肉筒壁部46の方が、軸方向長さが短くされている。
【0032】
更にまた、厚肉筒壁部44側の軸方向端部には、径方向内方に向かって所定高さで突出する環状のストッパ部52が一体的に形成されている。更に、厚肉筒壁部44および薄肉筒壁部46には、それぞれ、周方向に連続して延びる小さな段差面状のテーパ部54が形成されている(図5参照)。なお、テーパ部54,54は、それぞれ薄肉筒壁部46側である軸方向同一側(図1中、右側)に向かって形成されている。
【0033】
そして、このような外筒部材14は、図5に示されているように、その薄肉筒壁部46側の開口部において、本体ゴム16の外周面に接着された中間筒部材22に対し、該中間筒部材22の薄肉筒壁部26側から外挿されている。これにより、中間筒部材22の第一及び第二の窓部30,32が外筒部材14によって閉塞されて、第一及び第二のポケット部35,36の開口が覆蓋されることにより、それぞれ内部に非圧縮性流体が封入された第一の流体室58と第二の流体室60が形成されている。
【0034】
なお、第一及び第二の流体室58,60への流体の注入は、図5に示されているように、外筒部材14の中間筒部材22に対する外挿を、所定の非圧縮性流体56中で行うことによって、有利に為され得る。また、封入流体としては、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等が採用され得、特に流体の共振作用に基づく防振効果を有効に得るためには、0.1Pa・s以下の粘度の低粘性流体が好適に採用される。
【0035】
また、中間筒部材22に外挿された外筒部材14は、その厚肉筒壁部44が薄肉筒壁部26に対して、薄肉筒壁部46が中間筒部材22の厚肉筒壁部28に対して、それぞれ外嵌されて、厚肉筒壁部44の内周面と薄肉筒壁部26の外周面および薄肉筒壁部46の内周面と厚肉筒壁部28の外周面が、それぞれ互いに径方向に重ね合わせられている。更にまた、外筒部材14が中間筒部材22に対して軸方向に外挿されることによって、外筒部材14の厚肉筒壁部44と薄肉筒壁部46に形成された各テーパ部54,54が、中間筒部材22の薄肉筒壁部26と厚肉筒壁部28に形成された各段差部34,34に対して圧接されていると共に、外筒部材14の段差面42が中間筒部材22の段差面24に対して軸方向に重ね合わせられている。そして、外筒部材14の段差面42に開口する凹溝48が、中間筒部材22の段差面24によって覆蓋されることにより、両段差面42,24の重ね合わせ面間を周方向に所定長さで延び、第一の流体室58と第二の流体室60を相互に連通せしめるオリフィス通路62が形成されている。
【0036】
更にまた、外筒部材14のストッパ部52は、その突出先端面(内周面)が、内筒部材12の外周面に対して、径方向に所定距離を隔てて対向位置せしめられており、該ストッパ部52の内筒部材12に対する当接によって、内筒部材12と外筒部材14の径方向の相対的変位量が制限されるようになっている。なお、ストッパ部52に対向位置する内筒部材12の外周面には、緩衝ゴム64が、本体ゴム16と一体的に形成されている。
【0037】
さらに、外筒部材14は、中間筒部材22に外挿された後、該中間筒部材22に対して、厚肉筒壁部44の内周面と薄肉筒壁部26の外周面および薄肉筒壁部46の内周面と厚肉筒壁部28の外周面における、各径方向の重ね合わせ面部位において、周方向に連続して溶着固定されている。なお、このことから明らかなように、本実施例では、中間筒部材22における厚肉筒壁部28の外周面と段差面24によって、互いに連接した二つの当接面が構成されている。また、中間筒部材22と外筒部材14における、互いに溶着される各重ね合わせ面には、必要に応じて、溶着操作に先立って適当な接着剤が塗布されることにより、接着剤による接着が、溶着と併せて採用され得る。
【0038】
ここにおいて、かかる溶着は、例えば、中間筒部材22と外筒部材14に対して挿入方向の力を及ぼすことにより、上記各径方向の重ね合わせ面部位において、中間筒部材22側に形成された段差部34と外筒部材14側に形成されたテーパ部54を軸方向に圧接せしめた状態下で、超音波溶着を行うことによって有利に実施され得る。このような溶着方法を採用すれば、中間筒部材22と外筒部材14を、各径方向の重ね合わせ面部位において、より確実に周方向に連続して溶着することが出来ると共に、中間筒部材22の段差面24と外筒部材14の段差面42を圧接せしめて、それら両段差面24,42間でシールゴム層37を有利に挟圧することが出来るのであり、それによって、封入流体の外部空間に対するシール性が高度に安定して確保されると共に、オリフィス通路62の短絡等も有利に防止されるのである。なお、溶着作業は、流体中で実施することが可能であるが、外筒部材14の中間筒部材22への外挿によって十分な仮シールを行うことが出来れば、流体から取り出した後に、大気中で溶着作業を行うようにしても良い。
【0039】
上述の如き構造とされたエンジンマウント10においては、内外筒部材12,14間に軸直角方向の振動が入力された際、第一の流体室58と第二の流体室60の間でオリフィス通路62を通じての流体流動が生ぜしめられることにより、封入流体の共振作用に基づいて所定の防振効果が発揮されることとなるが、そこにおいて、第一及び第二の流体室58,60を形成する第一及び第二のポケット部35,36が外周面に開口せしめられた中間筒部材22が、軸方向両側部分において、それぞれ、外筒部材14に対して、周方向に連続して溶着されていることから、マウント内の流体封入領域が外部空間に対して完全に密封されているのであり、それによって、極めて優れた流体密性が長期間に亘って確保されて、所期の防振性能が安定して発揮され得るのである。
【0040】
また、特に本実施例のエンジンマウント10においては、互いに溶着される中間筒部材22と外筒部材14の各重ね合わせ面において、それぞれ、軸方向の圧接部としての段差部34とテーパ部54が設けられており、溶着時に溶着部位に圧接されるようになっていることから、より一層優れた流体密性が安定して確保され得ることとなる。
【0041】
しかも、上述の如き構造とされたエンジンマウント10においては、外筒部材14の中間筒部材22に対する溶着によって流体密性が確保されることから、大がかりな装置が必要とされる絞り加工等が不要となり、製造が容易で低コスト化が図られることに加えて、中間筒部材22と外筒部材14の何れもが、熱可塑性合成樹脂製とされることから、金属製部材が用いられる従来構造のものに比して、軽量化が有利に図られ得ると共に、外筒部材14に取付部39を一体形成することにより、外筒部材14に対してブラケットとしての機能を容易に付与することが出来るといった利点がある。
【0042】
また、かかるエンジンマウント10においては、外筒部材14に形成された凹溝48によって、外筒部材14と中間筒部材22の重ね合わせ面間を周方向に延びるオリフィス通路62が形成されていることから、特別なオリフィス部材を必要とすることなく、十分に長いオリフィス通路を形成することが出来、オリフィス通路長さの設定自由度が有利に確保され得るのである。
【0043】
次に、図6及び図7には、本発明の第二の実施例としてのエンジンマウント70が示されている。なお、第一の実施例と同様な構造とされた部材および部位については、それぞれ、図面中に、第一の実施例と同一の符号を付することにより、それらの詳細な説明を省略する。
【0044】
すなわち、本実施例のエンジンマウント70では、真円筒形状でない中間筒部材72が採用されている。具体的には、かかる中間筒部材72は、径方向寸法が周方向において変化せしめられており、車両上下方向となる径方向(図7中、上下方向)が、車両前後方向となる径方向(図7中、左右方向)に対して、偏平とされた略楕円筒形状乃至は略多角筒形状とされている。これによって、内筒部材12と中間筒部材72を連結する本体ゴム16における径方向の自由長が、マウント周方向で変化せしめられて、各径方向で入力される荷重や振動等に応じて、各径方向におけるマウントばね特性がチューニングされているのである。
【0045】
また、中間筒部材72には、薄肉筒壁部26において、第一の窓部72,第二の窓部74及び第三の窓部76が、互いに周方向に所定距離を隔てて形成されていると共に、本体ゴム16には、第一のポケット部78,第二のポケット部80および第三のポケット部82が形成されており、本体ゴム16における第一〜第三の各ポケット部78,80,82が、中間筒部材72における第一〜第三の各窓部72,74,76を通じて、それぞれ外周面に開口せしめられている。なお、第一のポケット部78は、周方向略半周弱の長さで形成されている一方、第二及び第三のポケット部80,82は、何れも、周方向略四半周弱の長さで形成されており、内筒部材12を挟んで、第一のポケット部78と第二及び第三のポケット部80,82とが、主たる振動入力方向たる径方向(図中、上下方向)で対向位置せしめられている。
【0046】
さらに、本体ゴム16には、第二及び第三のポケット部80,82の底壁部を軸方向に嵌通して延びるスリット84が形成されており、それによって、第二及び第三のポケット部80,82の底壁部が薄肉化されて、それぞれ、弾性変形が容易に許容される第一の可撓性膜86および第二の可撓性膜88とされている。なお、第一の可撓性膜86は、第二の可撓性膜88よりも肉厚が薄くされて変形剛性(壁剛性)が小さくされている。
【0047】
そして、第一,第二及び第三の窓部72,74,76が外筒部材14にて閉塞されることにより、第一,第二及び第三のポケット部78,80,82が覆蓋されて、それぞれ内部に非圧縮性流体が封入された流体室としての受圧室90,第一の平衡室92および第二の平衡室94が形成されている。要するに、かかる受圧室90においては、振動入力時に本体ゴム16の弾性変形に基づいて内圧変動が惹起されることとなるのであり、第一及び第二の平衡室92,94は、第一及び第二の可撓性膜86,88の変形に基づいて容積変化が許容されるようになっているのである。
【0048】
また、外筒部材14と中間筒部材22の重ね合わせ面間に形成されたオリフィス通路62によって、受圧室90と第一の平衡室92が連通されている一方、中間筒部材22の外周面には、第一の窓部72と第三の窓部76の間を周方向に延びる周溝96が形成されており、この周溝96が外筒部材14で覆蓋されることによって、受圧室90と第二の平衡室94を相互に連通する副オリフィス通路98が形成されている。更に、副オリフィス通路98は、オリフィス通路62に比して、通路断面積(A)と通路長さ(L)の比:A/Lが大きくされることにより、オリフィス通路62よりも高周波数域にチューニングされており、オリフィス通路62と副オリフィス通路98を通じて流動せしめられる流体の共振作用によって、互いに異なる周波数域の入力振動に対して防振効果が発揮されるようになっている。
【0049】
なお、副オリフィス通路98はオリフィス通路62よりも通路断面積と通路長さの比:A/Lが大きく流通抵抗が小さいが、第一の平衡室92よりも第二の平衡室94の方が壁剛性が大きく設定されていることから、低周波大振幅振動の入力時には、第二の平衡室94の壁剛性によって副オリフィス通路98を通じての流体流動量が制限されてオリフィス通路62を通じての流体流動が有利に生ぜしめられるようになっていると共に、高周波小振幅振動の入力時には、オリフィス通路62の流通抵抗が大幅に増大することによって、副オリフィス通路98を通じての流体流動が有利に生ぜしめられるようになっている。
【0050】
上述の如き構造とされたエンジンマウント70においては、第一の実施例と同様な効果が有効に発揮されることに加えて、真円筒形状でない異形の中間筒部材72が採用されていることから、各径方向におけるマウントばね特性を容易にチューニングすることが出来るといった利点がある。そして、ここにおいて、かかるエンジンマウントにあっては、流体密性を確保するために中間筒部材72や外筒部材14に対して絞り加工を加える必要がなく、また中間筒部材72に対して絞り加工を加えることなく本体ゴム16に予圧縮を及ぼすことも可能であることから、異形の中間筒部材72を採用した場合でも、優れた製作性やマウント性能が十分に確保され得るのである。
【0051】
次に、図8〜10には、それぞれ、中間筒部材と外筒部材の重ね合わせ部の他の具体的構造例が示されている。本発明においては、このような重ね合わせ構造の何れもが、有利に採用され得、それによって、前記実施例と同様な効果が有効に発揮され得る。なお、以下の各具体例において、第一実施例と同様な構造とされた部材および部位にあっては、それぞれ、図中に、第一実施例と同一の符号を付することにより、それらの詳細な説明を省略する。
【0052】
先ず、図8に示された具体例においては、中間筒部材22の厚肉筒壁部28において、段差面24に開口する凹溝100が設けられており、この凹溝100が外筒部材14の段差面42によって覆蓋されることにより、中間筒部材22と外筒部材14の重ね合わせ面間を周方向に延びるオリフィス通路62が形成されている。
【0053】
次に、図9に示された具体例においては、中間筒部材22の厚肉筒壁部28の外周面に、周方向に延びる凹所102が設けられており、この凹所102内に金属Cリング104が嵌め込まれている。そして、中間筒部材22に外筒部材14を外挿し、中間筒部材22の厚肉筒壁部28の外周面に外筒部材14の薄肉筒壁部46の内周面を重ね合わせた状態下で、金属Cリング104に誘導起電力を生ぜしめることによって、かかる重ね合わせ面が誘電溶着されている。
【0054】
また、図10に示された具体例においては、中間筒部材22における窓部30(32)が、薄肉筒壁部26の軸方向中間部分に開口位置せしめられており、該窓部30(32)と厚肉筒壁部28の間に、薄肉筒壁部26によって、周方向に連続した外周面106を有する筒状部分が構成されている。そして、この外周面106に開口して周方向に延びる凹溝108が形成されており、かかる凹溝108が外筒部材110で覆蓋されることによって、オリフィス通路112が形成されている。なお、外周面106上には、略全面に亘ってシールゴム層が設けられており、中間筒部材22と外筒部材110の間で挟圧されるようになっている。
【0055】
更にまた、外筒部材110の軸方向一方の端面は、中間筒部材22の段差面24に当接せしめられており、かかる当接部位において周方向に連続して溶着固定されている。なお、このことから明らかなように、本実施例では、中間筒部材22の段差面24と、該段差面24の内周側に連接する薄肉筒壁部26の外周面106とによって、二つの当接面が構成されている。
【0056】
なお、外筒部材110の軸方向他方の端部には、径方向内方に向かって突出する環状の当接部114が一体形成されており、この当接部114が中間筒部材22の薄肉筒壁部26側の開口端面に重ね合わされて、かかる重ね合わせ面間において周方向に連続して溶着固定されている。
【0057】
以上、本発明の実施例および具体的構成例について詳述してきたが、これらは文字通りの例示であって、本発明は、かかる具体例にのみ限定して解釈されるものではない。
【0058】
例えば、取付部39等を備えない単純な筒体形状の外筒部材を採用することも可能であり、また、ストッパ部52は必ずしも設ける必要がない。
【0059】
また、中間筒部材と外筒部材における、互いに溶着される各重ね合わせ面には、必ずしも、段差部34やテーパ部54の如き軸方向の圧接部を設ける必要はなく、互いに径方向乃至は軸方向で単純に重ね合わされた面を溶着することも可能である。
【0060】
加えて、前記実施例では、本発明を自動車用エンジンマウントに適用したものの具体例を示したが、その他、本発明は、自動車用或いはそれ以外の各種装置等に用いられる各種の流体封入式筒型マウントに対して、何れも適用可能であることは、勿論である。
【0061】
その他、一々列挙はしないが、本発明は、当業者の知識に基づいて、種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
【0062】
【発明の効果】
上述の説明から明らかなように、本発明に従う構造とされた流体封入式筒型マウントにおいては、中間筒部材と外筒部材が軸方向両側で周方向に連続して溶着されることによって、封入流体の外部空間に対する高度な流体密性を、外筒部材に対する絞り加工等を必要とすることなく簡単な構造をもって、容易に且つ安定して得ることが出来るのであり、また、中間筒部材と外筒部材の何れもが、合成樹脂製とされることから、軽量化が有利に図られ得るのである。
【0063】
また、本発明方法に従えば、本発明に従う構造とされた流体封入式筒型マウントを有利に製造することが出来るのであり、特に、中間筒部材に対する絞り加工等を必要とすることなく、中間筒部材の成形樹脂圧力を利用して、中間筒部材の形成と同時に本体ゴムに予圧縮を加えることが出来ることから、中間筒部材の形状に拘わらず、本体ゴムに対して有効な予圧縮を容易に及ぼすことが出来るのである。
【図面の簡単な説明】
【図1】本発明の一実施例としてのエンジンマウントを示す縦断面図であって、図2におけるI−I断面に相当する図である。
【図2】図1におけるII−II断面図である。
【図3】図2におけるIII −III 断面図である。
【図4】図1における右側面図である。
【図5】図1に示されたエンジンマウントの一製造工程を示す説明図である。
【図6】本発明の別の実施例としてのエンジンマウントを示す縦断面図であって、図7におけるVI−VI断面に相当する図である。
【図7】図6におけるVII −VII 断面図である。
【図8】中間筒部材と外筒部材の重ね合わせ部の具体的構造例を示す説明図である。
【図9】中間筒部材と外筒部材の重ね合わせ部の別の具体的構造例を示す説明図である。
【図10】中間筒部材と外筒部材の重ね合わせ部の更に別の具体的構造例を示す説明図である。
【符号の説明】
10,70 エンジンマウント
12 内筒部材
14 外筒部材
16 本体ゴム
22 中間筒部材
24 段差面
26 薄肉筒壁部
28 厚肉筒壁部
48 凹溝
58 第一の流体室
60 第二の流体室
62 オリフィス通路
90 受圧室
92 第一の平衡室
94 第二の平衡室
96 副オリフィス通路
[0001]
【Technical field】
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid-filled cylindrical mount suitable for use in automobile engine mounts, bushes, and the like, which exhibits a vibration damping effect based on a flow action of a fluid sealed therein, and a method of manufacturing the same. .
[0002]
[Prior art]
As one type of a vibration-proof connecting body interposed between members constituting a vibration transmission system, as disclosed in Japanese Patent Application Laid-Open No. Sho 61-270533, a shaft member attached to one member to be connected. Along with disposing an intermediate cylinder member at a predetermined distance around the main body, a main body rubber is interposed between the spindle member and the intermediate cylinder member to elastically connect the spindle member and the intermediate cylinder member, A plurality of pockets are formed in the main body rubber, and these pockets are respectively opened on the outer peripheral surface through windows formed in the intermediate cylinder member, and the outer cylinder member attached to the other member to be connected is the intermediate cylinder member. A plurality of fluid chambers in which an incompressible fluid is sealed, and an orifice passage communicating these fluid chambers with each other is formed by externally fitting and closing each window. Fluid filling Tubular mount is known. In such a cylindrical mount, it is possible to easily obtain an anti-vibration effect, which is difficult to obtain with a rubber elastic body alone, based on a flow action such as a resonance action of an incompressible fluid enclosed therein. Therefore, it is conventionally used as an engine mount or a bush for an automobile.
[0003]
By the way, in such a cylindrical mount, since sufficient fluid tightness with respect to the external space of the enclosed fluid is required, generally, as described in the above-mentioned publication, the intermediate cylindrical member and the outer cylindrical member A structure is employed in which a sealing material is interposed between the intermediate cylindrical member and the outer cylindrical member to press the intermediate cylindrical member and the outer cylindrical member.
[0004]
However, in such a cylindrical mount having a conventional structure, a metal outer cylinder member is employed and externally inserted into the intermediate cylinder member in order to clamp the seal material between the intermediate cylinder member and the outer cylinder member. Thereafter, the outer cylinder member has to be drawn and pressed against the outer peripheral surface of the intermediate cylinder member, so that there is a problem that the equipment for the drawing process is large, the work is troublesome, and the production cost is high.
[0005]
Further, the conventional cylindrical mount has a disadvantage that it is heavy because it is necessary to employ a metal outer cylindrical member.
[0006]
[Solution]
Here, the present invention has been made in view of the above-described circumstances, and an object of the present invention is to achieve excellent fluid tightness of an enclosed fluid to an external space by a simple structure. In addition, an object of the present invention is to provide a fluid-filled cylindrical mount having a novel structure that can be advantageously reduced in weight, and an advantageous manufacturing method thereof.
[0007]
[Solution]
In order to solve such a problem, a feature of the present invention is to dispose an intermediate cylindrical member around the support shaft member at a predetermined distance, and to place the intermediate cylindrical member between the support shaft member and the intermediate cylindrical member. While the main rubber is interposed to elastically connect the spindle member and the intermediate cylindrical member, a plurality of pockets are formed in the main rubber, and these pockets are respectively formed in the intermediate cylindrical member. A plurality of fluid chambers in which an incompressible fluid is sealed are formed by opening the outer peripheral surface through the window and closing the respective windows by externally fixing the outer cylinder member to the intermediate cylinder member. Further, in the fluid-filled cylindrical mount provided with an orifice passage for communicating the fluid chambers with each other, the intermediate cylindrical member and the outer cylindrical member are made of a thermoplastic synthetic resin, and the shaft of the intermediate cylindrical member is formed. Direction one end An annular step that overlaps with the outer cylinder member and is continuously welded in the circumferential direction, while the other end in the axial direction of the intermediate cylinder member is a thick portion and the outer peripheral surface of the intermediate cylinder member extends continuously in the circumferential direction. By forming the surfaces, two contact surfaces composed of the annular step surface and a cylindrical outer peripheral surface connected to the inner peripheral side or the outer peripheral side of the annular step surface are configured. The outer cylinder member is overlapped, and the one contact surface located on the outer side in the axial direction and the overlapping surface of the outer cylinder member are continuously welded in the circumferential direction, while the other located on the inner side in the axial direction. The orifice passage is formed by providing a concave groove extending in the circumferential direction on a surface where the contact surface of the outer cylinder member and the contact surface of the outer cylinder member are overlapped with each other and covering the same.
[0008]
In such a fluid-filled cylindrical mount having the structure according to the present invention, the intermediate cylindrical member and the outer cylindrical member are welded to each other in the circumferential direction on both sides in the axial direction. Therefore, the space between the intermediate cylinder member and the outer cylinder member is completely sealed, and excellent fluid tightness of the sealed fluid to the external space is exhibited.
[0009]
Further, in such a fluid-filled cylindrical mount, a concave groove formed in at least one of the intermediate cylindrical member and the outer cylindrical member extends circumferentially between overlapping surfaces of the intermediate cylindrical member and the outer cylindrical member. An orifice passage will be formed. Therefore, the length of the orifice passage can be advantageously secured without requiring any special orifice forming member.
[0010]
Furthermore, in such a fluid-filled cylindrical mount, since both the intermediate cylindrical member and the outer cylindrical member are made of thermoplastic synthetic resin, the conventional structure using a metal outer cylindrical member is used. In comparison, the weight can be advantageously reduced. In addition, as the thermoplastic synthetic resin material, nylon 66, PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), or a material obtained by fiber-reinforced them, etc., can be suitably used, particularly from the viewpoint of strength and material cost. .
[0011]
Furthermore, in such a fluid-filled cylindrical mount, fluid tightness is ensured by welding the outer cylindrical member to the intermediate cylindrical member, so that drawing and the like that require a large-scale device are not required, and manufacturing is easy. Also, there is an advantage that cost can be reduced.
[0012]
In a preferred aspect of the present invention, as described in claim 2, a mounting portion for mounting the outer cylinder member to another member is integrally formed with the outer cylinder member. That is, since such an attachment portion is formed integrally with the outer cylinder member, the outer cylinder member also functions as a bracket, so that a special bracket member is not required, further reducing the number of parts and simplifying the structure. Can be achieved.
[0013]
In a preferred aspect of the present invention, as described in claim 3, the axial end of the outer cylindrical member welded to one end in the axial direction opposite to the thicker side of the intermediate cylindrical member. A stopper portion extending outwardly of the main rubber in the axial direction toward the support member side from the portion and integrally opposing the support member at a predetermined distance in a direction perpendicular to the axis is integrally formed. That is, by the contact of the stopper portion with the support member side, the relative displacement amount of the outer cylinder member and the support member in the direction perpendicular to the axis is limited, and excessive deformation of the main rubber is prevented, By forming such a stopper portion integrally with the outer cylinder member, the stopper mechanism can be configured with a simple structure without using a special stopper member.
[0014]
In a preferred aspect of the present invention, as described in claim 4, the contact surface of the intermediate cylindrical member which is overlapped with the outer cylindrical member and forms an orifice passage with the outer cylindrical member is formed. On the other hand, a seal rubber layer is provided and is pressed between the outer cylindrical member. By providing such a seal rubber layer, the sealing performance of the orifice passage is improved, and problems such as a reduction in vibration isolation performance due to a short circuit or the like in the orifice passage are prevented. The seal rubber layer can be easily formed by integrally forming with the main rubber.
[0015]
In a preferred aspect of the present invention, as described in claim 5, an orifice passage is formed between a superposed surface of the annular step surface and the outer cylindrical member, while an outer peripheral side of the annular step surface is formed. The superposed surface of the cylindrical outer peripheral surface of the thick portion and the outer cylindrical member that are connected to the outer peripheral surface are continuously welded in the circumferential direction. If such a structure is adopted, a large contact force is exerted on the superposed surface of the annular step surface and the outer cylindrical member, and it becomes easy to advantageously secure the sealing performance of the orifice passage.
[0016]
In a preferred aspect of the present invention, the welded portions to the outer cylinder member on both axial sides of the intermediate cylinder member are bonded by an adhesive. By adopting such a structure, the intermediate cylinder member and the outer cylinder member are joined by welding and bonding, so that a larger joint strength and fluid tightness can be stably obtained, and the reliability is improved. Can be
[0017]
Further, in a preferred aspect of the present invention, as described in claim 7, axially press-contacting the superposed surfaces of the intermediate cylinder member and the outer cylinder member welded to each other on both axial sides of the intermediate cylinder member. A part is provided. By providing such a pressure contact portion, welding can be stably and advantageously performed, and the joining strength by welding can be obtained with more stable fluid tightness.
[0018]
Further, in a preferred aspect of the present invention, as described in claim 8, the intermediate cylindrical member has an irregular cross section whose dimension perpendicular to the axis changes in the circumferential direction. In other words, in the fluid-filled cylindrical mount having the structure according to the present invention, since it is not necessary to perform drawing or the like on the outer cylindrical member, there is a great adverse effect on the manufacturability and the like without employing a true cylindrical cross-sectional shape. Since the deformed cross section is not applied, the spring ratio in the direction perpendicular to the axis can be easily tuned with a large degree of freedom by changing the thickness of the rubber body in the circumferential direction.
[0019]
Further, the welded portion between the intermediate tubular member and the outer tubular member can be welded by ultrasonic welding. In addition, as described in claim 9, the welded portion between the intermediate tubular member and the outer tubular member is welded. By disposing a metal ring on the part, it is also possible to perform dielectric welding.
[0020]
In a preferred aspect of the present invention, as described in claim 10, the intermediate cylindrical member is formed on the outer peripheral surface of the main rubber, and the molding resin pressure of the intermediate cylindrical member is applied to the main rubber as a compressive force. Is affected. That is, if such a configuration is adopted, the pre-compression can be applied to the main rubber without requiring any special process, thereby improving the durability of the main rubber.
[0021]
Further, according to the present invention, when manufacturing the fluid-filled cylindrical mount according to claim 1, the intermediate cylindrical member is molded on the outer peripheral surface of the main rubber, and the intermediate cylindrical member is filled with a molding resin material. After applying a pressure to the main rubber as a compressive force, in a non-compressible fluid, extrapolate the outer cylinder member from the axial end opposite to the thick side of the intermediate cylinder member, and And a method of manufacturing a fluid-filled cylindrical mount in which the outer cylindrical member and the outer cylindrical member are continuously welded in the circumferential direction on the superposed surfaces on both sides in the axial direction.
[0022]
According to the method of the present invention, both the adhesion of the intermediate cylinder member to the main rubber and the pre-compression to the main rubber are performed at the same time as the molding of the intermediate cylinder member without requiring any special steps. In particular, regardless of the shape of the intermediate cylinder member, an effective pre-compression can be exerted on the main body rubber. Even in the case where an intermediate cylindrical member having a deformed cross section whose directional dimension changes in the circumferential direction is employed, effective pre-compression can be exerted on the main rubber to improve durability.
[0023]
Embodiments and Examples of the Invention
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0024]
First, FIGS. 1 to 4 show an engine mount 10 as one embodiment of the present invention. In this engine mount 10, an inner cylinder member 12 and an outer cylinder member 14 as support shaft members are elastically connected by a main body rubber 16 interposed therebetween. The power unit 14 is attached to one of the power unit side and the body side (not shown) so that the power unit is supported on the body by vibration isolation.
[0025]
More specifically, the inner cylindrical member 12 has a small-diameter cylindrical shape, and is attached to a power unit (not shown) by a mounting bolt or the like inserted therein. A substantially oval stopper member 20 having a center hole 18 is externally fitted and fixed to a central portion of the inner cylinder member 12 in the axial direction, and is projected radially outward of the inner cylinder member 12. The inner cylinder member 12 and the stopper member 20 are formed of a hard material such as a metal or a synthetic resin.
[0026]
Further, a large-diameter cylindrical intermediate cylindrical member 22 is disposed radially outward of the inner cylindrical member 12 so as to be substantially coaxial with a predetermined distance therebetween. The intermediate cylindrical member 22 is formed of a predetermined thermoplastic synthetic resin determined in consideration of required strength, corrosion resistance, and the like, such as a fiber-reinforced polyamide resin. An annular step surface 24 is formed on the outer peripheral surface of the intermediate cylindrical member 22 and extends in the radial direction. One side in the axial direction (the left side in FIG. 1) sandwiches the step surface 24. A thin cylindrical wall portion 26 is formed, and the other axial side is a thick cylindrical wall portion 28 having a large outer diameter. Note that the step surface 24 is biased toward the thick-walled cylinder wall 28 side in the axial direction, and the axial length of the thick-walled cylinder wall 28 is shorter than that of the thin-walled cylinder wall 26. .
[0027]
Further, a first window portion 30 and a second window portion 32 penetrating the inner and outer peripheral surfaces are formed in the thin-walled cylindrical wall portion 26 so as to face each other in one radial direction. Further, the thin-walled cylindrical wall portion 26 and the thick-walled cylindrical wall portion 28 are formed into cylindrical shapes continuous in the circumferential direction on both axial sides of the first and second windows 30 and 32, respectively. Small steps 34 are respectively formed on the outer peripheral surfaces of the cylindrical portions (see FIG. 5). Each of the steps 34, 34 is formed toward one axial side (the left side in FIG. 1) which is the thin-walled cylindrical wall 26 side.
[0028]
Further, a substantially thick cylindrical rubber body 16 is disposed between the inner cylindrical member 12 and the intermediate cylindrical member 22. The cylinder member 22 is vulcanized and bonded. A first pocket portion 35 and a second pocket portion 36 are formed in the main rubber 16 at portions opposed to each other in the direction perpendicular to the axis with the inner cylinder member 12 interposed therebetween. Through the first window portion 30 and the second window portion 32 provided, they are respectively opened on the outer peripheral surface. Further, the main rubber 16 is routed on the step surface 24 of the intermediate cylindrical member 22 through the first and second windows 30, 32, thereby covering the step surface 24 over substantially the entire surface. A thin seal rubber layer 37 is formed integrally with the main rubber 16.
[0029]
The main rubber 16 can be vulcanized and molded between the inner cylinder member 12 and the intermediate cylinder member 22 to be vulcanized and bonded to the inner cylinder member 12 and the intermediate cylinder member 22 at the same time as the formation. In addition, first, the inner cylinder member 12 is set in a vulcanization mold, and the main rubber 16 is vulcanized and molded to be vulcanized and bonded to the inner cylinder member 12. It is also possible to form the intermediate cylindrical member 22 by setting it in a molding die and filling the outer peripheral surface of the main rubber 16 with a resin material, and at the same time, bonding the intermediate cylindrical member 22 to the outer peripheral surface of the main rubber 16. It is possible. If the latter manufacturing method is adopted, the molding resin pressure of the intermediate cylinder member 22 is applied to the outer peripheral surface of the main rubber 16 at the time of molding the intermediate cylinder member 22, and the main rubber member is formed simultaneously with the formation of the intermediate cylinder member 22. The pre-compression can be applied to the main rubber 16, whereby the durability of the main rubber 16 can be improved without requiring a special step. In addition, an appropriate adhesive is applied to a bonding portion between the main rubber 16 and the inner cylindrical member 12 and the intermediate cylindrical member 22 as necessary.
[0030]
Further, the outer cylinder member 14 is inserted and fixed to the intermediate cylinder member 22 with respect to the integrally bonded product of the main body rubber 16 and the inner cylinder member 12 and the intermediate cylinder member 22 formed as described above. The outer cylinder member 14 is formed of a suitable thermoplastic synthetic resin material similarly to the intermediate cylinder member 22, and integrally projects from a cylindrical body 38 having a substantially cylindrical shape and an outer peripheral surface of the cylindrical body 38. A mounting portion 39 having a substantially flat plate shape is provided, and is mounted on a body side (not shown) by a mounting bolt or the like inserted into a bolt insertion sleeve 40 fixed to the mounting portion 39.
[0031]
An annular step surface 42 is formed on the inner peripheral surface of the cylindrical body portion 38 of the outer cylinder member 14 and extends in the radial direction. 1, the left side) is a thick wall section 44 having a small inner diameter, and the other side in the axial direction is a thin wall section 46 having a large inner diameter. Further, the outer cylindrical member 14 is formed with a concave groove 48 which is open to the step surface 42 and extends in the circumferential direction by a length slightly less than one round, and both ends of the concave groove 48 in the circumferential direction are formed with communication holes 50. , 50 open the inner peripheral surface. The step surface 42 is offset in the axial direction toward the thin-walled cylinder wall 46, and the length of the thin-walled cylinder wall 46 in the axial direction is shorter than that of the thick-walled cylinder wall 44.
[0032]
Further, an annular stopper portion 52 is formed integrally at the axial end portion on the side of the thick-walled cylinder wall portion 44 at a predetermined height inward in the radial direction. Further, a tapered portion 54 having a small step surface extending continuously in the circumferential direction is formed on each of the thick wall portion 44 and the thin wall portion 46 (see FIG. 5). The tapered portions 54 are formed toward the same axial side (the right side in FIG. 1) which is the thin-walled cylindrical wall portion 46 side.
[0033]
As shown in FIG. 5, the outer cylinder member 14 has an opening on the thin-walled cylinder wall 46 side with respect to the intermediate cylinder member 22 bonded to the outer peripheral surface of the main rubber 16. The intermediate cylindrical member 22 is externally inserted from the thin cylindrical wall portion 26 side. As a result, the first and second windows 30 and 32 of the intermediate cylindrical member 22 are closed by the outer cylindrical member 14, and the openings of the first and second pockets 35 and 36 are covered, respectively. A first fluid chamber 58 and a second fluid chamber 60 in which an incompressible fluid is sealed are formed.
[0034]
As shown in FIG. 5, the fluid is injected into the first and second fluid chambers 58 and 60 by externally inserting the outer cylinder member 14 into the intermediate cylinder member 22 by a predetermined incompressible fluid. Doing in 56 can be done advantageously. Water, alkylene glycol, polyalkylene glycol, silicone oil, or the like may be used as the sealed fluid. Particularly, in order to effectively obtain a vibration damping effect based on the resonance action of the fluid, a viscosity of 0.1 Pa · s or less is required. Is preferably used.
[0035]
The outer cylindrical member 14 inserted into the intermediate cylindrical member 22 has a thick cylindrical wall portion 44 with respect to the thin cylindrical wall portion 26 and a thin cylindrical wall portion 46 with the thick cylindrical wall portion of the intermediate cylindrical member 22. 28, the inner peripheral surface of the thick cylindrical wall portion 44, the outer peripheral surface of the thin cylindrical wall portion 26, the inner peripheral surface of the thin cylindrical wall portion 46, and the outer peripheral surface of the thick cylindrical wall portion 28. Are superimposed on each other in the radial direction. Furthermore, the outer cylindrical member 14 is axially inserted into the intermediate cylindrical member 22 in the axial direction, so that the tapered portions 54 formed on the thick cylindrical wall portion 44 and the thin cylindrical wall portion 46 of the outer cylindrical member 14 are formed. 54 is pressed against each of the steps 34, 34 formed on the thin cylinder wall portion 26 and the thick cylinder wall portion 28 of the intermediate cylinder member 22, and the step surface 42 of the outer cylinder member 14 is It is superposed in the axial direction on the step surface 24 of the member 22. The concave groove 48 opening in the step surface 42 of the outer tube member 14 is covered by the step surface 24 of the intermediate tube member 22, so that the overlapped surface of the step surfaces 42, 24 has a predetermined length in the circumferential direction. An orifice passage 62 is formed to extend between the first fluid chamber 58 and the second fluid chamber 60 so as to communicate with each other.
[0036]
Further, the stopper 52 of the outer cylinder member 14 has its protruding tip surface (inner peripheral surface) opposed to the outer peripheral surface of the inner cylinder member 12 at a predetermined distance in the radial direction. The relative displacement of the inner cylinder member 12 and the outer cylinder member 14 in the radial direction is limited by the contact of the stopper portion 52 with the inner cylinder member 12. Note that a cushion rubber 64 is formed integrally with the main rubber 16 on the outer peripheral surface of the inner cylinder member 12 facing the stopper portion 52.
[0037]
Further, after the outer cylinder member 14 is externally inserted into the intermediate cylinder member 22, the outer cylinder member 14 has an inner peripheral surface of the thick cylinder wall portion 44, an outer peripheral surface of the thin cylinder wall portion 26, and a thin cylinder. In the radially overlapping portions of the inner peripheral surface of the wall portion 46 and the outer peripheral surface of the thick-walled cylindrical wall portion 28, the portions are continuously welded and fixed in the circumferential direction. As is apparent from this, in the present embodiment, the outer peripheral surface of the thick-walled cylindrical wall portion 28 of the intermediate cylindrical member 22 and the step surface 24 form two contact surfaces connected to each other. In addition, if necessary, an appropriate adhesive is applied to each of the superposed surfaces of the intermediate cylinder member 22 and the outer cylinder member 14 that are welded to each other before the welding operation. , Welding may be employed.
[0038]
Here, for example, the welding is formed on the intermediate cylinder member 22 side in the above-described radially superposed surface portions by exerting a force in the insertion direction on the intermediate cylinder member 22 and the outer cylinder member 14. This can be advantageously performed by performing ultrasonic welding while the step portion 34 and the tapered portion 54 formed on the outer cylinder member 14 are pressed against each other in the axial direction. If such a welding method is adopted, the intermediate cylindrical member 22 and the outer cylindrical member 14 can be more reliably welded continuously in the circumferential direction at the respective radially superposed surface portions, and the intermediate cylindrical member 22 can be welded. The stepped surface 24 of the outer cylinder member 14 and the stepped surface 24 of the outer cylinder member 14 are pressed against each other, and the sealing rubber layer 37 can be advantageously pressed between the stepped surfaces 24 and 42, whereby the external space of the sealed fluid can be formed. , The sealing performance of the orifice 62 can be advantageously prevented. The welding operation can be performed in a fluid. However, if sufficient temporary sealing can be performed by externally inserting the outer cylinder member 14 into the intermediate cylinder member 22, after removing the fluid from the fluid, the welding operation can be performed in the atmosphere. The welding operation may be performed inside.
[0039]
In the engine mount 10 having the above-described structure, when vibration in the direction perpendicular to the axis is input between the inner and outer cylinder members 12 and 14, the orifice passage between the first fluid chamber 58 and the second fluid chamber 60 is provided. By generating the fluid flow through 62, a predetermined vibration damping effect is exerted based on the resonance action of the sealed fluid, where the first and second fluid chambers 58, 60 are formed. The intermediate cylindrical member 22 having the first and second pocket portions 35 and 36 opened on the outer peripheral surface is continuously welded to the outer cylindrical member 14 in the axial direction on both sides in the circumferential direction. As a result, the fluid-filled area in the mount is completely sealed with respect to the external space, thereby ensuring extremely excellent fluid tightness over a long period of time, and Performance is stable It is as it can be exhibited.
[0040]
In particular, in the engine mount 10 of the present embodiment, the stepped portion 34 and the tapered portion 54 as the axial pressure contact portions are respectively formed on the overlapping surfaces of the intermediate cylindrical member 22 and the outer cylindrical member 14 that are welded to each other. Since it is provided and is pressed against the welding portion at the time of welding, further excellent fluid tightness can be stably ensured.
[0041]
In addition, in the engine mount 10 having the above-described structure, since the fluid tightness is ensured by welding the outer cylinder member 14 to the intermediate cylinder member 22, drawing work or the like that requires a large-scale device is not required. The conventional structure in which a metal member is used because both the intermediate cylinder member 22 and the outer cylinder member 14 are made of a thermoplastic synthetic resin in addition to being easy to manufacture and reducing the cost. As compared with the one described above, the weight can be advantageously reduced, and the function as a bracket can be easily imparted to the outer cylinder member 14 by integrally forming the mounting portion 39 with the outer cylinder member 14. There is an advantage that it can be done.
[0042]
Further, in the engine mount 10, the orifice passage 62 extending in the circumferential direction between the overlapping surfaces of the outer cylinder member 14 and the intermediate cylinder member 22 is formed by the concave groove 48 formed in the outer cylinder member 14. Thus, a sufficiently long orifice passage can be formed without requiring a special orifice member, and the degree of freedom in setting the length of the orifice passage can be advantageously secured.
[0043]
Next, FIGS. 6 and 7 show an engine mount 70 as a second embodiment of the present invention. Members and portions having the same structure as in the first embodiment are denoted by the same reference numerals in the drawings as in the first embodiment, and detailed description thereof is omitted.
[0044]
That is, in the engine mount 70 of the present embodiment, the intermediate cylindrical member 72 which is not a true cylindrical shape is employed. Specifically, the radial dimension of the intermediate cylindrical member 72 is changed in the circumferential direction, and the radial direction (vertical direction in FIG. 7) that is the vehicle vertical direction is the radial direction (the vertical direction in FIG. 7) that is the vehicle front-rear direction. 7 (in the horizontal direction in FIG. 7), the shape is a substantially elliptical cylindrical shape or a substantially polygonal cylindrical shape which is flattened. Thereby, the free length in the radial direction of the main rubber 16 connecting the inner cylindrical member 12 and the intermediate cylindrical member 72 is changed in the circumferential direction of the mount, and according to the load or vibration input in each radial direction, The mount spring characteristics in each radial direction are tuned.
[0045]
In the intermediate cylinder member 72, a first window 72, a second window 74, and a third window 76 are formed at a predetermined distance in a circumferential direction from each other in the thin wall 26. At the same time, a first pocket portion 78, a second pocket portion 80, and a third pocket portion 82 are formed in the main body rubber 16, and the first to third pocket portions 78, 80 and 82 are respectively opened to the outer peripheral surface through the first to third windows 72, 74 and 76 in the intermediate cylindrical member 72. The first pocket portion 78 is formed to have a length of approximately less than half a circumference in the circumferential direction, while the second and third pocket portions 80 and 82 each have a length of approximately less than a quarter of the circumference. The first pocket portion 78 and the second and third pocket portions 80 and 82 sandwich the inner cylindrical member 12 in the radial direction (vertical direction in the figure) as the main vibration input direction. It is located opposite.
[0046]
Further, a slit 84 is formed in the main rubber 16 so as to extend through the bottom wall portions of the second and third pocket portions 80 and 82 in the axial direction, whereby the second and third pocket portions 80 and 82 are formed. The bottom wall portions of 80 and 82 are thinned to form a first flexible film 86 and a second flexible film 88, respectively. Note that the first flexible film 86 is thinner than the second flexible film 88 and has a reduced deformation rigidity (wall rigidity).
[0047]
When the first, second and third windows 72, 74 and 76 are closed by the outer tubular member 14, the first, second and third pockets 78, 80 and 82 are covered. Thus, a pressure receiving chamber 90, a first equilibrium chamber 92, and a second equilibrium chamber 94 are formed as fluid chambers in which an incompressible fluid is sealed. In short, in the pressure receiving chamber 90, an internal pressure change is caused based on the elastic deformation of the main rubber 16 at the time of vibration input, and the first and second equilibrium chambers 92 and 94 are formed by the first and second equilibrium chambers. The volume change is allowed based on the deformation of the two flexible films 86 and 88.
[0048]
Further, the pressure receiving chamber 90 and the first equilibrium chamber 92 are communicated with each other by the orifice passage 62 formed between the superposed surfaces of the outer cylinder member 14 and the intermediate cylinder member 22, while the orifice passage 62 communicates with the outer peripheral surface of the intermediate cylinder member 22. Is formed with a circumferential groove 96 extending in the circumferential direction between the first window portion 72 and the third window portion 76, and the circumferential groove 96 is covered with the outer cylinder member 14 so that the pressure receiving chamber 90 is formed. A sub-orifice passage 98 is formed which communicates with the second balance chamber 94. Further, the sub-orifice passage 98 has a higher frequency range than the orifice passage 62 because the ratio A / L of the passage cross-sectional area (A) to the passage length (L) is larger than that of the orifice passage 62. The resonance effect of the fluid flowing through the orifice passage 62 and the sub-orifice passage 98 exerts an anti-vibration effect on input vibrations in different frequency ranges.
[0049]
The secondary orifice passage 98 has a larger ratio A / L between the passage cross-sectional area and the passage length than the orifice passage 62 and has a smaller flow resistance. Since the wall rigidity is set to be large, when the low-frequency large-amplitude vibration is input, the amount of fluid flowing through the sub-orifice passage 98 is restricted by the wall rigidity of the second equilibrium chamber 94, and the fluid flowing through the orifice passage 62 is restricted. And the flow resistance of the orifice passage 62 is greatly increased when high-frequency small-amplitude vibration is input, so that the fluid flow through the sub-orifice passage 98 is advantageously generated. It has become.
[0050]
In the engine mount 70 having the above-described structure, the same effect as that of the first embodiment is effectively exerted, and the intermediate mount member 72 having a non-true cylindrical shape is employed. There is an advantage that the mount spring characteristics in each radial direction can be easily tuned. In this engine mount, it is not necessary to perform drawing on the intermediate cylinder member 72 and the outer cylinder member 14 in order to secure fluid tightness. Since it is possible to apply a pre-compression to the main body rubber 16 without any processing, even when the odd-shaped intermediate cylinder member 72 is employed, excellent manufacturability and mounting performance can be sufficiently ensured.
[0051]
Next, FIGS. 8 to 10 show other specific structural examples of the overlapping portion of the intermediate tubular member and the outer tubular member, respectively. In the present invention, any of such superposed structures can be advantageously employed, whereby the same effects as those of the above embodiment can be effectively exhibited. In the following specific examples, members and parts having the same structure as in the first embodiment are denoted by the same reference numerals as those in the first embodiment in the drawings, respectively, so Detailed description is omitted.
[0052]
First, in the specific example shown in FIG. 8, a concave groove 100 which is opened in the step surface 24 is provided in the thick-walled cylindrical wall portion 28 of the intermediate cylindrical member 22. The orifice passage 62 extending in the circumferential direction between the overlapping surfaces of the intermediate cylindrical member 22 and the outer cylindrical member 14 is formed by being covered with the step surface 42 of the above.
[0053]
Next, in the specific example shown in FIG. 9, a concave portion 102 extending in the circumferential direction is provided on the outer peripheral surface of the thick wall portion 28 of the intermediate cylindrical member 22. The C ring 104 is fitted. Then, the outer cylinder member 14 is externally inserted into the intermediate cylinder member 22, and the inner peripheral surface of the thin cylinder wall portion 46 of the outer cylinder member 14 is superimposed on the outer peripheral surface of the thick cylinder wall section 28 of the intermediate cylinder member 22. By generating an induced electromotive force in the metal C ring 104, the superposed surface is dielectrically welded.
[0054]
Further, in the specific example shown in FIG. 10, the window 30 (32) of the intermediate cylinder member 22 is positioned at the axially intermediate portion of the thin-walled cylinder wall 26, and the window 30 (32). ) And the thick-walled cylindrical wall portion 28, the thin-walled cylindrical wall portion 26 forms a cylindrical portion having an outer peripheral surface 106 that is continuous in the circumferential direction. A concave groove 108 that opens in the outer peripheral surface 106 and extends in the circumferential direction is formed, and the concave groove 108 is covered with an outer cylinder member 110, so that an orifice passage 112 is formed. Note that a seal rubber layer is provided on substantially the entire outer peripheral surface 106, and is pressed between the intermediate cylindrical member 22 and the outer cylindrical member 110.
[0055]
Further, one end face in the axial direction of the outer cylinder member 110 is brought into contact with the step surface 24 of the intermediate cylinder member 22, and is continuously welded and fixed in the circumferential direction at the abutting portion. As is apparent from this, in the present embodiment, two steps are provided by the step surface 24 of the intermediate tube member 22 and the outer peripheral surface 106 of the thin-walled cylindrical wall portion 26 connected to the inner peripheral side of the step surface 24. An abutment surface is configured.
[0056]
At the other end of the outer cylinder member 110 in the axial direction, an annular contact portion 114 protruding inward in the radial direction is integrally formed, and the contact portion 114 is formed as a thin wall of the intermediate cylinder member 22. It is superposed on the opening end surface on the side of the cylindrical wall portion 26, and is continuously welded and fixed in the circumferential direction between the superposed surfaces.
[0057]
As mentioned above, although the Example and specific structural example of this invention were described in full detail, these are literal illustrations, and this invention is not interpreted limited to only such specific examples.
[0058]
For example, it is also possible to adopt a simple cylindrical outer cylindrical member not having the mounting portion 39 and the like, and the stopper 52 need not always be provided.
[0059]
Further, it is not always necessary to provide an axial pressure contact portion such as the step portion 34 or the tapered portion 54 on each superposed surface of the intermediate cylinder member and the outer cylinder member that are welded to each other. It is also possible to simply weld the superposed surfaces in the directions.
[0060]
In addition, in the above-described embodiment, a specific example in which the present invention is applied to an engine mount for an automobile is shown. However, the present invention is also applicable to various fluid-filled cylinders used for automobiles or other various devices. Of course, any can be applied to the mold mount.
[0061]
In addition, although not enumerated one by one, the present invention can be embodied in modes in which various changes, modifications, improvements, and the like are added based on the knowledge of those skilled in the art. It goes without saying that all of them are included in the scope of the present invention unless departing from the spirit of the invention.
[0062]
【The invention's effect】
As is apparent from the above description, in the fluid-filled cylindrical mount having the structure according to the present invention, the intermediate cylindrical member and the outer cylindrical member are sealed by being continuously welded on both sides in the axial direction in the circumferential direction. A high degree of fluid tightness with respect to the external space of the fluid can be obtained easily and stably with a simple structure without the necessity of drawing or the like on the outer cylinder member. Since each of the tubular members is made of a synthetic resin, the weight can be advantageously reduced.
[0063]
Further, according to the method of the present invention, it is possible to advantageously manufacture the fluid-filled cylindrical mount having the structure according to the present invention. The pre-compression can be applied to the main rubber at the same time as the formation of the intermediate cylinder member by using the molding resin pressure of the cylinder member. It can be easily exerted.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an engine mount as one embodiment of the present invention, and is a view corresponding to a II section in FIG.
FIG. 2 is a sectional view taken along line II-II in FIG.
FIG. 3 is a sectional view taken along the line III-III in FIG. 2;
FIG. 4 is a right side view in FIG.
FIG. 5 is an explanatory view showing one manufacturing process of the engine mount shown in FIG. 1;
6 is a longitudinal sectional view showing an engine mount as another embodiment of the present invention, and is a view corresponding to a section taken along line VI-VI in FIG.
7 is a sectional view taken along line VII-VII in FIG.
FIG. 8 is an explanatory diagram showing a specific structure example of a superposed portion of an intermediate cylinder member and an outer cylinder member.
FIG. 9 is an explanatory view showing another specific example of the structure of the overlapping portion of the intermediate cylinder member and the outer cylinder member.
FIG. 10 is an explanatory view showing still another specific structure example of the overlapping portion of the intermediate cylindrical member and the outer cylindrical member.
[Explanation of symbols]
10,70 engine mount
12 Inner cylinder member
14 Outer cylinder member
16 Body rubber
22 Intermediate cylinder member
24 step surface
26 Thin wall
28 Thick cylinder wall
48 groove
58 First fluid chamber
60 Second fluid chamber
62 orifice passage
90 pressure receiving chamber
92 First equilibrium chamber
94 Second equilibrium chamber
96 Secondary orifice passage

Claims (11)

支軸部材の周りに所定距離を隔てて中間筒部材を配設すると共に、それら支軸部材と中間筒部材の間に本体ゴムを介装せしめて該支軸部材と該中間筒部材を弾性的に連結する一方、該本体ゴムに複数のポケット部を形成し、それらのポケット部をそれぞれ該中間筒部材に形成された窓部を通じて外周面に開口せしめると共に、該中間筒部材に外筒部材を外嵌固定して前記各窓部を閉塞せしめることにより、内部に非圧縮性流体が封入された複数の流体室を形成し、更にそれらの流体室を相互に連通するオリフィス通路を設けた流体封入式筒型マウントにおいて、
前記中間筒部材および前記外筒部材を熱可塑性合成樹脂製とすると共に、該中間筒部材の軸方向一方の端部を該外筒部材に重ね合わせて周方向に連続して溶着せしめる一方、該中間筒部材の軸方向他方の端部を厚肉部として該中間筒部材の外周面を周方向に連続して延びる環状段差面を形成することにより、該環状段差面と該環状段差面の内周側または外周側に連接する筒状外周面とからなる二つの当接面を構成し、かかる二つの当接面にそれぞれ前記外筒部材を重ね合わせると共に、軸方向外側に位置する該一方の当接面と前記外筒部材との重ね合わせ面を周方向に連続して溶着せしめる一方、軸方向内側に位置する該他方の当接面と前記外筒部材との重ね合わせ面に周方向に延びる凹溝を設けて重ね合わせて覆蓋することにより前記オリフィス通路を形成したことを特徴とする流体封入式筒型マウント。
An intermediate cylinder member is provided around the support shaft member at a predetermined distance, and a main body rubber is interposed between the support shaft member and the intermediate cylinder member to elastically connect the support shaft member and the intermediate cylinder member. On the other hand, a plurality of pockets are formed in the main body rubber, and these pockets are respectively opened on the outer peripheral surface through windows formed in the intermediate cylinder member, and an outer cylinder member is attached to the intermediate cylinder member. A fluid sealing method in which a plurality of fluid chambers in which an incompressible fluid is sealed are formed by externally fitting and closing the respective windows, and an orifice passage communicating the fluid chambers with each other is provided. In the type cylindrical mount,
The intermediate cylinder member and the outer cylinder member are made of a thermoplastic synthetic resin, and one end in the axial direction of the intermediate cylinder member is overlapped with the outer cylinder member and continuously welded in the circumferential direction. By forming an annular step surface extending continuously in the circumferential direction on the outer peripheral surface of the intermediate cylindrical member with the other end portion in the axial direction of the intermediate cylindrical member as a thick portion, the annular step surface and the annular step surface are formed. A cylindrical outer peripheral surface connected to a peripheral side or an outer peripheral side is formed, and the outer cylindrical member is overlapped with each of the two abutting surfaces, and the one of the two outer peripheral surfaces is located outside in the axial direction. While the overlapping surface of the contact surface and the outer cylinder member is continuously welded in the circumferential direction, the overlapping surface of the other contact surface and the outer cylinder member located on the inner side in the axial direction is formed in the circumferential direction. By providing an extended groove and overlapping and covering, Fluid-filled cylindrical mount, characterized in that the formation of the office passage.
前記外筒部材に対して、該外筒部材を他部材に取り付けるための取付部が一体形成されている請求項1に記載の流体封入式筒型マウント。The fluid-filled cylindrical mount according to claim 1, wherein a mounting portion for mounting the external cylindrical member to another member is integrally formed with the external cylindrical member. 前記中間筒部材の厚肉側とは反対側の軸方向端部に溶着される前記外筒部材の軸方向端部に対して、前記本体ゴムの軸方向外方を前記支軸部材側に向かって延び出し、該支軸部材に対して軸直角方向に所定距離を隔てて対向位置するストッパ部が一体形成されている請求項1又は2に記載の流体封入式筒型マウント。With respect to the axial end of the outer cylindrical member welded to the axial end opposite to the thicker side of the intermediate cylindrical member, the axial direction outward of the main rubber is directed toward the support shaft side. The fluid-filled cylindrical mount according to claim 1 or 2, wherein a stopper portion extending and extending and being opposed to the support shaft member at a predetermined distance in a direction perpendicular to the axis is integrally formed. 前記外筒部材に重ね合わせられて該外筒部材との間に前記オリフィス通路を形成する前記中間筒部材の当接面に対して、シールゴム層が設けられて該外筒部材との間で挟圧されている請求項1乃至3の何れかに記載の流体封入式筒型マウント。A sealing rubber layer is provided on a contact surface of the intermediate cylindrical member that is overlapped with the outer cylindrical member and forms the orifice passage between the outer cylindrical member and the intermediate rubber member, and is sandwiched between the outer cylindrical member and the intermediate rubber member. The fluid-filled cylindrical mount according to any one of claims 1 to 3, wherein the mount is pressurized. 前記環状段差面と前記外筒部材との重ね合わせ面間に前記オリフィス通路が形成されている一方、該環状段差面の外周側に連接する前記厚肉部の筒状外周面と前記外筒部材との重ね合わせ面が周方向に連続して溶着されている請求項1乃至4の何れかに記載の流体封入式筒型マウント。The orifice passage is formed between the overlapping surface of the annular step surface and the outer cylindrical member, and the cylindrical outer peripheral surface of the thick portion and the outer cylindrical member connected to the outer peripheral side of the annular step surface. The fluid-filled cylindrical mount according to any one of claims 1 to 4, wherein a superposed surface of the fluid-filled cylindrical mount is continuously welded in a circumferential direction. 前記中間筒部材の軸方向両側における前記外筒部材との溶着部分が、接着剤によって接着されている請求項1乃至5の何れかに記載の流体封入式筒型マウント。The fluid-filled cylindrical mount according to any one of claims 1 to 5, wherein welded portions of the intermediate cylindrical member with the outer cylindrical member on both axial sides are bonded by an adhesive. 前記中間筒部材の軸方向両側における、互いに溶着される該中間筒部材と前記外筒部材の重ね合わせ面に軸方向の圧接部が設けられている請求項1乃至6の何れかに記載の流体封入式筒型マウント。The fluid according to any one of claims 1 to 6, wherein an axial pressure contact portion is provided on a superposed surface of the intermediate cylinder member and the outer cylinder member that are welded to each other on both axial sides of the intermediate cylinder member. Enclosed cylindrical mount. 前記中間筒部材が、軸直角方向寸法が周方向で変化する異形断面とされている請求項1乃至7の何れかに記載の流体封入式筒型マウント。The fluid-filled cylindrical mount according to any one of claims 1 to 7, wherein the intermediate cylindrical member has an irregular cross section whose dimension in the direction perpendicular to the axis changes in the circumferential direction. 前記中間筒部材と前記外筒部材との溶着部分に金属リングが配設されて誘電溶着されている請求項1乃至8の何れかに記載の流体封入式筒型マウント。The fluid-filled cylindrical mount according to any one of claims 1 to 8, wherein a metal ring is provided at a welded portion between the intermediate cylindrical member and the outer cylindrical member and is dielectric-welded. 前記中間筒部材が、前記本体ゴムの外周面上で形成されて、該中間筒部材の成形樹脂圧力が該本体ゴムに圧縮力として及ぼされている請求項1乃至9の何れかに記載の流体封入式筒型マウント。The fluid according to any one of claims 1 to 9, wherein the intermediate cylinder member is formed on an outer peripheral surface of the main rubber, and a molding resin pressure of the intermediate cylinder member is applied to the main rubber as a compressive force. Enclosed cylindrical mount. 請求項1に記載の流体封入式筒型マウントを製造するに際して、
前記本体ゴムの外周面上で前記中間筒部材を成形せしめて、該中間筒部材の成形樹脂材料の充填圧力を該本体ゴムに圧縮力として及ぼした後、非圧縮性流体中において、該中間筒部材の厚肉側とは反対側の軸方向端部から前記外筒部材を外挿し、それら中間筒部材と外筒部材を軸方向両側の重ね合わせ面において周方向に連続して溶着することを特徴とする流体封入式筒型マウントの製造方法。
In manufacturing the fluid-filled cylindrical mount according to claim 1,
After the intermediate cylinder member is molded on the outer peripheral surface of the main rubber, and the filling pressure of the molding resin material of the intermediate cylinder member is applied as a compressive force to the main rubber, the intermediate cylinder member is in a non-compressible fluid. The outer cylinder member is extrapolated from the axial end opposite to the thick side of the member, and the intermediate cylinder member and the outer cylinder member are continuously welded in the circumferential direction on the overlapping surfaces on both axial sides. Characteristic method of manufacturing a fluid-filled cylindrical mount.
JP4166996A 1996-02-28 1996-02-28 Fluid-filled cylindrical mount and method of manufacturing the same Expired - Fee Related JP3601163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4166996A JP3601163B2 (en) 1996-02-28 1996-02-28 Fluid-filled cylindrical mount and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4166996A JP3601163B2 (en) 1996-02-28 1996-02-28 Fluid-filled cylindrical mount and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09229130A JPH09229130A (en) 1997-09-02
JP3601163B2 true JP3601163B2 (en) 2004-12-15

Family

ID=12614812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4166996A Expired - Fee Related JP3601163B2 (en) 1996-02-28 1996-02-28 Fluid-filled cylindrical mount and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3601163B2 (en)

Also Published As

Publication number Publication date
JPH09229130A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
JP3477920B2 (en) Fluid-filled anti-vibration support
JPH055305Y2 (en)
JP2001050333A (en) Vibration control device
JPH08135723A (en) Fluid sealed cylindrical mount
JPH08177945A (en) Fluid sealing type cylindrical vibration proof device
JP3520641B2 (en) Cylindrical mounting device and method of manufacturing the same
JPH03149429A (en) Manufacture of liquid filled cylindrical mounting device
JP2001208124A (en) Liquid sealed cylindrical mount and manufacturing method therefor
JP3601163B2 (en) Fluid-filled cylindrical mount and method of manufacturing the same
JPH061095B2 (en) Fluid filled anti-vibration assembly
JP3533267B2 (en) Anti-vibration device
JP4131396B2 (en) Liquid filled cylindrical vibration isolator
JPH0524837Y2 (en)
JPH07293627A (en) Cylindrical vibration isolator
JP3736155B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof
JPH0633230Y2 (en) Fluid filled cushion rubber assembly
JP3484848B2 (en) Fluid-filled cylindrical mount device and method of manufacturing the same
JP3601196B2 (en) Inclined fluid-filled cylindrical mount
JP3777784B2 (en) Cylindrical fluid-filled mounting device
JPH01126453A (en) Fluid sealed-in cylindrical mount device
JP3658843B2 (en) Fluid-filled cylindrical mounting device
JPH04160244A (en) Cylindrical mount and its manufacture
JPH11210812A (en) Fluid enclosed type cylindrical mount device and manufacture thereof
JP3873553B2 (en) Fluid filled cylindrical vibration isolator
JP4140988B2 (en) Vibration isolator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees