JP3599074B2 - Brain function measurement device and brain function measurement data processing method - Google Patents

Brain function measurement device and brain function measurement data processing method Download PDF

Info

Publication number
JP3599074B2
JP3599074B2 JP4980496A JP4980496A JP3599074B2 JP 3599074 B2 JP3599074 B2 JP 3599074B2 JP 4980496 A JP4980496 A JP 4980496A JP 4980496 A JP4980496 A JP 4980496A JP 3599074 B2 JP3599074 B2 JP 3599074B2
Authority
JP
Japan
Prior art keywords
brain function
signal
fmri
subject
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4980496A
Other languages
Japanese (ja)
Other versions
JPH09238914A (en
Inventor
博幸 板垣
敦 牧
健一 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP4980496A priority Critical patent/JP3599074B2/en
Publication of JPH09238914A publication Critical patent/JPH09238914A/en
Application granted granted Critical
Publication of JP3599074B2 publication Critical patent/JP3599074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は磁気共鳴撮影(以下、MRI)装置を用いた脳機能計測(以下、fMRI)と、光を用いた脳機能計測(以下、光脳機能計測)に関する。
【0002】
【従来の技術】
MRI装置の構成を図4に示す。101は静磁場を発生する磁石、102は被験者などの撮影対象、103は撮影対象102を載せるベッド、104は高周波磁場を発生させると同時に、撮影対象102から生じるエコー信号を検出するための高周波磁場コイル、108,109,110はそれぞれx方向,y方向,z方向の傾斜磁場を発生させるための傾斜磁場発生コイルである。105,106,107はそれぞれ各傾斜磁場発生コイル108,109,110に電流を供給するためのコイル駆動装置である。115は計測されたデータを処理し、画像再構成を行うための計算機、116は計算機115の再構成画像を表示するためのCRTディスプレイである。
【0003】
装置の動作の概要を説明する。撮影対象102の核磁化を励起する高周波磁場は、シンセサイザ111により発生させた高周波を、変調装置112で波形整形,電力増幅し、高周波磁場コイル104に電流を供給することにより発生させる。撮影対象102からのエコー信号は、高周波磁場コイル104により受信され、増幅器113で増幅、検波装置114で検波された後、計算機115に入力され、メモリ117上に保存される。メモリ117では、処理途中のデータや最終結果も格納されている。計算機115は画像再構成を行い、その結果をCRTディスプレイ116で表示する。
【0004】
この装置を用いたfMRIの計測方法の一例を図5(a)に示す。この計測では、一定の時間間隔で時系列画像を撮影する。その際、光や音などの刺激を被験者に印加する期間を設ける。刺激印加前の画像と刺激印加期間中の画像との信号強度を画素毎に比較し、信号強度が変化した画素を刺激により賦活した部位(以下、活性化領域)と判断する。活性化領域での信号変化は、例えば図5(b)のようになる。
【0005】
fMRIの目的は、活性化領域を抽出して脳の機能分布を把握すること、及び活性化領域での信号変化率を観察することである。特に、信号変化率の大きさから、脳疾患の早期診断が可能ではないかと期待されている。しかし、fMRIでの信号変化には複数の要因が混在しており、信号変化率の値が神経活動そのものを反映していないという問題点がある。
【0006】
以下に、fMRIにおける信号変化の要因とこの問題点について説明する。刺激の印加によりMR信号の変化が生じる理由は、酸化ヘモグロビンと還元ヘモグロビンの磁気的性質の違いと、血流量の変化が関与していると考えられている。図6は、刺激の印加によりMR信号が変化するまでの様子を示すフローチャートである。まず、刺激の印加により大脳皮質の神経細胞が興奮し、酸素を消費する。これにより、局所的に還元ヘモグロビンの量が増加する。次いで、活性化領域では酸素消費量が増加しているので、動脈血の血流量が増加する。この血流量の増加は、刺激の印加による消費量をはるかに上回る量の酸素を、活性化領域に供給する。すなわち、活性化領域中では、酸化ヘモグロビンの増加による磁気的性質の変化と血流量の増加とが同時に発生する。これらはともにMR信号に影響を及ぼすので、fMRIの信号変化には、2つの要因が混在していると考えられる。
【0007】
脳疾患の原因を明らかにするためには、信号変化の要因の分離が必要になる。例えば、酸素消費量の変化が少ない場合、刺激に対する脳神経の反応が小さいので、大脳皮質で疾患が生じていると判断できる。一方、血流量の変化が少ない場合、大脳皮質に異常はなく、血管系で疾患が生じていると判断できる。このように、それぞれの要因を分離して信号変化を観察することは重要であるが、fMRIのみではその分離が困難である。
【0008】
一方、還元ヘモグロビンと酸化ヘモグロビンの濃度変化を独立に測定することが可能な計測法として、光脳機能計測がある。次に、この計測法について説明する。
【0009】
光脳機能計測の装置構成図を図7に示す。照射光は、0.6kHz のオシレータ201と1.5kHz のオシレータ202でそれぞれ強度変調され、波長780nmのレーザーダイオード203と波長840nmのレーザーダイオード204を用いて照射端211から出力される。検出端212で集光された透過光は、アバランシェフォトダイオード205で検出され、2台のロックインアンプ206,207で同期検波される。その後、ADコンバータ208でA/D変換し、結果を計算機209に格納する。
【0010】
図7に示した装置では、二波長の透過光強度を独立に計測できる。すなわち、計測された二波長の透過光強度から、酸化ヘモグロビンと還元ヘモグロビンの濃度変化を計算し(図8)、血流量の変化と酸素消費量の変化とを分離することが可能である。しかし、光脳機能計測で得られる信号変化は、光子が通過する経路(以下、光路)上に存在する領域で生じた反応の総和であるので、光脳機能計測の空間分解能はfMRIと比較して劣るという欠点がある。
【0011】
【発明が解決しようとする課題】
本発明の課題は、fMRIと光脳機能計測との計測結果から、局所的な血流量、及び酸素消費量の変化を精度よく推定することである。
【0012】
【課題を解決するための手段】
この課題を解決するために、本発明では実測またはシミュレーションで得られた光路を用い、精度向上を達成する。まず、fMRIの時系列画像において、光路に沿って存在する画素を抽出する。次いで、光脳機能計測で検出された信号変化を光路上に存在するfMRIの画素に分配する。
【0013】
【発明の実施の形態】
本発明の実施例を図面を参照して説明する。なお、fMRI画像とは、1)時系列画像、2)時系列画像に対して安静期間の信号値での規格化処理,移動平均などのフィルタ処理や加算平均処理,t検定などの統計処理を施した時系列機能画像、3)前記2)で述べた処理結果に対して閾値を設定し、閾値条件を満足する画素の信号値を1、それ以外の画素の信号値を0とする二値画像とを含むものとする。これらの処理は、本発明を適用する上で問題はない。
【0014】
図2は、fMRIで抽出された活性化領域近傍の図に、光路220を重ね合わせたものである。入射光は照射端211から照射され、画素300から画素306を通過した後、検出端212で検出される。すなわち、光路220を通過することによる光強度の減衰は、画素300から画素306における神経活動に起因する血行動態を反映している。従って、fMRIで得られた結果に数1で示される処理を施せば、fMRIと光脳機能計測との空間分解能の差を補正することができる。ただし、数1におけるPは光脳機能計測の信号であり、SはfMRI画像の信号強度、CはfMRIと光脳機能計測の補正係数、添字iはfMRI画像での画素番号を表している。また、画素番号はn1からn2までとしている。なお、数1では画素300から画素306までを信号処理の対象としたが、画素300や画素306のように頭皮や頭蓋骨の位置に相当する画素は、刺激を印加しても信号強度が変化しないため、信号処理の対象から除外してもよい。
【0015】
【数1】

Figure 0003599074
【0016】
さて、脳内を通過する実際の光路は、図3(a)の光路220のように単純ではなく、図3(b)の枠内の光路221のように、散乱が原因で広がりを持つ。また、この広がり内を通過する光路はある確率分布を持つことが知られている。この確率分布については、例えばレーダー アンド ソナー パートII(Radar and Sonar PartII),p57,Springer−Verlag (1990) に記載されている。また、一般的にはモンテカルロ法を用いたシミュレーション、または拡散方程式に基づくシミュレーションでこの分布を計算している。
【0017】
このため、光脳機能計測法で更に正確な比較を行うには、fMRI画像の画素毎に所定の確率モデルを用いて重み付けをし、データを処理する必要があると考えられる。この場合のfMRIの計測結果の処理法を数2に示す。なお、WiはfMRI画像の画素iの重み係数を表している。
【0018】
【数2】
Figure 0003599074
【0019】
これら数1と数2は、照射端が一つ、検出端が一つの場合の処理法である。しかし、実際の光脳機能計測では、複数の端子を被験者の頭部に装着して照射端と検出端をスイッチングにより切り替えて計測を行うため、照射端と検出端、及び重み係数が変化することになる。これに対しては、数2を数3に拡張して対応することができる。ただし数3で、添字mは照射端子の位置、添字jは検出端子の位置を表す。すなわち、mjWiは照射端子がmの位置にあり、検出端子がjの位置にある場合の、fMRIの画素iの重み係数を表す。
【0020】
【数3】
Figure 0003599074
【0021】
数3を用いることにより、端子数が増加しても簡単に、fMRIの計測結果に処理を施し光脳機能計測の結果と比較することが可能になる。なお、補正係数Cの値は、P,Wi,Siがそれぞれの計測から得られる既知量であるので、算出可能である。
【0022】
これまでは、fMRIの結果に対する処理法について説明したが、数1から数3に含まれる補正係数Cの値を求めることにより、光脳機能計測での信号変化に近似的に位置情報を付与することができる。すなわち、fMRI画像の各画素に光脳機能計測のデータを割り当て、所定の位置でのfMRIの信号変化とヘモグロビン量の変化との対応付けが可能になる。
【0023】
この対応付けを行うには補正係数Cを算出する必要があるが、既に述べたようにこれは可能である。MRI画像の各画素に光脳機能計測のデータを割り当てる式を数4に示す。fMRI画像の画素番号iにおける光脳機能計測の信号Piは、重み係数WiとfMRI画像の信号強度Si,補正係数Cの積で算出される。
【0024】
【数4】
Figure 0003599074
【0025】
fMRIの結果に対する処理法、及び光脳機能計測の結果に対する処理法について説明した。これらの処理法を用いた解析手順を以下に説明する。
【0026】
図1は、fMRIの結果と光脳機能計測の結果との解析手順の一例を示す図である。ただし、fMRIと光脳機能計測の計測結果、及び確率モデルは既に得られているものとする。
【0027】
まず、照射端と検出端の位置と光路分布の確率モデルとから、fMRIの画像の各画素の重み係数を割り当てる(処理1)。次いで、fMRI画像の信号値と重み係数との積算値を各画素毎に計算し(処理2)、その積算値の総和を求める(処理3)。これは数3で表される処理である。その後、光脳機能計測で得られた信号変化を先に計算した積算値の総和で割り、補正係数Cを算出する(処理4)。各画素の重み係数とfMRI画像の信号値、及び補正係数Cとを積算し(処理5)、fMRI画像の各画素の位置における光脳機能計測の信号変化を算出する。これは数4で表される処理である。更に、必要であれば処理5の結果をMRI画像上に重ね合わせて表示してもよい(処理6)。
【0028】
次に、処理3の対象となるfMRI画像の選択例について説明する。処理3は、図9(a)のように、時系列に存在するfMRI画像のうち一枚を対象とすることを基本とするが、これを拡張し、複数枚のfMRI画像を対象とすることも可能である。なお、処理3の対象となるfMRI画像には、ハッチングを施している。同一の計測を何度も繰り返す場合は、図9(b)のように各セッションの同一時相のfMRI画像を処理3の対象としてもよい。図9(b)の処理では、各セッションの信号変化を平均化するため、信号のばらつきを低減する効果がある。
【0029】
図9は同一時相のfMRI画像への処理3の適用について示したが、複数時相のfMRI画像へ処理3を適用することも可能である。このような処理法は、
fMRIの時系列画像撮影の間隔が光脳機能計測の時間分解能と比較して優れている場合に適用することが好ましい。
【0030】
図10(a)は、複数時相のfMRI画像への処理3の適用例を示す図である。これも信号変化を平均化して信号のばらつきを低減する効果がある。更に、同一の計測を何度も繰り返す場合は、図10(b)のように各セッションの複数時相のfMRI画像を処理3の対象としてもよい。
【0031】
【発明の効果】
本発明を用いれば、fMRIと光脳機能計測との計測結果から、局所的な血流量、及び酸素消費量の変化を精度よく推定することが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施例のfMRIと光脳機能計測による解析手順を示すフローチャート。
【図2】fMRIの画像に光路を重ね合わせた説明図。
【図3】脳内を通過する(a)散乱を無視する場合の光路と、(b)散乱を考慮する場合の光路を示す説明図。
【図4】MRI装置のブロック図。
【図5】fMRIでの(a)計測方法と、(b)活性化領域での信号変化の一例を示す説明図。
【図6】刺激の印加によりMR信号の変化が生じるまでを示すフローチャート。
【図7】光を用いた脳機能計測装置の説明図。
【図8】光を用いた脳機能計測の信号変化の特性図。
【図9】同一時相のfMRI画像に対し、処理3を(a)1回のセッションのfMRI画像に対する適用例と、(b)複数セッションのfMRI画像に対する適用例を示す説明図。
【図10】複数時相のfMRI画像に対し、処理3を(a)同一セッションのfMRI画像に対する適用例と、(b)複数セッションのfMRI画像に対する適用例を示す説明図。
【符号の説明】
1…重み係数の割り当て処理、2…fMRI画像の信号値と重み係数との積算処理、3…処理2で求めた積算値の加算処理、4…補正係数の算出処理、5…光脳機能計測における信号変化の割り当て処理、6…光脳機能計測における信号変化のマッピング処理。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to brain function measurement (hereinafter, fMRI) using a magnetic resonance imaging (hereinafter, MRI) apparatus and brain function measurement using light (hereinafter, optical brain function measurement).
[0002]
[Prior art]
FIG. 4 shows the configuration of the MRI apparatus. 101 is a magnet for generating a static magnetic field, 102 is an imaging target such as a subject, 103 is a bed on which the imaging target 102 is mounted, 104 is a high-frequency magnetic field for generating a high-frequency magnetic field and detecting an echo signal generated from the imaging target 102 at the same time. Coils 108, 109 and 110 are gradient magnetic field generating coils for generating gradient magnetic fields in the x, y and z directions, respectively. Reference numerals 105, 106 and 107 denote coil driving devices for supplying current to the respective gradient magnetic field generating coils 108, 109 and 110. Reference numeral 115 denotes a computer for processing the measured data and performing image reconstruction, and 116 denotes a CRT display for displaying a reconstructed image of the computer 115.
[0003]
An outline of the operation of the device will be described. The high-frequency magnetic field that excites the nuclear magnetization of the imaging target 102 is generated by subjecting the high-frequency generated by the synthesizer 111 to waveform shaping and power amplification by the modulator 112 and supplying a current to the high-frequency magnetic field coil 104. The echo signal from the imaging target 102 is received by the high-frequency magnetic field coil 104, amplified by the amplifier 113, detected by the detector 114, input to the computer 115, and stored in the memory 117. The memory 117 also stores data being processed and final results. The computer 115 performs image reconstruction, and displays the result on the CRT display 116.
[0004]
One example of an fMRI measurement method using this apparatus is shown in FIG. In this measurement, time-series images are taken at fixed time intervals. At that time, a period in which a stimulus such as light or sound is applied to the subject is provided. The signal intensity between the image before the stimulus application and the image during the stimulus application period is compared for each pixel, and the pixel whose signal intensity has changed is determined to be a site activated by the stimulus (hereinafter, an activated area). The signal change in the activation region is, for example, as shown in FIG.
[0005]
The purpose of fMRI is to grasp the functional distribution of the brain by extracting the activated region and to observe the signal change rate in the activated region. In particular, it is expected that early diagnosis of brain disease is possible due to the large signal change rate. However, there is a problem that a plurality of factors are mixed in the signal change in the fMRI, and the value of the signal change rate does not reflect the nerve activity itself.
[0006]
Hereinafter, the cause of the signal change in the fMRI and this problem will be described. It is considered that the reason why the MR signal is changed by the application of the stimulus is related to the difference in the magnetic properties of oxyhemoglobin and reduced hemoglobin and the change in blood flow. FIG. 6 is a flowchart showing a state until the MR signal is changed by the application of the stimulus. First, nerve cells in the cerebral cortex are excited by application of a stimulus, and consume oxygen. This locally increases the amount of reduced hemoglobin. Next, since the oxygen consumption increases in the activation region, the blood flow rate of the arterial blood increases. This increase in blood flow provides an amount of oxygen to the activation area that far exceeds the amount consumed by the application of the stimulus. That is, in the activated region, a change in magnetic properties due to an increase in oxyhemoglobin and an increase in blood flow occur simultaneously. Since both of these affect the MR signal, it is considered that two factors coexist in the fMRI signal change.
[0007]
In order to clarify the cause of the brain disease, it is necessary to separate the factors of the signal change. For example, when the change in oxygen consumption is small, the response of the cranial nerve to the stimulus is small, so it can be determined that a disease has occurred in the cerebral cortex. On the other hand, when the change in the blood flow rate is small, there is no abnormality in the cerebral cortex, and it can be determined that a disease has occurred in the vascular system. As described above, it is important to observe the signal change while separating each factor, but it is difficult to separate the factors only by fMRI.
[0008]
On the other hand, there is an optical brain function measurement as a measurement method capable of independently measuring a change in concentration of reduced hemoglobin and oxyhemoglobin. Next, this measuring method will be described.
[0009]
FIG. 7 shows an apparatus configuration diagram of the optical brain function measurement. The irradiation light is intensity-modulated by an oscillator 201 of 0.6 kHz and an oscillator 202 of 1.5 kHz, respectively, and output from an irradiation end 211 using a laser diode 203 having a wavelength of 780 nm and a laser diode 204 having a wavelength of 840 nm. The transmitted light collected at the detection end 212 is detected by the avalanche photodiode 205 and synchronously detected by the two lock-in amplifiers 206 and 207. After that, A / D conversion is performed by the AD converter 208, and the result is stored in the computer 209.
[0010]
The device shown in FIG. 7 can measure the transmitted light intensity of two wavelengths independently. That is, it is possible to calculate changes in the concentrations of oxyhemoglobin and reduced hemoglobin from the measured two-wavelength transmitted light intensities (FIG. 8), and to separate changes in blood flow and changes in oxygen consumption. However, since the signal change obtained by optical brain function measurement is the sum of the reactions generated in the region existing on the path through which photons pass (hereinafter, optical path), the spatial resolution of optical brain function measurement is compared with that of fMRI. There is a disadvantage that it is inferior.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to accurately estimate local changes in blood flow and oxygen consumption from measurement results of fMRI and optical brain function measurement.
[0012]
[Means for Solving the Problems]
In order to solve this problem, the present invention achieves an improvement in accuracy by using an optical path obtained by actual measurement or simulation. First, pixels existing along the optical path are extracted from the time-series image of the fMRI. Next, the signal change detected by the optical brain function measurement is distributed to the fMRI pixels existing on the optical path.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. The fMRI image includes 1) a time-series image, 2) a normalization process using signal values during a rest period, a filtering process such as a moving average, an addition averaging process, and a statistical process such as a t-test on the time-series image. 3) A threshold value is set for the processing result described in the above 2), and a signal value of a pixel satisfying the threshold condition is 1 and a signal value of other pixels is 0. Image. These processes have no problem in applying the present invention.
[0014]
FIG. 2 is a diagram in which an optical path 220 is superimposed on a view near an active region extracted by fMRI. The incident light is emitted from the irradiation end 211, passes through the pixels 300 to 306, and is detected by the detection end 212. That is, the attenuation of the light intensity due to passing through the optical path 220 reflects the hemodynamics caused by the neural activity in the pixels 300 to 306. Therefore, if the processing shown in Expression 1 is performed on the result obtained by fMRI, the difference in the spatial resolution between fMRI and optical brain function measurement can be corrected. Here, P in Equation 1 is a signal for optical brain function measurement, S is the signal intensity of the fMRI image, C is a correction coefficient for fMRI and optical brain function measurement, and the subscript i is a pixel number in the fMRI image. The pixel numbers are from n1 to n2. In the equation 1, the signal processing is performed on the pixels 300 to 306. However, the signal intensity does not change even when the stimulus is applied to the pixels corresponding to the positions of the scalp and the skull, such as the pixels 300 and 306. Therefore, it may be excluded from signal processing targets.
[0015]
(Equation 1)
Figure 0003599074
[0016]
Now, the actual light path passing through the brain is not as simple as the light path 220 in FIG. 3A, but has a spread due to scattering as in the light path 221 in the frame in FIG. 3B. It is known that an optical path passing through this spread has a certain probability distribution. This probability distribution is described in, for example, Radar and Sonar Part II, p57, Springer-Verlag (1990). Generally, this distribution is calculated by a simulation using the Monte Carlo method or a simulation based on the diffusion equation.
[0017]
For this reason, in order to perform a more accurate comparison by the optical brain function measurement method, it is considered that it is necessary to perform data processing by weighting each pixel of the fMRI image using a predetermined probability model. The processing method of the fMRI measurement result in this case is shown in Expression 2. Note that Wi represents a weight coefficient of the pixel i of the fMRI image.
[0018]
(Equation 2)
Figure 0003599074
[0019]
Equations (1) and (2) are processing methods in the case of one irradiation end and one detection end. However, in actual optical brain function measurement, since multiple terminals are attached to the subject's head and measurement is performed by switching between the irradiation end and the detection end by switching, the irradiation end and the detection end, and the weight coefficient may change. become. This can be dealt with by extending Equation 2 to Equation 3. However, in Equation 3, the subscript m indicates the position of the irradiation terminal, and the subscript j indicates the position of the detection terminal. That is, mjWi represents the weight coefficient of the pixel i of the fMRI when the irradiation terminal is at the position of m and the detection terminal is at the position of j.
[0020]
(Equation 3)
Figure 0003599074
[0021]
By using Equation 3, even if the number of terminals increases, it is possible to easily process the measurement result of fMRI and compare it with the result of optical brain function measurement. The value of the correction coefficient C can be calculated because P, Wi, and Si are known amounts obtained from the respective measurements.
[0022]
Until now, the processing method for the fMRI result has been described, but by obtaining the value of the correction coefficient C included in Equations 1 to 3, position information is approximately added to the signal change in the optical brain function measurement. be able to. That is, data of optical brain function measurement is assigned to each pixel of the fMRI image, and it becomes possible to associate a change in the fMRI signal at a predetermined position with a change in the amount of hemoglobin.
[0023]
To make this association, it is necessary to calculate the correction coefficient C, but this is possible as described above. Equation 4 assigns the data of the optical brain function measurement to each pixel of the MRI image. The signal Pi of the optical brain function measurement at the pixel number i of the fMRI image is calculated by the product of the weight coefficient Wi, the signal strength Si of the fMRI image, and the correction coefficient C.
[0024]
(Equation 4)
Figure 0003599074
[0025]
The processing method for the result of fMRI and the processing method for the result of optical brain function measurement have been described. An analysis procedure using these processing methods will be described below.
[0026]
FIG. 1 is a diagram illustrating an example of an analysis procedure of the result of the fMRI and the result of the optical brain function measurement. However, it is assumed that the measurement results of fMRI and optical brain function measurement and the probability model have already been obtained.
[0027]
First, a weighting factor for each pixel of an fMRI image is assigned from the position of the irradiation end and the detection end and the probability model of the optical path distribution (Process 1). Next, an integrated value of the signal value of the fMRI image and the weight coefficient is calculated for each pixel (Process 2), and the sum of the integrated values is obtained (Process 3). This is a process represented by Expression 3. Thereafter, a correction coefficient C is calculated by dividing the signal change obtained by the optical brain function measurement by the sum of the previously calculated integrated values (process 4). The weight coefficient of each pixel, the signal value of the fMRI image, and the correction coefficient C are integrated (process 5), and the signal change of the optical brain function measurement at the position of each pixel of the fMRI image is calculated. This is a process represented by Expression 4. Further, if necessary, the result of the process 5 may be superimposed on the MRI image and displayed (process 6).
[0028]
Next, an example of selecting an fMRI image to be processed 3 will be described. The process 3 is basically based on one fMRI image existing in time series as shown in FIG. 9A, but is extended to cover a plurality of fMRI images. Is also possible. Note that the fMRI image to be processed 3 is hatched. When the same measurement is repeated many times, the processing 3 may be performed on the fMRI images of the same time phase in each session as shown in FIG. In the process of FIG. 9B, since the signal change of each session is averaged, there is an effect of reducing the signal variation.
[0029]
Although FIG. 9 illustrates the application of the process 3 to the fMRI images of the same time phase, the process 3 may be applied to the fMRI images of a plurality of time phases. Such a processing method
It is preferable to apply the present invention when the interval between time series image capturing of fMRI is superior to the time resolution of optical brain function measurement.
[0030]
FIG. 10A is a diagram illustrating an example of application of the process 3 to fMRI images of a plurality of time phases. This also has the effect of averaging signal changes and reducing signal variations. Further, when the same measurement is repeated many times, fMRI images of a plurality of time phases of each session may be set as targets of the process 3 as shown in FIG.
[0031]
【The invention's effect】
According to the present invention, it is possible to accurately estimate changes in local blood flow and oxygen consumption from measurement results of fMRI and optical brain function measurement.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an analysis procedure by fMRI and optical brain function measurement according to one embodiment of the present invention.
FIG. 2 is an explanatory diagram in which an optical path is superimposed on an image of fMRI.
FIG. 3 is an explanatory diagram showing (a) an optical path in the case where scattering is ignored and (b) an optical path in the case where scattering is considered.
FIG. 4 is a block diagram of an MRI apparatus.
FIG. 5 is an explanatory diagram showing an example of (a) a measurement method in fMRI and (b) a signal change in an activated region.
FIG. 6 is a flowchart illustrating a process until a change in an MR signal occurs due to application of a stimulus;
FIG. 7 is an explanatory diagram of a brain function measurement device using light.
FIG. 8 is a characteristic diagram of a signal change in brain function measurement using light.
FIGS. 9A and 9B are explanatory diagrams illustrating an example of applying process 3 to an fMRI image of one session, and an example of applying the process 3 to an fMRI image of a plurality of sessions for fMRI images of the same time phase.
FIG. 10 is an explanatory diagram showing an example in which processing 3 is applied to an fMRI image of a plurality of sessions, and (b) an example of application to an fMRI image of a plurality of sessions.
[Explanation of symbols]
1. Assignment processing of weighting coefficients, 2. Integration processing of signal values of fMRI images and weighting coefficients, 3. Addition processing of integration values obtained in processing 2, 4. Calculation processing of correction coefficients, 5. Optical brain function measurement Assignment processing of signal change in 6) Mapping processing of signal change in optical brain function measurement.

Claims (2)

静磁場を発生する静磁場発生手段と、傾斜磁場を発生する傾斜磁場発生手段と、被検者の核磁化を励起する高周波磁場を発生する高周波磁場発生手段と、被検者からの核磁気共鳴信号を検出する磁気共鳴信号検出手段と、前記核磁気共鳴信号検出手段の検出信号の演算を行う第1の計算機と、前記計算機による演算結果の出力手段とを有するMRI装置と、光を発生する光発生手段により発生した光を被検者に照射する光照射手段と、前記光照射手段により照射され被検者の体内を透過した光を検出する光検出手段と、前記光検出手段からの信号の演算を行う第2の計算機とを有する光計測装置とを備えた脳機能計測装置であって、Static magnetic field generating means for generating a static magnetic field, gradient magnetic field generating means for generating a gradient magnetic field, high frequency magnetic field generating means for generating a high frequency magnetic field for exciting nuclear magnetization of a subject, and nuclear magnetic resonance from the subject An MRI apparatus having magnetic resonance signal detection means for detecting a signal, a first computer for calculating a detection signal of the nuclear magnetic resonance signal detection means, and means for outputting a calculation result by the computer; and generating light. Light irradiation means for irradiating the subject with light generated by the light generation means, light detection means for detecting light irradiated by the light irradiation means and transmitted through the body of the subject, and a signal from the light detection means And a light measurement device having a second computer that performs the calculation of
前記MRI装置は、前記被検者の脳へ刺激を印加する前の画像と印加した後の画像から成るfMRI画像を取得し、前記光計測装置は、前記fMRI画像の所定の光路における光脳機能検査の信号変化を算出することを特長とする脳機能計測装置。  The MRI apparatus acquires an fMRI image composed of an image before applying a stimulus to the subject's brain and an image after applying the stimulus to the subject's brain, and the optical measurement apparatus performs optical brain function in a predetermined optical path of the fMRI image. A brain function measurement device characterized by calculating a signal change of an examination.
被検者の脳へ刺激を印加する前と刺激を印加した後の期間にわたりMRI装置を用いて時系列に取得したfMRI画像上に光計測装置の光路を設定し、この光路上のfMRI画像の画素へ前記被検者の脳へ刺激を印加する前と刺激を印加した後の期間にわたり光計測装置を用いて検出した光脳機能計測信号の信号変化を分配することを特長とする脳機能計測データ処理方法。The optical path of the optical measurement device is set on the fMRI image acquired in time series using the MRI apparatus before and after applying the stimulus to the subject's brain. Brain function measurement characterized by distributing a signal change of an optical brain function measurement signal detected using an optical measurement device over a period before and after applying a stimulus to the subject's brain to pixels. Data processing method.
JP4980496A 1996-03-07 1996-03-07 Brain function measurement device and brain function measurement data processing method Expired - Fee Related JP3599074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4980496A JP3599074B2 (en) 1996-03-07 1996-03-07 Brain function measurement device and brain function measurement data processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4980496A JP3599074B2 (en) 1996-03-07 1996-03-07 Brain function measurement device and brain function measurement data processing method

Publications (2)

Publication Number Publication Date
JPH09238914A JPH09238914A (en) 1997-09-16
JP3599074B2 true JP3599074B2 (en) 2004-12-08

Family

ID=12841338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4980496A Expired - Fee Related JP3599074B2 (en) 1996-03-07 1996-03-07 Brain function measurement device and brain function measurement data processing method

Country Status (1)

Country Link
JP (1) JP3599074B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930408A1 (en) * 1999-07-02 2001-01-04 Zeiss Carl Fa An optical coherence computer tomography (OCT) system for surgical support combines pre-operation tissue position data and CT data for use in navigation assistance for the operating surgeon
CN1298284C (en) 2002-02-14 2007-02-07 加藤俊德 Apparatus for evaluating biological function
JP4517111B2 (en) * 2004-06-07 2010-08-04 独立行政法人情報通信研究機構 Brain function measuring device, brain function measuring method, and brain function measuring program
JP4625809B2 (en) 2004-07-20 2011-02-02 俊徳 加藤 Biological function diagnostic apparatus, biological function diagnostic method, biological probe, biological probe mounting tool, biological probe support tool, and biological probe mounting support tool
KR101323318B1 (en) * 2012-09-06 2013-10-29 고려대학교 산학협력단 Data processing method of functional magnetic resonance imaging for brain functional training
CN104337517B (en) * 2014-10-20 2016-08-24 中国科学院深圳先进技术研究院 Functional mri method and apparatus
CN112294260B (en) * 2020-10-10 2022-04-05 浙江大学 Magnetic compatible optical brain function imaging method and device

Also Published As

Publication number Publication date
JPH09238914A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
Gauthier et al. BOLD signal physiology: models and applications
Cleve et al. In vivo detection of acute pain-induced changes of GABA+ and Glx in the human brain by using functional 1H MEGA-PRESS MR spectroscopy
US6760611B1 (en) Magnetic resonance imaging method and device therefor
Hennig et al. MR-Encephalography: Fast multi-channel monitoring of brain physiology with magnetic resonance
US6819952B2 (en) Magnetic resonance spectroscopic imaging method to monitor progression and treatment of neurodegenerative conditions
US9167970B2 (en) Non-invasive optical imaging for measuring pulse and arterial elasticity in the brain
Aguirre et al. Perfusion fMRI for functional neuroimaging
Zhang et al. Thalamocortical relationship in epileptic patients with generalized spike and wave discharges—A multimodal neuroimaging study
JP2010207568A (en) Magnetic resonance imaging apparatus
Bagshaw et al. Single trial variability of EEG and fMRI responses to visual stimuli
JP3599074B2 (en) Brain function measurement device and brain function measurement data processing method
Morgan et al. High-resolution line-scanning reveals distinct visual response properties across human cortical layers
Safi-Harb et al. Advantages and disadvantages of a fast fMRI sequence in the context of EEG–fMRI investigation of epilepsy patients: a realistic simulation study
US8314616B2 (en) Magnetic resonance method and apparatus for determining the magnetization transfer constant in spin echo imaging sequences
JP4532178B2 (en) Method and apparatus for improved signal separation of metabolites in MR spectroscopy
Mirsattari et al. Linear aspects of transformation from interictal epileptic discharges to BOLD fMRI signals in an animal model of occipital epilepsy
US11160454B2 (en) System and method for imaging biomarkers indicative of cardiac thermal ablation lesions
JP4177165B2 (en) MRI equipment
US11630176B2 (en) System and method for controlling physiological noise in functional magnetic resonance imaging
JPS61148357A (en) Nmr imaging apparatus
KR20230107987A (en) Brain function activity monitoring method and apparatus thereof
US10557909B2 (en) Method and magnetic resonance tomography apparatus for diffusion imaging
WO2008132686A1 (en) Quantification for mr parameters such as t1 or t2 in a sub-region of a subject
JP2005161102A (en) Magnetic resonance diagnostic apparatus
JPH06225863A (en) Photographing method for magnetic resonance spectrum image

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees