JPH09238914A - Brain function measurement data processing method - Google Patents

Brain function measurement data processing method

Info

Publication number
JPH09238914A
JPH09238914A JP8049804A JP4980496A JPH09238914A JP H09238914 A JPH09238914 A JP H09238914A JP 8049804 A JP8049804 A JP 8049804A JP 4980496 A JP4980496 A JP 4980496A JP H09238914 A JPH09238914 A JP H09238914A
Authority
JP
Japan
Prior art keywords
brain function
data processing
function measurement
image
processing method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8049804A
Other languages
Japanese (ja)
Other versions
JP3599074B2 (en
Inventor
Hiroyuki Itagaki
博幸 板垣
Atsushi Maki
敦 牧
Kenichi Okajima
健一 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP4980496A priority Critical patent/JP3599074B2/en
Publication of JPH09238914A publication Critical patent/JPH09238914A/en
Application granted granted Critical
Publication of JP3599074B2 publication Critical patent/JP3599074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve accurate estimation of changes in the quantity of local blood stream and in the consumption of oxygen by a method wherein an optical path obtained by actual measurement or simulation is used to extract pixels existing along the optical path and then, changes in signals detected by optical brain function measurement are distributed among the pixels of an fMRI on the optical path. SOLUTION: Weight coefficients are allotted to pixels of an image of fMRI based on the positions of an irradiation end and a detection end and a probability model of an optical path distribution (processing 1). Then, an integrated value of signal values and the weight coefficients of the fMRI image is calculated per pixel (processing 2) to determine the sum of the integrated values (processing 3). Thereafter, changes in signals obtained by optical brain function measurement are divided by the integrated values previously calculated to calculate a correction factor C (processing 4). Then, the weight coefficients of the pixels, the signal values of the fMRI image and the correction factor are integrated (processing 5) to calculate changes in signals in the optical brain function measurement at the positions of the pixels of the fMRI image. The results are displayed to be superimposed on the MRI image (processing 6).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は磁気共鳴撮影(以
下、MRI)装置を用いた脳機能計測(以下、fMRI)と、
光を用いた脳機能計測(以下、光脳機能計測)に関す
る。
TECHNICAL FIELD The present invention relates to brain function measurement (hereinafter, fMRI) using a magnetic resonance imaging (hereinafter, MRI) apparatus, and
The present invention relates to brain function measurement using light (hereinafter, optical brain function measurement).

【0002】[0002]

【従来の技術】MRI装置の構成を図4に示す。101
は静磁場を発生する磁石、102は被験者などの撮影対
象、103は撮影対象102を載せるベッド、104は
高周波磁場を発生させると同時に、撮影対象102から
生じるエコー信号を検出するための高周波磁場コイル、
108,109,110はそれぞれx方向,y方向,z
方向の傾斜磁場を発生させるための傾斜磁場発生コイル
である。105,106,107はそれぞれ各傾斜磁場
発生コイル108,109,110に電流を供給するた
めのコイル駆動装置である。115は計測されたデータ
を処理し、画像再構成を行うための計算機、116は計
算機115の再構成画像を表示するためのCRTディス
プレイである。
2. Description of the Related Art The structure of an MRI apparatus is shown in FIG. 101
Is a magnet for generating a static magnetic field, 102 is an imaging target such as a subject, 103 is a bed on which the imaging target 102 is placed, 104 is a high-frequency magnetic field coil for generating an RF magnetic field and at the same time detecting an echo signal generated from the imaging target 102. ,
108, 109, and 110 are x-direction, y-direction, and z-direction, respectively.
It is a gradient magnetic field generation coil for generating a gradient magnetic field in a direction. Reference numerals 105, 106 and 107 denote coil driving devices for supplying currents to the gradient magnetic field generating coils 108, 109 and 110, respectively. Reference numeral 115 is a computer for processing the measured data and performing image reconstruction, and 116 is a CRT display for displaying the reconstructed image of the computer 115.

【0003】装置の動作の概要を説明する。撮影対象1
02の核磁化を励起する高周波磁場は、シンセサイザ1
11により発生させた高周波を、変調装置112で波形
整形,電力増幅し、高周波磁場コイル104に電流を供
給することにより発生させる。撮影対象102からのエ
コー信号は、高周波磁場コイル104により受信され、
増幅器113で増幅、検波装置114で検波された後、
計算機115に入力され、メモリ117上に保存され
る。メモリ117では、処理途中のデータや最終結果も
格納されている。計算機115は画像再構成を行い、そ
の結果をCRTディスプレイ116で表示する。
An outline of the operation of the device will be described. Shooting target 1
The high frequency magnetic field that excites the nuclear magnetization of 02 is generated by the synthesizer 1.
The high frequency generated by 11 is subjected to waveform shaping and power amplification by the modulator 112, and is generated by supplying a current to the high frequency magnetic field coil 104. The echo signal from the imaging target 102 is received by the high-frequency magnetic field coil 104,
After being amplified by the amplifier 113 and detected by the detector 114,
It is input to the computer 115 and stored in the memory 117. The memory 117 also stores data being processed and final results. The computer 115 performs image reconstruction and displays the result on the CRT display 116.

【0004】この装置を用いたfMRIの計測方法の一
例を図5(a)に示す。この計測では、一定の時間間隔
で時系列画像を撮影する。その際、光や音などの刺激を
被験者に印加する期間を設ける。刺激印加前の画像と刺
激印加期間中の画像との信号強度を画素毎に比較し、信
号強度が変化した画素を刺激により賦活した部位(以
下、活性化領域)と判断する。活性化領域での信号変化
は、例えば図5(b)のようになる。
An example of the fMRI measurement method using this apparatus is shown in FIG. In this measurement, time series images are taken at regular time intervals. At that time, a period for applying a stimulus such as light or sound to the subject is provided. The signal intensities of the image before the stimulus application and the image during the stimulus application period are compared for each pixel, and it is determined that the pixel in which the signal intensity changes is activated by the stimulus (hereinafter, activated region). The signal change in the activation region is, for example, as shown in FIG.

【0005】fMRIの目的は、活性化領域を抽出して
脳の機能分布を把握すること、及び活性化領域での信号
変化率を観察することである。特に、信号変化率の大き
さから、脳疾患の早期診断が可能ではないかと期待され
ている。しかし、fMRIでの信号変化には複数の要因
が混在しており、信号変化率の値が神経活動そのものを
反映していないという問題点がある。
The purpose of fMRI is to extract the activation region to grasp the functional distribution of the brain, and to observe the signal change rate in the activation region. In particular, it is expected that early diagnosis of brain diseases will be possible due to the large rate of signal change. However, a plurality of factors are mixed in the signal change in fMRI, and there is a problem that the value of the signal change rate does not reflect the nerve activity itself.

【0006】以下に、fMRIにおける信号変化の要因
とこの問題点について説明する。刺激の印加によりMR
信号の変化が生じる理由は、酸化ヘモグロビンと還元ヘ
モグロビンの磁気的性質の違いと、血流量の変化が関与
していると考えられている。図6は、刺激の印加により
MR信号が変化するまでの様子を示すフローチャートで
ある。まず、刺激の印加により大脳皮質の神経細胞が興
奮し、酸素を消費する。これにより、局所的に還元ヘモ
グロビンの量が増加する。次いで、活性化領域では酸素
消費量が増加しているので、動脈血の血流量が増加す
る。この血流量の増加は、刺激の印加による消費量をは
るかに上回る量の酸素を、活性化領域に供給する。すな
わち、活性化領域中では、酸化ヘモグロビンの増加によ
る磁気的性質の変化と血流量の増加とが同時に発生す
る。これらはともにMR信号に影響を及ぼすので、fM
RIの信号変化には、2つの要因が混在していると考え
られる。
Below, the cause of signal change in fMRI and this problem will be explained. MR by applying stimulus
It is considered that the change in signal is caused by the difference in magnetic properties between oxyhemoglobin and deoxyhemoglobin and the change in blood flow. FIG. 6 is a flowchart showing a state until the MR signal is changed by applying a stimulus. First, application of a stimulus excites nerve cells in the cerebral cortex and consumes oxygen. This locally increases the amount of reduced hemoglobin. Next, since the oxygen consumption increases in the activation region, the blood flow of arterial blood increases. This increase in blood flow supplies the activated region with an amount of oxygen that far exceeds the amount consumed by the application of the stimulus. That is, in the activated region, a change in magnetic properties due to an increase in oxyhemoglobin and an increase in blood flow occur at the same time. Since both of these affect the MR signal, fM
It is considered that two factors are mixed in the RI signal change.

【0007】脳疾患の原因を明らかにするためには、信
号変化の要因の分離が必要になる。例えば、酸素消費量
の変化が少ない場合、刺激に対する脳神経の反応が小さ
いので、大脳皮質で疾患が生じていると判断できる。一
方、血流量の変化が少ない場合、大脳皮質に異常はな
く、血管系で疾患が生じていると判断できる。このよう
に、それぞれの要因を分離して信号変化を観察すること
は重要であるが、fMRIのみではその分離が困難である。
In order to clarify the cause of brain disease, it is necessary to separate the factors of signal change. For example, when the change in oxygen consumption is small, the response of the cranial nerve to the stimulus is small, so it can be determined that a disease has occurred in the cerebral cortex. On the other hand, when the change in blood flow is small, it can be determined that there is no abnormality in the cerebral cortex and that a disease has occurred in the vascular system. Thus, it is important to separate the respective factors and observe the signal change, but it is difficult to separate them by fMRI alone.

【0008】一方、還元ヘモグロビンと酸化ヘモグロビ
ンの濃度変化を独立に測定することが可能な計測法とし
て、光脳機能計測がある。次に、この計測法について説
明する。
On the other hand, optical brain function measurement is available as a measurement method capable of independently measuring changes in the concentrations of reduced hemoglobin and oxyhemoglobin. Next, this measuring method will be described.

【0009】光脳機能計測の装置構成図を図7に示す。
照射光は、0.6kHz のオシレータ201と1.5k
Hz のオシレータ202でそれぞれ強度変調され、波
長780nmのレーザーダイオード203と波長840n
mのレーザーダイオード204を用いて照射端211か
ら出力される。検出端212で集光された透過光は、ア
バランシェフォトダイオード205で検出され、2台の
ロックインアンプ206,207で同期検波される。そ
の後、ADコンバータ208でA/D変換し、結果を計
算機209に格納する。
FIG. 7 shows a device configuration diagram of the optical brain function measurement.
The irradiating light is 0.5 kHz with the oscillator 201 of 0.5 kHz.
Each of them is intensity-modulated by the oscillator 202 of Hz and has a wavelength of 780 nm and a laser diode 203 of wavelength 780 nm.
It is output from the irradiation end 211 by using the laser diode 204 of m. The transmitted light collected at the detection end 212 is detected by the avalanche photodiode 205 and is synchronously detected by the two lock-in amplifiers 206 and 207. After that, A / D conversion is performed by the AD converter 208, and the result is stored in the computer 209.

【0010】図7に示した装置では、二波長の透過光強
度を独立に計測できる。すなわち、計測された二波長の
透過光強度から、酸化ヘモグロビンと還元ヘモグロビン
の濃度変化を計算し(図8)、血流量の変化と酸素消費
量の変化とを分離することが可能である。しかし、光脳
機能計測で得られる信号変化は、光子が通過する経路
(以下、光路)上に存在する領域で生じた反応の総和で
あるので、光脳機能計測の空間分解能はfMRIと比較
して劣るという欠点がある。
The apparatus shown in FIG. 7 can measure the transmitted light intensity of two wavelengths independently. That is, it is possible to separate changes in blood flow from changes in oxygen consumption by calculating changes in the concentrations of oxyhemoglobin and deoxyhemoglobin from the measured transmitted light intensity of two wavelengths (FIG. 8). However, since the signal change obtained by optical brain function measurement is the sum of reactions that occur in the region existing on the path through which photons pass (hereinafter referred to as the optical path), the spatial resolution of optical brain function measurement is compared with fMRI. Is inferior.

【0011】[0011]

【発明が解決しようとする課題】本発明の課題は、fM
RIと光脳機能計測との計測結果から、局所的な血流
量、及び酸素消費量の変化を精度よく推定することであ
る。
SUMMARY OF THE INVENTION The object of the present invention is to find fM
Accurate estimation of changes in local blood flow and oxygen consumption based on measurement results of RI and optical brain function measurement.

【0012】[0012]

【課題を解決するための手段】この課題を解決するため
に、本発明では実測またはシミュレーションで得られた
光路を用い、精度向上を達成する。まず、fMRIの時
系列画像において、光路に沿って存在する画素を抽出す
る。次いで、光脳機能計測で検出された信号変化を光路
上に存在するfMRIの画素に分配する。
In order to solve this problem, the present invention uses an optical path obtained by actual measurement or simulation to improve accuracy. First, in the time series image of fMRI, pixels existing along the optical path are extracted. Next, the signal change detected by the optical brain function measurement is distributed to the fMRI pixels existing on the optical path.

【0013】[0013]

【発明の実施の形態】本発明の実施例を図面を参照して
説明する。なお、fMRI画像とは、1)時系列画像、
2)時系列画像に対して安静期間の信号値での規格化処
理,移動平均などのフィルタ処理や加算平均処理,t検
定などの統計処理を施した時系列機能画像、3)前記
2)で述べた処理結果に対して閾値を設定し、閾値条件
を満足する画素の信号値を1、それ以外の画素の信号値
を0とする二値画像とを含むものとする。これらの処理
は、本発明を適用する上で問題はない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. The fMRI images are 1) time series images,
2) Time-series functional images obtained by subjecting time-series images to normalization processing with signal values during the rest period, filter processing such as moving average, averaging processing, and statistical processing such as t-test, 3) In 2) above A threshold value is set for the processing result described above, and a binary image in which the signal value of a pixel satisfying the threshold condition is 1 and the signal value of the other pixels is 0 is included. These processes have no problem in applying the present invention.

【0014】図2は、fMRIで抽出された活性化領域
近傍の図に、光路220を重ね合わせたものである。入
射光は照射端211から照射され、画素300から画素
306を通過した後、検出端212で検出される。すなわ
ち、光路220を通過することによる光強度の減衰は、
画素300から画素306における神経活動に起因する
血行動態を反映している。従って、fMRIで得られた
結果に数1で示される処理を施せば、fMRIと光脳機
能計測との空間分解能の差を補正することができる。た
だし、数1におけるPは光脳機能計測の信号であり、S
はfMRI画像の信号強度、CはfMRIと光脳機能計
測の補正係数、添字iはfMRI画像での画素番号を表
している。また、画素番号はn1からn2までとしてい
る。なお、数1では画素300から画素306までを信
号処理の対象としたが、画素300や画素306のように
頭皮や頭蓋骨の位置に相当する画素は、刺激を印加して
も信号強度が変化しないため、信号処理の対象から除外
してもよい。
FIG. 2 is a diagram in which the optical path 220 is superposed on a diagram in the vicinity of the activated region extracted by fMRI. Incident light is emitted from the irradiation end 211, and the pixels 300 to
After passing through 306, it is detected at the detection end 212. That is, the attenuation of the light intensity due to passing through the optical path 220 is
It reflects the hemodynamics due to neural activity in pixels 300 to 306. Therefore, by applying the processing shown in Expression 1 to the result obtained by fMRI, the difference in spatial resolution between fMRI and optical brain function measurement can be corrected. However, P in Equation 1 is a signal for optical brain function measurement, and S
Is the signal intensity of the fMRI image, C is the correction coefficient for fMRI and optical brain function measurement, and the subscript i is the pixel number in the fMRI image. The pixel numbers are n1 to n2. In addition, in the equation 1, the pixels 300 to 306 are targeted for signal processing, but the pixels corresponding to the positions of the scalp and the skull like the pixels 300 and 306 do not change in signal intensity even when a stimulus is applied. Therefore, you may exclude from the object of signal processing.

【0015】[0015]

【数1】 [Equation 1]

【0016】さて、脳内を通過する実際の光路は、図3
(a)の光路220のように単純ではなく、図3(b)
の枠内の光路221のように、散乱が原因で広がりを持
つ。また、この広がり内を通過する光路はある確率分布
を持つことが知られている。この確率分布については、
例えばレーダー アンド ソナー パートII(Radarand
Sonar PartII),p57,Springer-Verlag (1990) に記
載されている。また、一般的にはモンテカルロ法を用い
たシミュレーション、または拡散方程式に基づくシミュ
レーションでこの分布を計算している。
The actual optical path through the brain is shown in FIG.
It is not as simple as the optical path 220 of FIG.
Like the optical path 221 in the frame of, there is a spread due to scattering. It is also known that the optical path passing through this spread has a certain probability distribution. For this probability distribution,
For example, Radar and Sonar Part II (Radarand
Sonar PartII), p57, Springer-Verlag (1990). Further, generally, this distribution is calculated by a simulation using a Monte Carlo method or a simulation based on a diffusion equation.

【0017】このため、光脳機能計測法で更に正確な比
較を行うには、fMRI画像の画素毎に所定の確率モデ
ルを用いて重み付けをし、データを処理する必要がある
と考えられる。この場合のfMRIの計測結果の処理法
を数2に示す。なお、WiはfMRI画像の画素iの重
み係数を表している。
Therefore, in order to perform a more accurate comparison by the optical brain function measuring method, it is considered necessary to weight each pixel of the fMRI image using a predetermined probability model and process the data. The method of processing the measurement result of fMRI in this case is shown in Equation 2. Wi represents the weighting coefficient of the pixel i of the fMRI image.

【0018】[0018]

【数2】 [Equation 2]

【0019】これら数1と数2は、照射端が一つ、検出
端が一つの場合の処理法である。しかし、実際の光脳機
能計測では、複数の端子を被験者の頭部に装着して照射
端と検出端をスイッチングにより切り替えて計測を行う
ため、照射端と検出端、及び重み係数が変化することに
なる。これに対しては、数2を数3に拡張して対応する
ことができる。ただし数3で、添字mは照射端子の位
置、添字jは検出端子の位置を表す。すなわち、mjW
iは照射端子がmの位置にあり、検出端子がjの位置に
ある場合の、fMRIの画素iの重み係数を表す。
These equations 1 and 2 are processing methods in the case where there is one irradiation end and one detection end. However, in actual optical brain function measurement, since multiple terminals are attached to the head of the subject and switching is performed by switching the irradiation end and the detection end, the irradiation end and the detection end, and the weighting factor may change. become. This can be dealt with by expanding Formula 2 to Formula 3. However, in Equation 3, the subscript m represents the position of the irradiation terminal, and the subscript j represents the position of the detection terminal. That is, mjW
i represents the weighting coefficient of the pixel i of fMRI when the irradiation terminal is at the position m and the detection terminal is at the position j.

【0020】[0020]

【数3】 (Equation 3)

【0021】数3を用いることにより、端子数が増加し
ても簡単に、fMRIの計測結果に処理を施し光脳機能
計測の結果と比較することが可能になる。なお、補正係
数Cの値は、P,Wi,Siがそれぞれの計測から得ら
れる既知量であるので、算出可能である。
By using the equation 3, even if the number of terminals increases, it is possible to easily process the measurement result of fMRI and compare it with the result of optical brain function measurement. The value of the correction coefficient C can be calculated because P, Wi, and Si are known amounts obtained from the respective measurements.

【0022】これまでは、fMRIの結果に対する処理
法について説明したが、数1から数3に含まれる補正係
数Cの値を求めることにより、光脳機能計測での信号変
化に近似的に位置情報を付与することができる。すなわ
ち、fMRI画像の各画素に光脳機能計測のデータを割
り当て、所定の位置でのfMRIの信号変化とヘモグロ
ビン量の変化との対応付けが可能になる。
Up to now, the processing method for the result of fMRI has been described, but by obtaining the value of the correction coefficient C included in the equations 1 to 3, the position information is approximated to the signal change in the optical brain function measurement. Can be given. That is, data of optical brain function measurement is assigned to each pixel of the fMRI image, and it is possible to associate the fMRI signal change at a predetermined position with the hemoglobin amount change.

【0023】この対応付けを行うには補正係数Cを算出
する必要があるが、既に述べたようにこれは可能であ
る。MRI画像の各画素に光脳機能計測のデータを割り
当てる式を数4に示す。fMRI画像の画素番号iにお
ける光脳機能計測の信号Piは、重み係数WiとfMR
I画像の信号強度Si,補正係数Cの積で算出される。
The correction coefficient C must be calculated in order to make this correspondence, but this is possible as described above. Equation 4 shows an equation for assigning the data of optical brain function measurement to each pixel of the MRI image. The signal Pi of the photobrain function measurement at the pixel number i of the fMRI image is calculated based on the weighting factors Wi and fMR.
It is calculated by the product of the signal intensity Si of the I image and the correction coefficient C.

【0024】[0024]

【数4】 (Equation 4)

【0025】fMRIの結果に対する処理法、及び光脳
機能計測の結果に対する処理法について説明した。これ
らの処理法を用いた解析手順を以下に説明する。
The processing method for the result of fMRI and the processing method for the result of optical brain function measurement have been described. The analysis procedure using these processing methods will be described below.

【0026】図1は、fMRIの結果と光脳機能計測の
結果との解析手順の一例を示す図である。ただし、fM
RIと光脳機能計測の計測結果、及び確率モデルは既に
得られているものとする。
FIG. 1 is a diagram showing an example of an analysis procedure of the result of fMRI and the result of optical brain function measurement. However, fM
It is assumed that the measurement results of RI and optical brain function measurement, and the probabilistic model have already been obtained.

【0027】まず、照射端と検出端の位置と光路分布の
確率モデルとから、fMRIの画像の各画素の重み係数
を割り当てる(処理1)。次いで、fMRI画像の信号
値と重み係数との積算値を各画素毎に計算し(処理
2)、その積算値の総和を求める(処理3)。これは数
3で表される処理である。その後、光脳機能計測で得ら
れた信号変化を先に計算した積算値の総和で割り、補正
係数Cを算出する(処理4)。各画素の重み係数とfMR
I画像の信号値、及び補正係数Cとを積算し(処理
5)、fMRI画像の各画素の位置における光脳機能計
測の信号変化を算出する。これは数4で表される処理で
ある。更に、必要であれば処理5の結果をMRI画像上
に重ね合わせて表示してもよい(処理6)。
First, a weighting factor for each pixel of an fMRI image is assigned from the positions of the irradiation end and the detection end and the probability model of the optical path distribution (process 1). Next, the integrated value of the signal value of the fMRI image and the weighting coefficient is calculated for each pixel (process 2), and the total sum of the integrated values is obtained (process 3). This is the process represented by Formula 3. After that, the signal change obtained by the optical brain function measurement is divided by the sum of the integrated values calculated previously to calculate the correction coefficient C (process 4). Weighting factor of each pixel and fMR
The signal value of the I image and the correction coefficient C are integrated (process 5), and the signal change of the photobrain function measurement at the position of each pixel of the fMRI image is calculated. This is the process represented by Equation 4. Further, if necessary, the result of the process 5 may be displayed in an overlapping manner on the MRI image (process 6).

【0028】次に、処理3の対象となるfMRI画像の
選択例について説明する。処理3は、図9(a)のよう
に、時系列に存在するfMRI画像のうち一枚を対象と
することを基本とするが、これを拡張し、複数枚のfM
RI画像を対象とすることも可能である。なお、処理3
の対象となるfMRI画像には、ハッチングを施してい
る。同一の計測を何度も繰り返す場合は、図9(b)の
ように各セッションの同一時相のfMRI画像を処理3
の対象としてもよい。図9(b)の処理では、各セッシ
ョンの信号変化を平均化するため、信号のばらつきを低
減する効果がある。
Next, an example of selecting an fMRI image to be processed 3 will be described. As shown in FIG. 9A, the process 3 is basically performed on one of the fMRI images existing in time series. However, this process is expanded to include a plurality of fM images.
It is also possible to target the RI image. Note that process 3
Hatching is applied to the fMRI image to be processed. When the same measurement is repeated many times, the fMRI image of the same time phase of each session is processed 3 as shown in FIG. 9B.
May be the target of. In the process of FIG. 9B, the signal change of each session is averaged, so that there is an effect of reducing the signal variation.

【0029】図9は同一時相のfMRI画像への処理3
の適用について示したが、複数時相のfMRI画像へ処
理3を適用することも可能である。このような処理法
は、fMRIの時系列画像撮影の間隔が光脳機能計測の
時間分解能と比較して優れている場合に適用することが
好ましい。
FIG. 9 shows a process 3 for fMRI images of the same time phase.
However, it is also possible to apply the process 3 to the fMRI images of a plurality of time phases. Such a processing method is preferably applied when the time-series image capturing interval of fMRI is superior to the time resolution of optical brain function measurement.

【0030】図10(a)は、複数時相のfMRI画像
への処理3の適用例を示す図である。これも信号変化を
平均化して信号のばらつきを低減する効果がある。更
に、同一の計測を何度も繰り返す場合は、図10(b)
のように各セッションの複数時相のfMRI画像を処理
3の対象としてもよい。
FIG. 10A is a diagram showing an example of application of the process 3 to the fMRI images of a plurality of time phases. This also has the effect of averaging the signal changes and reducing signal variations. Furthermore, when the same measurement is repeated many times, FIG.
As described above, the fMRI images in a plurality of time phases of each session may be the target of the process 3.

【0031】[0031]

【発明の効果】本発明を用いれば、fMRIと光脳機能
計測との計測結果から、局所的な血流量、及び酸素消費
量の変化を精度よく推定することが可能になる。
According to the present invention, it is possible to accurately estimate changes in local blood flow and oxygen consumption from the measurement results of fMRI and optical brain function measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のfMRIと光脳機能計測に
よる解析手順を示すフローチャート。
FIG. 1 is a flowchart showing an analysis procedure by fMRI and optical brain function measurement according to an embodiment of the present invention.

【図2】fMRIの画像に光路を重ね合わせた説明図。FIG. 2 is an explanatory diagram in which an optical path is superimposed on an fMRI image.

【図3】脳内を通過する(a)散乱を無視する場合の光
路と、(b)散乱を考慮する場合の光路を示す説明図。
FIG. 3 is an explanatory diagram showing an optical path passing through the brain (a) when ignoring scattering and an optical path when (b) considering scattering.

【図4】MRI装置のブロック図。FIG. 4 is a block diagram of an MRI apparatus.

【図5】fMRIでの(a)計測方法と、(b)活性化
領域での信号変化の一例を示す説明図。
FIG. 5 is an explanatory diagram showing an example of (a) measurement method in fMRI and (b) signal change in an activated region.

【図6】刺激の印加によりMR信号の変化が生じるまで
を示すフローチャート。
FIG. 6 is a flowchart showing the steps until the MR signal is changed by applying a stimulus.

【図7】光を用いた脳機能計測装置の説明図。FIG. 7 is an explanatory diagram of a brain function measuring device using light.

【図8】光を用いた脳機能計測の信号変化の特性図。FIG. 8 is a characteristic diagram of signal changes in brain function measurement using light.

【図9】同一時相のfMRI画像に対し、処理3を
(a)1回のセッションのfMRI画像に対する適用例
と、(b)複数セッションのfMRI画像に対する適用
例を示す説明図。
FIG. 9 is an explanatory diagram showing an application example of (a) an fMRI image of one session and (b) an application example of an fMRI image of a plurality of sessions to fMRI images of the same time phase.

【図10】複数時相のfMRI画像に対し、処理3を
(a)同一セッションのfMRI画像に対する適用例
と、(b)複数セッションのfMRI画像に対する適用
例を示す説明図。
10A and 10B are explanatory views showing an example of application of process 3 to an fMRI image of a plurality of time phases, and (a) an example of application to an fMRI image of the same session;

【符号の説明】[Explanation of symbols]

1…重み係数の割り当て処理、2…fMRI画像の信号
値と重み係数との積算処理、3…処理2で求めた積算値
の加算処理、4…補正係数の算出処理、5…光脳機能計
測における信号変化の割り当て処理、6…光脳機能計測
における信号変化のマッピング処理。
1 ... Weighting coefficient assignment processing, 2 ... Integration processing of signal value of fMRI image and weighting coefficient, 3 ... Addition processing of integrated value obtained in processing 2, 4 ... Correction coefficient calculation processing, 5 ... Optical brain function measurement Signal change allocation processing in 6 ... Mapping processing of signal change in optical brain function measurement.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡島 健一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Okajima 1-280, Higashikoigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】空間的に強度が均一である静磁場を発生す
る静磁場発生手段と、互いに直交するX,Y,Zの三方
向のそれぞれに強度勾配を有する傾斜磁場を発生する傾
斜磁場発生手段と、被験者の核磁化を励起する高周波磁
場を発生する高周波磁場発生手段と、被験者からの核磁
気共鳴信号を検出する検出手段と、前記信号検出手段の
検出信号の演算を行う計算機と、前記計算機による演算
結果の出力手段とを有するMRI装置を用い、時系列画
像の撮影期間中に被験者の脳神経を興奮させる刺激印加
期間を設けて計測を行い、前記時系列画像に所定の処理
を施して時系列機能画像を作成し、刺激に反応した部位
を抽出した脳機能MRI計測の計測結果と、300nm
から1300nmの波長を有する光を発生する光発生手
段と、前記光発生手段により発生した光を被験者に照射
する光照射手段と、被験者を透過した光を検出する光検
出手段と、前記光検出手段からの信号の演算を行う計算
機とを有する光計測装置を用い、計測期間中に刺激印加
期間を設けて検出信号の変化を観察した光脳機能計測の
計測結果とを用い、被験者の体内を通過する光路を画像
上に設定し、光路に含まれる時系列機能画像の画素を抽
出する処理と、抽出された画素の信号値を用いた演算処
理とを行うことを特徴とする脳機能計測データ処理法。
1. A static magnetic field generating means for generating a static magnetic field having a spatially uniform intensity, and a gradient magnetic field generating for generating a gradient magnetic field having an intensity gradient in each of X, Y and Z directions orthogonal to each other. Means, a high-frequency magnetic field generating means for generating a high-frequency magnetic field for exciting the nuclear magnetization of the subject, a detecting means for detecting a nuclear magnetic resonance signal from the subject, a computer for calculating the detection signal of the signal detecting means, Using an MRI apparatus having a calculation result output unit by a computer, measurement is performed by providing a stimulus application period during which a subject's cranial nerves are excited during a time-series image capturing period, and then performing predetermined processing on the time-series image. 300 nm of brain function MRI measurement results in which time-series functional images were created and the site that responded to the stimulus was extracted
From the light generating means for generating light having a wavelength of 1300 nm, a light irradiating means for irradiating the subject with the light generated by the light generating means, a light detecting means for detecting light transmitted through the subject, and the light detecting means. Using the optical measurement device that has a calculator that calculates the signal from the, and using the measurement result of the optical brain function measurement that observes the change of the detection signal by providing the stimulus application period during the measurement period, and passes through the body of the subject Brain function measurement data processing characterized by setting an optical path to be performed on an image, extracting a pixel of a time-series functional image included in the optical path, and performing arithmetic processing using a signal value of the extracted pixel Law.
【請求項2】前記光路は、光の散乱を考慮した確率分布
の関数で記述される請求項1に記載の脳機能計測データ
処理法。
2. The brain function measurement data processing method according to claim 1, wherein the optical path is described by a function of a probability distribution in consideration of light scattering.
【請求項3】前記確率分布の関数は、光散乱を模擬する
シミュレーションで計算される請求項2に記載の脳機能
計測データ処理法。
3. The brain function measurement data processing method according to claim 2, wherein the function of the probability distribution is calculated by a simulation simulating light scattering.
【請求項4】前記光散乱を模擬するシミュレーション
は、モンテカルロ法を用いたシミュレーションである請
求項3に記載の脳機能計測データ処理法。
4. The brain function measurement data processing method according to claim 3, wherein the simulation simulating the light scattering is a simulation using a Monte Carlo method.
【請求項5】前記光散乱を模擬するシミュレーション
は、拡散方程式に基づくシミュレーションである請求項
3に記載の脳機能計測データ処理法。
5. The brain function measurement data processing method according to claim 3, wherein the simulation simulating the light scattering is a simulation based on a diffusion equation.
【請求項6】前記演算処理は、抽出された画素の信号値
の和を計算する処理を含む請求項1に記載の脳機能計測
データ処理法。
6. The brain function measurement data processing method according to claim 1, wherein the calculation process includes a process of calculating a sum of signal values of the extracted pixels.
【請求項7】前記抽出された画素の信号値の和を計算す
る処理は、一度の処理で時系列機能画像一枚を対象とし
て行われる請求項6に記載の脳機能計測データ処理法。
7. The brain function measurement data processing method according to claim 6, wherein the process of calculating the sum of the signal values of the extracted pixels is performed for one time-series function image in one process.
【請求項8】前記抽出された画素の信号値の和を計算す
る処理は、一度の処理で一時相の時系列機能画像を対象
として行われる請求項6に記載の脳機能計測データ処理
法。
8. The brain function measurement data processing method according to claim 6, wherein the process of calculating the sum of the signal values of the extracted pixels is performed for a time-series functional image of a temporary phase in one process.
【請求項9】前記抽出された画素の信号値の和を計算す
る処理は、一度の処理で複数時相の時系列機能画像を対
象として行われる請求項6に記載の脳機能計測データ処
理法。
9. The brain function measurement data processing method according to claim 6, wherein the process of calculating the sum of the signal values of the extracted pixels is performed for a time series functional image of a plurality of time phases in one process. .
【請求項10】前記演算処理は、前記光路の確率分布の
関数を用いて時系列機能画像の各画素に重み係数を設定
する処理を含む請求項1に記載の脳機能計測データ処理
法。
10. The brain function measurement data processing method according to claim 1, wherein the calculation process includes a process of setting a weighting coefficient for each pixel of the time-series function image using a function of the probability distribution of the optical path.
【請求項11】前記演算処理は、各画素の重み係数と信
号値との積を計算し、前記積の値の総和を計算する処理
を含む請求項1に記載の脳機能計測データ処理法。
11. The brain function measurement data processing method according to claim 1, wherein the calculation process includes a process of calculating a product of a weighting coefficient of each pixel and a signal value and calculating a sum of the product values.
【請求項12】前記積の値の総和を計算する処理は、一
度の処理で時系列機能画像一枚を対象として行われる請
求項11に記載の脳機能計測データ処理法。
12. The brain function measurement data processing method according to claim 11, wherein the process of calculating the sum of the product values is performed for one time-series function image in one process.
【請求項13】前記積の値の総和を計算する処理は、一
度の処理で一時相の時系列機能画像を対象として行われ
る請求項11に記載の脳機能計測データ処理法。
13. The brain function measurement data processing method according to claim 11, wherein the process of calculating the sum of the product values is performed for a time-series functional image of a temporary phase in one process.
【請求項14】前記積の値の総和を計算する処理は、一
度の処理で複数時相の時系列機能画像を対象として行わ
れる請求項11に記載の脳機能計測データ処理法。
14. The brain function measurement data processing method according to claim 11, wherein the process of calculating the sum of the product values is performed for a time series functional image of a plurality of time phases in one process.
【請求項15】前記演算処理は、請求項6から9及び請
求項11から14のいずれかで計算される信号和を用い
て光脳機能計測の計測結果を規格化し、両機能計測結果
の変換係数を求める処理である請求項1に記載の脳機能
計測データ処理法。
15. The arithmetic processing standardizes the measurement result of optical brain function measurement using the signal sum calculated in any one of claims 6 to 9 and claims 11 to 14, and converts both function measurement results. The brain function measurement data processing method according to claim 1, which is a process for obtaining a coefficient.
【請求項16】請求項1において、前記重み係数と時系
列機能画像の信号値と変換係数との積を計算し、その計
算結果を前記時系列機能画像の各画素に割り当てる分配
処理を含む脳機能計測データ処理法。
16. The brain according to claim 1, including a distribution process of calculating the product of the weighting factor, the signal value of the time-series functional image, and the conversion coefficient, and allocating the calculation result to each pixel of the time-series functional image. Functional measurement data processing method.
【請求項17】請求項1において、前記重み係数と時系
列機能画像の信号値と変換係数との積を計算し、その計
算結果を前記時系列機能画像の各画素に割り当てる分配
処理と、前記分配処理の結果をMRI装置で撮影した画
像と重ね合わせて表示する光脳機能計測のマッピング処
理を含む脳機能計測データ処理法。
17. The distribution process according to claim 1, wherein the product of the weighting factor, the signal value of the time-series functional image, and the transform coefficient is calculated, and the calculation result is assigned to each pixel of the time-series functional image. A brain function measurement data processing method including a mapping process of optical brain function measurement, in which the result of the distribution process is superimposed and displayed on an image taken by an MRI apparatus.
JP4980496A 1996-03-07 1996-03-07 Brain function measurement device and brain function measurement data processing method Expired - Fee Related JP3599074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4980496A JP3599074B2 (en) 1996-03-07 1996-03-07 Brain function measurement device and brain function measurement data processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4980496A JP3599074B2 (en) 1996-03-07 1996-03-07 Brain function measurement device and brain function measurement data processing method

Publications (2)

Publication Number Publication Date
JPH09238914A true JPH09238914A (en) 1997-09-16
JP3599074B2 JP3599074B2 (en) 2004-12-08

Family

ID=12841338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4980496A Expired - Fee Related JP3599074B2 (en) 1996-03-07 1996-03-07 Brain function measurement device and brain function measurement data processing method

Country Status (1)

Country Link
JP (1) JP3599074B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070317A (en) * 1999-07-02 2001-03-21 Carl Zeiss:Fa Oct-assisted surgical system
JP2005342359A (en) * 2004-06-07 2005-12-15 National Institute Of Information & Communication Technology Apparatus, method, and program for measuring brain function
US7065392B2 (en) 2002-02-14 2006-06-20 Toshinori Kato Apparatus for evaluating biological function
US8406838B2 (en) 2004-07-20 2013-03-26 Toshinori Kato Apparatus for evaluating biological function, a method for evaluating biological function, a living body probe, a living body probe mounting device, a living body probe support device and a living body probe mounting accessory
KR101323318B1 (en) * 2012-09-06 2013-10-29 고려대학교 산학협력단 Data processing method of functional magnetic resonance imaging for brain functional training
CN104337517A (en) * 2014-10-20 2015-02-11 中国科学院深圳先进技术研究院 Method and device for functional magnetic resonance imaging
CN112294260A (en) * 2020-10-10 2021-02-02 浙江大学 Magnetic compatible optical brain function imaging method and device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070317A (en) * 1999-07-02 2001-03-21 Carl Zeiss:Fa Oct-assisted surgical system
US7065392B2 (en) 2002-02-14 2006-06-20 Toshinori Kato Apparatus for evaluating biological function
CN1298284C (en) * 2002-02-14 2007-02-07 加藤俊德 Apparatus for evaluating biological function
JP2005342359A (en) * 2004-06-07 2005-12-15 National Institute Of Information & Communication Technology Apparatus, method, and program for measuring brain function
JP4517111B2 (en) * 2004-06-07 2010-08-04 独立行政法人情報通信研究機構 Brain function measuring device, brain function measuring method, and brain function measuring program
US8406838B2 (en) 2004-07-20 2013-03-26 Toshinori Kato Apparatus for evaluating biological function, a method for evaluating biological function, a living body probe, a living body probe mounting device, a living body probe support device and a living body probe mounting accessory
KR101323318B1 (en) * 2012-09-06 2013-10-29 고려대학교 산학협력단 Data processing method of functional magnetic resonance imaging for brain functional training
CN104337517A (en) * 2014-10-20 2015-02-11 中国科学院深圳先进技术研究院 Method and device for functional magnetic resonance imaging
CN112294260A (en) * 2020-10-10 2021-02-02 浙江大学 Magnetic compatible optical brain function imaging method and device

Also Published As

Publication number Publication date
JP3599074B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
Albouy et al. Selective entrainment of theta oscillations in the dorsal stream causally enhances auditory working memory performance
Vulliemoz et al. Simultaneous intracranial EEG and fMRI of interictal epileptic discharges in humans
US5303705A (en) Evoked 23NA MR imaging of sodium currents in the brain
US6490472B1 (en) MRI system and method for producing an index indicative of alzheimer's disease
Smyser et al. Use of resting-state functional MRI to study brain development and injury in neonates
US20090018432A1 (en) Methods and apparatus for imaging with magnetic induction
Aguirre et al. Perfusion fMRI for functional neuroimaging
US6192264B1 (en) Method and system for MRI venography including arterial and venous discrimination
CN111417342A (en) Brain network activity estimation system, brain network activity estimation method, brain network activity estimation program, and learned brain activity estimation model
Zhou et al. Detecting directional influence in fMRI connectivity analysis using PCA based Granger causality
US6539246B2 (en) Method and apparatus for conducting an fMRI-BOLD experiment with multiple stimulation functions
Mullinger et al. Exploring the feasibility of simultaneous electroencephalography/functional magnetic resonance imaging at 7 T
Sundaram et al. Direct neural current imaging in an intact cerebellum with magnetic resonance imaging
Aguirre et al. The development and future of perfusion fMRI for dynamic imaging of human brain activity
JPH09238914A (en) Brain function measurement data processing method
Bianciardi et al. Combination of BOLD-fMRI and VEP recordings for spin-echo MRI detection of primary magnetic effects caused by neuronal currents
Arlinghaus et al. Quantitative magnetization transfer imaging of the breast at 3.0 T: reproducibility in healthy volunteers
Tuunanen et al. Comparison of BOLD fMRI and MEG characteristics to vibrotactile stimulation
Chang et al. Assessing recurrent interactions in cortical networks: modeling EEG response to transcranial magnetic stimulation
JP2001120511A (en) Organism signal measuring apparatus
Kasten et al. Integrating electric field modelling and neuroimaging to explain inter-individual variability of tACS effects
NL1023455C2 (en) Method and nuclear spin tomography apparatus for displaying with local resolution a change in the functional activities of the brain.
JP4177165B2 (en) MRI equipment
EP1566144A1 (en) Translational sensory stimulation procedure for the stimulation of the amygdala-hippocampal complex
WO2008132686A1 (en) Quantification for mr parameters such as t1 or t2 in a sub-region of a subject

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees