JP3599754B2 - Confocal scanning optical microscope - Google Patents

Confocal scanning optical microscope Download PDF

Info

Publication number
JP3599754B2
JP3599754B2 JP600593A JP600593A JP3599754B2 JP 3599754 B2 JP3599754 B2 JP 3599754B2 JP 600593 A JP600593 A JP 600593A JP 600593 A JP600593 A JP 600593A JP 3599754 B2 JP3599754 B2 JP 3599754B2
Authority
JP
Japan
Prior art keywords
light
sample
fluorescence
wavelength
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP600593A
Other languages
Japanese (ja)
Other versions
JPH06214162A (en
Inventor
隆 相方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP600593A priority Critical patent/JP3599754B2/en
Publication of JPH06214162A publication Critical patent/JPH06214162A/en
Application granted granted Critical
Publication of JP3599754B2 publication Critical patent/JP3599754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、共焦点走査型光学顕微鏡に係り、特に試料からの反射光と蛍光を効率よく検出可能にした共焦点走査型光学顕微鏡に関する。
【0002】
【従来の技術】
従来、共焦点走査型光学顕微鏡として、以下のように構成されたものがある。光源からの光を対物レンズで、試料(標本)上に集束させて光スポットを形成し、その光スポットで試料を2次元走査すると共に、試料からの反射光、または蛍光は対物レンズの焦点位置と共役な位置に配設した共焦点絞りを通過させて取り出し、その取り出した光を光電変換して当該試料の画像情報が得られるものである。
【0003】
以下、この種従来の顕微鏡について、図8および図9を参照して説明する。図8は、従来の第1の例を示す図であって、これは主に材料、半導体などの観察用に使用される。すなわち、光源1から発したレーザビームを偏光ビームスプリッタ2で反射させて2次元光偏向器3によりXーYに2次元走査される。
【0004】
2次元走査されたレーザビームは、λ/4板4を通り、円偏光となる。対物レンズ5によって試料6に照射されたレーザビームの反射光は再び、対物レンズ5、λ/4板4を通り、光源1から発した振動方向に直交する直線偏光となる。この直線偏光は、偏光ビームスプリッタ2、共焦点絞り7を通り、検出器8に導かれる。
【0005】
図9は、従来の第2の例を示す図であって、これは主に細胞や組織などの生物の蛍光検出用に使用される。図9は、図8の偏光ビームスプリッタ2の代わりに、ダイクロイックミラー9が使用され、試料6からの蛍光が吸収フィルタ10を通して検出される点が、図8とは異なるが、それ以外の点は図8と同一である。
【0006】
【発明が解決しようとする課題】
以上述べた従来の走査型光学顕微鏡は、用途によって異なったタイプの光学系を有していた。このため、例えば生物分野において、細胞接着と全体の形態の蛍光観察や、骨の層構造と破骨細胞・骨芽細胞の蛍光観察を行う場合、例えば、半導体分野において、ウェハーやチップ上のコンタミネーションの形と、その由来が有機物か無機物かを同定する場合には、図8および図9に示す2つの異なったタイプの顕微鏡が必要であった。現実的には、標本の全く同一な場所を異った顕微鏡で観察することは、きわめて困難である。
【0007】
本発明は以上のような実情に基いてなされたもので、一つの光学系で試料からの反射光および蛍光を同時に、または個別に観察することが可能な共焦点走査型光学顕微鏡を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記目的を達成するため、請求項1に対応する発明は、光源からの光を試料上に集光する集光光学系と、前記試料からの反射光を検出する第1の光検出器と、前記試料からの蛍光を検出する第2の光検出器と、前記光源からの光を前記試料に向けて導くと共に前記試料からの反射光の一部分及び蛍光を前記第1及び第2の光検出器に向けて導く第1の波長依存性光分割素子と、前記第1の波長依存性光分割素子から導かれた前記反射光の一部及び前記蛍光を分離して前記第1の光検出器及び第2の光検出器に導く第2の波長依存性光分割素子とを備えた共焦点走査型光学顕微鏡である。
【0009】
【作用】
請求項1に対応する発明によれば、試料からの反射光および蛍光を、少なくとも2個の波長依存性光分割素子により第1および第2の光検出器に導くようにしたので、一つの光学系で試料からの反射光および蛍光を同時に、または個別に観察することが可能となる。
【0010】
【実施例】
以下、図面を参照して本発明の実施例について説明する。始めに、図1〜図3を参照して本発明の第1の実施例について説明する。図1は、本発明の第1の実施例を示す概略構成図であり、光源1と、この光源1からの光を試料6上に微小なスポットに集光する対物レンズ5と、試料6からの反射光を検出する反射光検出用の光検出器8(図の左側)と、試料6からの蛍光を検出する蛍光検出用の光検出器8(図の上側)と、各光検出器8,8に光を導く少なくとも2個の波長依存性光分割素子例えばダイクロィックミラー11,12と、試料6上のスポットと試料6を相対的に2次元走査するための走査光学系(図示せず)と、対物レンズ5の合焦位置と光学的に共役な位置であって光検出器8,8の前に、光検出器8,8に入射する光の光軸に開口中心を合せて配置された開口径を可変可能な共焦点絞り7とをそれぞれ備えている。
【0011】
ダイクロィックミラー11,12は、薄膜による光の干渉を利用して可視光の特定の波長領域のみの光のみを反射し、残り波長領域の光は透過する鏡であって、光源1のレーザ波長に対応した分光特性のものを用いる。例えば、光源1のレーザ波長が488 nm の場合には、ダイクロィックミラー11としては、図2に示す分光特性のものを使用し、またダイクロィックミラー12としては、図3に示す分光特性のものを使用する。もちろん、ダイクロィックミラー11,12の分光特性を光源波長に合わせることで、光源1の波長が異なっても同様なことが可能である。
【0012】
以下、このように構成された第1の実施例の動作を説明する。光源1から発したレーザビームは、ダイクロイックミラー11で反射され、かつ2次元光偏向器3によりXーYに2次元走査され、対物レンズ5によって試料6に照射される。試料6にレーザビームに照射された反射光は再び、対物レンズ5、2次元光偏向器を通り、光源1から発した振動方向に直交する直線偏光となる。この直線偏光は、ダイクロイックミラー12で反射され、反射光検出用の光検出器8に導かれる。これにより、試料6からの反射光を検出できる。
ダイクロイックミラー12を通過する光は、細胞や組織などの生物の蛍光検出用の光検出器8に入力され、試料6からの蛍光が検出される
【0013】
このように構成することにより、反射光と蛍光が同時に検出でき、従って、顕微鏡の仕立てを変更するわずらしさもなく、形態と蛍光の分布(局在)を精度よく観察することが可能になる。
【0014】
図4は本発明の第2の実施例を示す図であり、バンドパスフィルター13と、光学フィルター14を図1の実施例に追加したものである。具体的には、バンドパスフィルター13を反射光を検出する光検出器(図の左側)8とダイクロィックミラー12の間に設け、光学フィルター14を蛍光を検出する光検出器(図の上部側)8とダイクロィックミラー12の間に設けたものである。
【0015】
バンドパスフィルター13は、光源1のレーザ波長に対応させた狭帯域バンドパスフィルターを使用し、例えば光源1のレーザ波長を488 nm とすると、バンドパスフィルター13は、図5のような分光特性となる。
光学フィルター14は、蛍光染色に合せて狭帯域、高帯域、ロングパスフィルタ等のいずれかを使用する。
以上のように構成された第2の実施例によれば、特に蛍光のクロスオーバーを除いて反射光のみを検出するのに有効となる。
【0016】
図6は本発明の第3の実施例を示す図であり、図4の実施例にダイクロイックミラー15を追加し、かつ光学フィルター14と光検出器8をさらに1組追加しものである。この場合には、ダイクロイックミラー15は蛍光の2重染色に合せて分光特性が調整されたものを使用している。この第3の実施例によれば、1つは反射光の観察に、他の2つは蛍光プローブとしてFITLとローダミン等が同時に用いられることから、これらを検出するために用いられる。
【0017】
図7は本発明の第4の実施例を示す図であり、図6の実施例のダイクロイックミラー12,15の代りに、ダイクロイックキューブ16を設けたものである。このようにすることにより、図6に比べて構成が簡単となる。
【0018】
本発明は前述の実施例に限定されず、例えば以下のようにしてもよい。実施例で用いたダイクロイックミラー11,12の代りに、これと同様な機能を有するプリズムであってもよく、これ以外に光源1の光の波長に合わせて分光特性が得られる波長依存性光分割素子であればなんでも良い。また、図4、図6、図7の狭帯域バンドパスフイルター13も分光特性も、光源1の波長に合せることができれば、なんでもよい。
【0019】
【発明の効果】
以上述べたように本発明によれば、試料からの反射光と蛍光を効率よく検出できる共焦点走査型光学顕微鏡を提供できる。
【図面の簡単な説明】
【図1】本発明による共焦点走査型光学顕微鏡の第1の実施例の概略構成を示す図。
【図2】図1のダイクロイックミラー11の分光特性を示す図。
【図3】図1のダイクロイックミラー12の分光特性を示す図。
【図4】本発明による共焦点走査型光学顕微鏡の第2の実施例の概略構成を示す図。
【図5】図4の狭帯域バンドパスフィルターの分光特性を示す図。
【図6】本発明による共焦点走査型光学顕微鏡の第3の実施例の概略構成を示す図。
【図7】本発明による共焦点走査型光学顕微鏡の第4の実施例の概略構成を示す図。
【図8】従来の共焦点走査型光学顕微鏡の第1の例の概略構成を示す図。
【図9】従来の共焦点走査型光学顕微鏡の第2の例の概略構成を示す図。
【符号の説明】
1…光源、3…2次元光偏向器、4…λ/4板、5…対物レンズ、6…試料(標本)、7…共焦点絞り、8…光検出器、11,12…ダイクロイックフィルター、13…狭帯域バンドパスフィルター、14…光学フィルター、15…ダイクロイックフィルター、16…、14…CCDテレビカメラ、15…CMD制御回路、16…ダイクロイックフィルター。
[0001]
[Industrial applications]
The present invention relates to a confocal scanning optical microscope, and more particularly, to a confocal scanning optical microscope capable of efficiently detecting reflected light and fluorescence from a sample.
[0002]
[Prior art]
Conventionally, there is a confocal scanning optical microscope configured as follows. The light from the light source is focused on a sample (specimen) with an objective lens to form a light spot, and the sample is two-dimensionally scanned with the light spot, and the reflected light or fluorescence from the sample is determined by the focal position of the objective lens. The light is extracted by passing through a confocal stop disposed at a position conjugate with the above, and the extracted light is photoelectrically converted to obtain image information of the sample.
[0003]
Hereinafter, this type of conventional microscope will be described with reference to FIGS. FIG. 8 is a diagram showing a first example of the related art, which is mainly used for observing materials, semiconductors, and the like. That is, the laser beam emitted from the light source 1 is reflected by the polarization beam splitter 2 and is two-dimensionally scanned in XY by the two-dimensional optical deflector 3.
[0004]
The two-dimensionally scanned laser beam passes through the λ / 4 plate 4 and becomes circularly polarized light. The reflected light of the laser beam applied to the sample 6 by the objective lens 5 passes through the objective lens 5 and the λ / 4 plate 4 again, and becomes linearly polarized light orthogonal to the vibration direction emitted from the light source 1. This linearly polarized light passes through the polarization beam splitter 2 and the confocal stop 7 and is guided to the detector 8.
[0005]
FIG. 9 is a diagram showing a second conventional example, which is mainly used for fluorescence detection of an organism such as a cell or a tissue. FIG. 9 is different from FIG. 8 in that a dichroic mirror 9 is used instead of the polarization beam splitter 2 in FIG. 8 and the fluorescence from the sample 6 is detected through an absorption filter 10, but the other points are different. It is the same as FIG.
[0006]
[Problems to be solved by the invention]
The conventional scanning optical microscope described above has different types of optical systems depending on the application. For this reason, for example, in the biological field, when performing cell adhesion and fluorescence observation of the entire morphology, or when performing fluorescence observation of the layer structure of bone and osteoclasts / osteoblasts, for example, in the semiconductor field, contamination on wafers and chips In order to identify the form of the nation and whether it is derived from an organic or inorganic substance, two different types of microscopes as shown in FIGS. 8 and 9 were required. In reality, it is extremely difficult to observe the exact same place of the specimen with different microscopes.
[0007]
The present invention has been made based on the above circumstances, and provides a confocal scanning optical microscope capable of simultaneously or individually observing reflected light and fluorescence from a sample with one optical system. With the goal.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the invention corresponding to claim 1 is a condensing optical system that condenses light from a light source on a sample, and a first photodetector that detects reflected light from the sample, A second photodetector for detecting fluorescence from the sample; and a first and second photodetector for directing light from the light source toward the sample and for detecting a part of reflected light from the sample and fluorescence. A first wavelength-dependent light splitting element directed toward the first wavelength-dependent light splitting element, and a part of the reflected light and the fluorescence guided from the first wavelength-dependent light splitting element. 10 is a confocal scanning optical microscope including a second wavelength-dependent light splitting element that leads to a second photodetector .
[0009]
[Action]
According to the first aspect of the present invention, the reflected light and the fluorescence from the sample are guided to the first and second photodetectors by at least two wavelength-dependent light splitting elements. The system allows the reflected light and the fluorescence from the sample to be observed simultaneously or individually.
[0010]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention, in which a light source 1, an objective lens 5 for condensing light from the light source 1 into a minute spot on a sample 6, and A light detector 8 for detecting reflected light (left side in the figure) for detecting reflected light, a light detector 8 for detecting fluorescence from the sample 6 (upper side in the figure), and each light detector 8 , 8 at least two wavelength-dependent light splitting elements such as dichroic mirrors 11 and 12 and a scanning optical system (not shown) for relatively two-dimensionally scanning the spot on the sample 6 and the sample 6. ) And a position optically conjugate with the in-focus position of the objective lens 5 and in front of the photodetectors 8, 8 with the aperture center aligned with the optical axis of the light incident on the photodetectors 8 And a confocal stop 7 whose aperture diameter can be varied.
[0011]
The dichroic mirrors 11 and 12 are mirrors that reflect only light in a specific wavelength region of visible light using light interference by a thin film and transmit light in the remaining wavelength region. The one having a spectral characteristic corresponding to is used. For example, when the laser wavelength of the light source 1 is 488 nm, the dichroic mirror 11 has a spectral characteristic shown in FIG. 2, and the dichroic mirror 12 has a spectral characteristic shown in FIG. Use Of course, by adjusting the spectral characteristics of the dichroic mirrors 11 and 12 to the wavelength of the light source, the same can be achieved even if the wavelength of the light source 1 is different.
[0012]
Hereinafter, the operation of the first embodiment configured as described above will be described. The laser beam emitted from the light source 1 is reflected by the dichroic mirror 11, is two-dimensionally scanned XY by the two-dimensional optical deflector 3, and is irradiated on the sample 6 by the objective lens 5. The reflected light irradiating the sample 6 with the laser beam again passes through the objective lens 5 and the two-dimensional optical deflector, and becomes linearly polarized light orthogonal to the vibration direction emitted from the light source 1. This linearly polarized light is reflected by the dichroic mirror 12 and guided to the photodetector 8 for detecting reflected light. Thereby, reflected light from the sample 6 can be detected.
Light passing through the dichroic mirror 12 is input to a photodetector 8 for detecting fluorescence of living organisms such as cells and tissues, and fluorescence from the sample 6 is detected.
With this configuration, the reflected light and the fluorescence can be detected at the same time, so that it is possible to observe the form and the distribution (localization) of the fluorescence with high precision without changing the tailoring of the microscope. .
[0014]
FIG. 4 is a view showing a second embodiment of the present invention, in which a bandpass filter 13 and an optical filter 14 are added to the embodiment of FIG. Specifically, a band-pass filter 13 is provided between a photodetector (left side in the figure) 8 for detecting reflected light and a dichroic mirror 12, and an optical filter 14 is provided for a photodetector for detecting fluorescence (upper side in the figure). ) 8 and the dichroic mirror 12.
[0015]
As the bandpass filter 13, a narrow bandpass filter corresponding to the laser wavelength of the light source 1 is used. For example, when the laser wavelength of the light source 1 is 488 nm, the bandpass filter 13 has a spectral characteristic as shown in FIG. Become.
The optical filter 14 uses one of a narrow band, a high band, a long pass filter, and the like in accordance with the fluorescent staining.
According to the second embodiment configured as described above, it is particularly effective to detect only the reflected light except for the fluorescent crossover.
[0016]
FIG. 6 is a view showing a third embodiment of the present invention. In this embodiment, a dichroic mirror 15 is added to the embodiment of FIG. 4, and an optical filter 14 and a photodetector 8 are further added. In this case, the dichroic mirror 15 whose spectral characteristics have been adjusted in accordance with the double staining of fluorescence is used. According to the third embodiment, one is used to observe reflected light, and the other two is used to detect FITL and rhodamine etc. at the same time because they are used as fluorescent probes.
[0017]
FIG. 7 is a view showing a fourth embodiment of the present invention, in which a dichroic cube 16 is provided instead of the dichroic mirrors 12 and 15 in the embodiment of FIG. This makes the configuration simpler than that of FIG.
[0018]
The present invention is not limited to the above-described embodiment, and may be, for example, as follows. Instead of the dichroic mirrors 11 and 12 used in the embodiment, a prism having a similar function may be used. In addition to this, a wavelength-dependent light splitting whose spectral characteristics can be obtained according to the wavelength of the light from the light source 1 is used. Any element may be used. In addition, any of the narrow-band bandpass filters 13 and the spectral characteristics shown in FIGS. 4, 6, and 7 may be used as long as they can be adjusted to the wavelength of the light source 1.
[0019]
【The invention's effect】
As described above, according to the present invention, a confocal scanning optical microscope capable of efficiently detecting reflected light and fluorescence from a sample can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a first embodiment of a confocal scanning optical microscope according to the present invention.
FIG. 2 is a diagram showing spectral characteristics of the dichroic mirror 11 of FIG.
FIG. 3 is a diagram showing spectral characteristics of the dichroic mirror 12 of FIG.
FIG. 4 is a diagram showing a schematic configuration of a second embodiment of a confocal scanning optical microscope according to the present invention.
FIG. 5 is a diagram showing spectral characteristics of the narrow bandpass filter of FIG. 4;
FIG. 6 is a diagram showing a schematic configuration of a third embodiment of the confocal scanning optical microscope according to the present invention.
FIG. 7 is a diagram showing a schematic configuration of a fourth embodiment of the confocal scanning optical microscope according to the present invention.
FIG. 8 is a diagram showing a schematic configuration of a first example of a conventional confocal scanning optical microscope.
FIG. 9 is a diagram showing a schematic configuration of a second example of a conventional confocal scanning optical microscope.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light source, 3 ... Two-dimensional optical deflector, 4 ... λ / 4 plate, 5 ... Objective lens, 6 ... Sample (sample), 7 ... Confocal stop, 8 ... Photodetector, 11, 12 ... Dichroic filter, 13: narrow band pass filter, 14: optical filter, 15: dichroic filter, 16 ..., 14: CCD television camera, 15: CMD control circuit, 16: dichroic filter.

Claims (2)

光源からの光を試料上に集光する集光光学系と、
前記試料からの反射光を検出する第1の光検出器と、
前記試料からの蛍光を検出する第2の光検出器と、
前記光源からの光を前記試料に向けて導くと共に前記試料からの反射光の一部分及び蛍光を前記第1及び第2の光検出器に向けて導く第1の波長依存性光分割素子と、
前記第1の波長依存性光分割素子から導かれた前記反射光の一部及び前記蛍光を分離して前記第1の光検出器及び第2の光検出器に導く第2の波長依存性光分割素子と、
を備え、前記試料からの反射光および蛍光を検出可能にしたことを特徴とする共焦点走査型光学顕微鏡。
A focusing optical system for focusing light from the light source on the sample,
A first light detector for detecting reflected light from the sample;
A second light detector for detecting fluorescence from the sample;
A first wavelength-dependent light splitting element that guides light from the light source toward the sample and guides a part of reflected light from the sample and fluorescence toward the first and second photodetectors;
Second wavelength-dependent light that separates part of the reflected light and the fluorescence guided from the first wavelength-dependent light splitting element and guides the fluorescence to the first photodetector and the second photodetector. A splitting element;
A confocal scanning optical microscope, characterized in that the light reflected from the sample and the fluorescence from the sample can be detected.
前記第1の波長依存性光分割素子は、前記蛍光の波長域と前記光源からの光の波長域の間で透過率が遷移する特性を有し、かつ前記光源からの光の波長が前記透過率が遷移する領域中に含まれるようにしたことによって、この光源からの光の一部分を前記第1及び第2の光検出器に向けて導くことを特徴とする請求項1記載の共焦点走査型光学顕微鏡。The first wavelength-dependent light splitting element has a characteristic that transmittance changes between a wavelength range of the fluorescence and a wavelength range of light from the light source, and the wavelength of light from the light source is transmitted through the light source. 2. A confocal scan according to claim 1, wherein a portion of the light from the light source is directed toward the first and second photodetectors by being included in a region where the rate transitions. Optical microscope.
JP600593A 1993-01-18 1993-01-18 Confocal scanning optical microscope Expired - Lifetime JP3599754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP600593A JP3599754B2 (en) 1993-01-18 1993-01-18 Confocal scanning optical microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP600593A JP3599754B2 (en) 1993-01-18 1993-01-18 Confocal scanning optical microscope

Publications (2)

Publication Number Publication Date
JPH06214162A JPH06214162A (en) 1994-08-05
JP3599754B2 true JP3599754B2 (en) 2004-12-08

Family

ID=11626627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP600593A Expired - Lifetime JP3599754B2 (en) 1993-01-18 1993-01-18 Confocal scanning optical microscope

Country Status (1)

Country Link
JP (1) JP3599754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037048A (en) * 2016-09-28 2017-08-11 华中科技大学 Imaging device, method and the imaging system of reflected signal and fluorescence signal are obtained simultaneously

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185796A (en) 1999-12-27 2001-07-06 Hitachi Metals Ltd Laser device and device to which the same is applied and method for using the same
JP4733433B2 (en) * 2005-06-03 2011-07-27 株式会社日立ソリューションズ Fluorescence reading apparatus for bead array and fluorescence reading method for bead array
CN108072613B (en) * 2016-11-11 2020-09-08 台湾积体电路制造股份有限公司 Optical detection device and detection method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037048A (en) * 2016-09-28 2017-08-11 华中科技大学 Imaging device, method and the imaging system of reflected signal and fluorescence signal are obtained simultaneously
CN107037048B (en) * 2016-09-28 2019-08-20 华中科技大学 Imaging device, method and the imaging system of reflection signal and fluorescence signal are obtained simultaneously

Also Published As

Publication number Publication date
JPH06214162A (en) 1994-08-05

Similar Documents

Publication Publication Date Title
JP4315794B2 (en) Confocal microscope
JP3816632B2 (en) Scanning microscope
AU744136B2 (en) Signal enhancement for fluorescence microscopy
US7872799B2 (en) Device for controlling light radiation
JP5162781B2 (en) Microscope assembly
US7915575B2 (en) Laser scanning microscope having an IR partial transmission filter for realizing oblique illumination
US7480046B2 (en) Scanning microscope with evanescent wave illumination
KR101089292B1 (en) Reflection and Fluorescence Hybrid in-vivo Confocal Laser Scanning Microscope for Bio-Medical Applications
JP4820759B2 (en) Scanning microscope
US6674573B2 (en) Laser microscope
JP3599754B2 (en) Confocal scanning optical microscope
US6836359B2 (en) Microscope and segmenting device for a microscope
JP5825476B2 (en) Microscope equipment
JP2002023059A (en) Microscope assembly
JP3968629B2 (en) Fluorescence image measuring device
JP2000097857A5 (en)
JPH07128596A (en) Confocal microscope
US11874450B2 (en) Oblique plane microscope for imaging a sample
JP3917705B2 (en) Scanning optical microscope
JP2003131116A (en) Focus detecting device
JPH0427909A (en) Transmission type microscope
JP3454575B2 (en) Scanning optical measuring device
JPH1195114A (en) Scanning optical microscope device
JPH09243920A (en) Scanning type optical microscope
JP2613130B2 (en) Confocal scanning phase contrast microscope

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8