JP3599072B2 - Vinyl aromatic polymer-containing resin composition - Google Patents

Vinyl aromatic polymer-containing resin composition Download PDF

Info

Publication number
JP3599072B2
JP3599072B2 JP34626595A JP34626595A JP3599072B2 JP 3599072 B2 JP3599072 B2 JP 3599072B2 JP 34626595 A JP34626595 A JP 34626595A JP 34626595 A JP34626595 A JP 34626595A JP 3599072 B2 JP3599072 B2 JP 3599072B2
Authority
JP
Japan
Prior art keywords
vinyl aromatic
molecular weight
polymer
aromatic polymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34626595A
Other languages
Japanese (ja)
Other versions
JPH09157487A (en
Inventor
堅 水城
孝昌 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP34626595A priority Critical patent/JP3599072B2/en
Publication of JPH09157487A publication Critical patent/JPH09157487A/en
Application granted granted Critical
Publication of JP3599072B2 publication Critical patent/JP3599072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、高分子量のビニル芳香族重合体をマトリックス成分に含有しているにもかかわらず良好な流動性を有しており、かつ機械的強度に優れているビニル芳香族重合体樹脂組成物に関する。本発明の組成物は特にシート成形性が良好であり、耐面衝撃性と剛性のバランスに優れ、外観の良好なシートが得られる。更に良好な流動性から射出成形用としても高剛性、高耐衝撃性のグレードが得られる。
【0002】
【従来の技術】
HIPSに代表されるゴム変性ポリスチレンは安価で加工性に優れ、耐衝撃強度、電気絶縁性にすぐれるために家電製品、事務機器、工業部品、日用雑貨など多岐にわたる分野で使用されている。樹脂業界には樹脂の代替に関し、過去に経験則のようなものがあり、これは樹脂の用途は比較的高級、高価な樹脂で始まり、その商品が広く普及するにつれて、より低位な樹脂に移行するというものである。
【0003】
ポリスチレン系樹脂についてもこの傾向があり、例えば従来ABS樹脂が使用されていた用途にHIPSが置き代わる場合、ポリスチレン系樹脂の長所である易成形性をそのままにしてより高耐衝撃性や高剛性化が要求される。しかしながらHIPS樹脂は耐衝撃性に優れたものは剛性が低く、反対に剛性の高いものは耐衝撃性が低いという二律背反の関係があり、特に耐面衝撃性と剛性の両者を同時に満足するようなHIPSは得られていないのが現状である。
【0004】
一般に、このゴム変性ポリスチレンは、ゴム状重合体の存在下スチレンを重合することにより得られるもので、このようにして得られたゴム変性ポリスチレンは線状(リニアー型)のポリスチレンで構成される樹脂連続相に、ゴム状重合体が分散相として存在する形態を成している。
【0005】
周知のごとく、ゴム変性ポリスチレンの耐衝撃強度を高めるためには、樹脂組成物中のゴム状重合体の含量を上げることが有効であるが、その反面、剛性、流動性が低下するという問題がある。このためゴム変性ポリスチレンの耐衝撃強度と剛性のバランス及び流動性を高めるために、出来るだけ少量のゴム状重合体を用いて高い耐衝撃性を付与することが肝要であり、一定のゴム状重合体含有量のもとで耐衝撃性と流動性のバランスを一層高めるための手法が求められている。また耐衝撃性と流動性のバランスを高めるために連続相のポリスチレン部分の分子量や分子量分布を制御する手法も種々検討されているが未だに満足する効果は得られていない。
【0006】
【発明が解決しようとする課題】
本発明はビニル芳香族重合体樹脂より上位の樹脂が用いられていた用途に代替可能であり、かつ耐衝撃性と流動性のバランスを高めたビニル芳香族重合体樹脂組成物を提供するものである。
【0007】
【課題を解決するための手段】
上記課題を解決するため鋭意検討を重ねた結果、本発明者等はアニオン重合で作られる重量平均分子量が50万以上の超高分子量の星型分岐構造を有するビニル芳香族重合体(以下、星型ポリマーまたは星型分岐ポリマーという)を、通常のラジカル重合で作られるゴム変性ビニル芳香族重合体にブレンドした樹脂組成物は、超高分子量のビニル芳香族重合体をマトリックス成分に含有しているにもかかわらず良好な流動性を示し、かつ耐衝撃性、剛性などの機械的特性及び耐熱性などの熱特性が通常のラジカル重合ゴム変性ビニル芳香族重合体に比較し、格段に優れた特性を有することを見い出し本発明を完成した。
【0008】
本発明はゴム変性ビニル芳香族重合体の連続相にアニオン重合でつくられた特定構造の星型ポリマーである超高分子量のビニル芳香族重合体を含有することに特徴があり、星型ポリマー以外のビニル芳香族重合体例えば超高分子量のリニアーなアニオン重合ビニル芳香族重合体やリニアーなラジカル重合ビニル芳香族重合体では、樹脂組成物の流動性の低下が大きく本発明の効果が達成されない。
【0009】
本発明にいうアニオン重合で合成される特定構造の星型ポリマーとは、アニオン重合によりリニアーな分子量のそろったリビング状態のプレポリマーを、低分子量多官能化合物(カップリング剤)または少量のジビニルベンゼンなどの多官能モノマー類と反応させることにより得られる。更には多官能のビニルモノマーから合成される多官能のアニオン重合開始触媒を用いても合成することが出来る。
【0010】
本発明における星型ポリマーとは新版高分子辞典(朝倉書店)p432に定義されているstar polymerを言う。本発明の場合多官能低分子量化合物残基またはポリビニル芳香族残基を中心にビニル芳香族重合体がn本結合したラジアル型のポリマーである。ここで多官能化合物残基叉はポリビニル化合物残基の基体化合物は分子量がおよそ2000以下の低分子量化合物である。また分岐重合体の本数としては3〜8である。
星型ポリマーは、例えば3分岐と4分岐重合体の混合物であってもよい。
【0011】
本発明の(A)成分である星型分岐ポリマーの分子量は重量平均分子量(Mw)として50万〜500万の範囲である。通常アニオン重合において分子量の調整は仕込モノマー量に対する触媒に用いる有機リチウム量で調整されるが、本発明の星型分岐ポリマーはカップリング反応により分岐数に応じて分子量がジャンプすることになる。本発明の場合はカップリング反応後の星型分岐ポリマーの重量平均分子量(Mw)が50万〜500万の範囲であり、より好ましくは50万〜200万、更に好ましくは50万〜150万である。
【0012】
星型分岐ポリマーの重量平均分子量が50万以下であると組成物の流動性は高くなるが、シート用途の組成物としては流動性が高くなりすぎて押出し安定性に悪影響が出たり、組成物の剛性や面衝撃強さも低下傾向にあるために好ましくない。また星型分岐ポリマーは後記のカップリング反応により得られるが、カップリング前の枝ポリマーは、分子量分布(重量平均分子量Mw/数平均分子量Mn)が1.5以下の鎖長のそろったビニル芳香族重合体が好ましく、得られる星型分岐ポリマーの好ましい分子量分布は1.0以上3.0以下、好ましくは1.0以上2.0以下の範囲であればよい。本発明で用いるアニオン重合法による星型分岐ポリマーの合成は、ビニル芳香族単量体を有機リチウム化合物を用いて炭化水素溶媒中で重合し得られる活性な片末端ビニル芳香族重合体を、低分子量の多官能化合物でカップリング反応させることで得られる。
【0013】
上記方法において有機リチウム化合物としてはn−プロピルリチウム、iso−プロピルリチウム、n−ブチルリチウム、iso−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、フェニルリチウムなどを挙げることができる。
【0014】
またカップリング反応に用いる多官能化合物は、活性リチウム末端と反応して結合を形成し得る官能基を3〜8個有する低分子量化合物である。これら低分子量化合物の例としてはポリハロゲン化合物、ポリエポキシ化合物、ポリカルボン酸エステル化合物、ポリケトン化合物、ポリカルボン酸無水物などを挙げることが出来、具体的に例示するとシリコンテトラクロライド、ジ(トリクロロシリリル)エタン、1,3,5−トリブロモベンゼン、メチルトリクロロ錫、エポキシ化大豆油、テトラグリシジル1,3−ビスアミノメチルシクロヘキサン、シュウ酸ジメチル、トリメリット酸トリ−2−エチルヘキシル、ピロメリット酸二無水物、ジエチルカーボネートなどである。
【0015】
上記アニオン重合法を実施するに際して、上記リチウム化合物はビニル芳香族単量体100重量部に対して0.05〜0.5重量部加えられる。また上記の多官能化合物は有機リチウムに対して0.5〜1.5倍当量添加して反応させる。反応はきわめて速やかに進行し、通常は数分から数十分で完了する。上記反応の溶媒としてはシクロヘキサン、n−ヘキサン、ベンゼン、トルエン、エチルベンゼン等が用いられる。上記のアニオン重合法の反応温度は−30〜150℃の範囲で実施され、また重合時間は炭化水素溶媒濃度や重合温度にもよるが通常は数秒〜数時間である。これらの反応は回分式または連続式のいずれも適用できるが回分式のほうが分子量分布の狭いものが得られる。
【0016】
上記カップリング反応とは別に、ビニル芳香族単量体を有機リチウム化合物を開始剤に用いて炭化水素溶媒中で重合し、重合完結後リビングで存在する片末端活性ビニル芳香族重合体を開始剤として少量の多官能ビニル芳香族単量体(例えばジビニルベンゼン)を添加し、重合することによって多分岐のビニル芳香族重合体を合成することが可能である。本方法において重合開始剤として用いた有機リチウム化合物に対する添加する多官能ビニル芳香族単量体の割合はモル比で0.1〜1.0の範囲である。この方法ではやや分子量分布の広い多分岐の実質的には星型ポリマーに近い分岐ポリマーを合成することが可能である。
【0017】
上記のような重合法によって得られた成分(A)である星型分岐ポリマーを後記の(B)成分である公知のゴム変性ビニル芳香族重合体と配合することにより本発明のビニル芳香族重合体樹脂組成物が得られる。なをゴム変性ビニル芳香族重合体中のゴム状重合体が星型分岐重合体により希釈されることになるために上記ゴム変性ビニル芳香族重合体中のゴム状重合体の含有量を高めておく事が肝要である。目的とするビニル芳香族重合体樹脂組成物の耐衝撃強度、剛性にもよるがブレンドするゴム変性ビニル芳香族重合体中のゴム状重合体の含有量は一般には6〜30重量%の範囲が好適である。
【0018】
本発明の(B)成分である公知のゴム変性ビニル芳香族重合体は、ゴム状重合体の存在下スチレンやo−メチルスチレン、m−メチルスチレン、p−メチルスチレン、エチルスチレン、P−tert−ブチルスチレン、などの核アルキル置換スチレン、α−メチルスチレンなどのα−アルキル置換スチレンなどの単独もしくは2種以上の混合物を重合することにより得られるもので、線状(リニアー)ビニル芳香族重合体の成す連続相中にゴム状重合体が分散粒子として存在する重合体を言う。
【0019】
代表的なものとしては、HIPSとして知られるゴム変性ポリスチレンの他、ポリスチレン相のスチレン単位を上記スチレン以外の他のビニル芳香族単量体単位で置き換えたゴム変性スチレン系樹脂組成物を挙げる事が出来る。本発明の目的からは、(A)成分の分岐状ビニル芳香族重合体と(B)成分のゴム変性ビニル芳香族重合体は、同一ビニル芳香族単量体からなっているのが好ましい。
【0020】
上記の(B)成分中のゴム状重合体とは、そのガラス転移温度が−30℃以下のものをいう。具体例としてポリブタジエン、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)などのジエン系ゴム、エチレン−プロピレン−ジエンゴム(EPDM)、アクリルゴムなどを挙げる事が出来る。またポリブタジエンゴムとしては、ハイシスゴム、ローシスゴムともに好適に用いることが出来る。さらに上記のポリブタジエンゴム、SBR、NBRはその不飽和2重結合の一部または全部を水素添加したものも好適に用いる事が出来る。
【0021】
上記(B)成分の調整は一般にはビニル芳香族単量体を、上記ゴム状重合体の存在下に塊状、塊状・懸濁、または乳化重合することにより得られるが塊状または塊状・懸濁による方法が経済的に優れている。塊状重合の場合には、少量の不活性溶媒、例えばエチルベンゼンやトルエンなどを加えてもよい。
【0022】
上記の方法により、ゴム状重合体の存在下にビニル芳香族単量体を重合することにより、ゴム状重合体粒子の周囲にビニル芳香族重合体が一部グラフトし、かつゴム状重合体粒子の内部に一部のビニル芳香族重合体の粒子が包含された構造の分散相が形成される。分散相中に上記グラフト成分および内包されたビニル芳香族重合体粒子か含まれるためにゴム変性ビニル芳香族重合体の分散相重量はゴム状重合体重量より高くなる。
【0023】
ゴム状重合体重量に対する分散相重量の比は塊状、塊状・懸濁重合ではおよそ1.5〜3.5の範囲の値である。分散相はゴム変性ビニル芳香族樹脂組成物の連続相を構成するビニル芳香族重合体の良溶媒、例えばメチルエチルケトンに溶解し、遠心分離することにより分別採取する事が出来る。
なを上記(B)成分の連続相を構成するビニル芳香族重合体の重量平均分子量は、定法に従い15万〜30万の範囲のものであればよいが本発明の目的からは20万〜30万の範囲のものが好ましい。さらに(B)成分のゴム状重合体の成す分散相の平均粒子径は0.1〜4.0μmの範囲に調節される。より好ましい粒子径の範囲は0.4〜3μmである。また分散相粒子の架橋度の目安であるトルエンに対する膨潤指数(Swelling Index)は6〜14の範囲に調整される。
【0024】
星型分岐状ビニル芳香族重合体(A)とゴム変性ビニル芳香族重合体(B)を混合することで本発明のビニル芳香族重合体樹脂組成物が得られるが、この際(A)成分と(B)成分の配合割合は最終的に得られるビニル芳香族重合体樹脂組成物中の連続相に対して(A)成分の割合が5重量%以上、更に好ましくは10重量%以上であることが好ましい。
【0025】
(A)成分と(B)成分の混合は、周知の装置例えばニーダー、バンバリーミキサー、単軸または二軸の押出機等で溶融混練されることでなされてもよい。より好ましくはアニオン重合を実施し、カップリング反応により、リビングアニオンを失活させて合成した、星型分岐ポリマーを含有する重合液と塊状重合途中の(B)成分の重合液を混合し、引き続き(B)成分の重合を所望の時間継続し重合を完結後、残モノマー及びエチルベンゼンなどの不活性溶媒を脱揮装置で除去し、本発明のビニル芳香族重合体樹脂組成物を得る事が出来る。
【0026】
本発明のビニル芳香族重合体樹脂組成物には必要に応じて高級脂肪酸、高級脂肪酸金属塩、ポリジメチルシロキサン、ヒンダードフェノールなどの安定剤、顔料、可塑剤、帯電防止剤などの添加剤を添加する事が出来る。
【0027】
【発明の実施の形態】
以下、本発明の具体的な実施の態様を説明するが、本発明の範囲はこれら実施例に限定されるものではない。
【0028】
参考例1(ゴム変性ポリスチレンB1の調整)
ポリブタジエン(日本ゼオン(株)、ニポール1220SL)をスチレンに溶解し、次いでエチルベンゼン及び、t−ブチルパーオキシイソプロピルカーボネートの少量を加え、下記の組成の重合原液を調整した。(単位重量部数)
・ポリブタジエン 9.8
・スチレン 76.8
・エチルベンゼン 13.0
・t−ブチルパーオキシイソプロピルカーボネート 0.04
・α−メチルスチレン2量体 0.02
・ポリジメチルシロキサン 0.10
【0029】
上記重合原液を、各々が6.2リットルの撹拌機付きの3槽式反応機に2.2リットル/hrにて連続的に送液した。第1槽反応機出口の固形分濃度が38重量%になるように反応機内温を制御した。同時に最終槽反応機出口の固形分濃度が80重量%となるように反応機内温度を調整した。次いで230℃、真空下の脱揮装置に送り込み、未反応のスチレン及びエチルベンゼンを除去し、押出機にて造粒し、ペレット状のゴム変性ポリスチレンB1を得た。B1中のポリブタジエンの割合は12.3重量%であつた。B1のメチルエチルケトン可溶分のゲルパーミエーションクロマトグラフィー(以下、GPCと略称する)により求めた連続相の重量平均分子量及び数平均分子量はそれぞれ25.4万、9.2万であつた。なを分散相の、平均粒子径は1.5μmであり、トルエンに対する膨潤指数は9.8であった。
【0030】
参考例2(分岐状ポリスチレンA1〜A2の調整)
オートクレーブにスチレン14.0kg、シクロヘキサン60kgを仕込、内温50℃にコントロールした。次いでn−ブチルリチウム7.6gを含有する10%シクロヘキサン溶液を打ち込み反応を開始した。4分後内温は75℃に上昇した。反応液をサンプリングしGPCで分子量測定を実施したところ、この時点での重量平均分子量は17.9万、数平均分子量は17.0万であった。次いでオートクレーブを80℃に上げて、テトラグリシジル1,3−ビスアミノメチルシクロヘキサン(以下TEDと略称する。)10.0gを含有する20%シクロヘキサン溶液を2回に分けて添加し、カップリング反応を実施した。20分撹拌後メタノールでポリマーを沈澱させ、分岐状ポリマーA1を回収した。
【0031】
このもののGPCチャートは未カップリングの低分子量を15.2%含有する3及び4分岐ポリスチレンの混合物であった。このものの重量平均分子量は52.8万であり、数平均分子量は35.0万であった。TEDは4官能のカップリング剤であるが3分岐ポリマーが6割強の生成であったことは立体障害で4番目のエポキシ基に活性末端のスチリルリチウムが反応しにくいためと思われる。
参考例2のA1の合成条件を一部変更し、同様に処理することで3分岐状ポリマーを80%含有する重量平均分子量70.6万、数平均分子量53.5万の星型分岐状ポリマーA2を合成した。分析結果とメルトフローレートを表1に示す。
【0032】
参考例3(4分岐状ポリスチレンA3、A4の調整)
オートクレーブにシクロヘキサン60kg、スチレンモノマー10.0kgを仕込、内温を50℃にコントロールした。次いでn−ブチルリチウム5.2gを含有する10%シクロヘキサン溶液を打ち込み重合を開始した。5分後内温は80℃に上昇した。反応液の一部をサンプリングし、GPC分析を実施したところ重量平均分子量18.22万、数平均分子量17.69万のポリマーであった。この後オートクレーブ内温を80℃に上げて、カップリング剤としてジ(トリクロロシリリル)エタン2.8gを含有する10%シクロヘキサン溶液を添加した。20分撹拌しながら反応させた。反応液をメタノール中で処理し、分岐ポリマーA3を回収した。
【0033】
このものの重量平均分子量は70.4万で数平均分子量は61.2万であり、90%以上が4分岐のポリマーであった。カップリング剤とて使用したジ(トリクロロシリリル)エタンは6官能のカップリング剤であるがTEDの場合と同様に立体障害のためか4官能としか作用しなかった。触媒及びカツプリング剤の添加量を調整することにより、同様に処理して重量平均分子量173万、数平均分子量123万の星型分岐状ポリマーA4を得た。
【0034】
参考例4(6分岐ポリスチレン、8分岐ポリスチレンA5,A6の調整)
オートクレーブ中にシクロヘキサン60kg、スチレンモノマー10.0kgを仕込内温50℃でn−ブチルリチウム8.0gを含有する10%シクロヘキサン溶液の触媒を添加し重合を実施した。この時点での重量平均分子量12.1万、数平均分子量11.2万のポリマーを調整し、このものに35gのp−ジビニルベンゼンを含有する10%シクロヘキサン溶液を添加した。20分間反応させた後多量のメタノール中に反応液を投入し、ポリマーを沈澱させ分岐ポリマーA5を得た。このもののGPC分析の結果は重量平均分子量73.8万、数平均分子量44.7万の平均6分岐のほぼ星型に近い分岐ポリマーであった。
【0035】
本参考例同様に、n−ブチルリチウム、及びジビニルベンゼンの添加量をかえて重量平均分子量62.3万、数平均分子量34.7万の平均8分岐ポリマーA6を得た。ジビニルベンゼンを用いて分岐状ポリマーを得る場合は添加ジビニルベンゼン量で分岐数を調整するがカップリング剤を用いる場合に比較して分子量分布の広い、星型状ポリマーに実質的に近い構造のポリマーが得られる。
【0036】
参考例5(リニアーな単分散ポリスチレンL1、L2の調整)
オートクレーブ中にシクロヘキサン60kg、スチレンモノマー10.0kgを仕込反応初期温度50℃でn−ブチルリチウム2.5gを含有するシクロヘキサン溶液を打ち込み重合反応を実施した。20分反応させメタノール中でポリマーを沈澱させリニアーな単分散ポリマーL1を得た。このものの重量平均分子量は53.4万、数平均分子量は51.84万の単分散に近いポリマーであった。同様にして重量平均分子量73.5万、数平均分子量68.05万のリニアーポリマーL2を得た。
【0037】
参考例6(比較例用低分子量3分岐ポリスチレンA7の調整)
オートクレーブにスチレン10kg、シクロヘキサン60kgを仕込、内温を50℃にした。n−ブチルリチウム4.8gを含有する10%シクロヘキサン溶液を打ち込み20分間反応させた。この時点でのプレポリマーの重量平均分子量は15.2万であった。次いで内温を80℃に上げて、スチリルリビングポリマーあたり0.95倍モルのTEDを含有するシクロヘキサン溶液を添加し20分間カップリングを実施しポリマーA7を得た。このものは未カップリング15.8%を含有する重量平均分子量38.5万の主として3分岐のポリスチレンであつた。
表1に参考例で調整したサンプル及び実施例、比較例で用いるサンプル性状を記載する。
【0038】
【表1】

Figure 0003599072
【0039】
表1で明かなようにアニオン重合により合成した星型分岐ポリスチレンはリニアーなポリスチレンと同一分子量で比較して格段に流動性にすぐれており、また分岐数の多いものほど流動性が大であることもわかる。
【0040】
実施例1〜6および比較例1〜4
参考例で調整した(A)成分及び(B)成分を表2に記載の割合で配合し、40mmシート押出機を用いて0.7mm厚さのシート成形し、試験片としてシートの押出し方向及び垂直方向につき測定した引張り弾性率、23℃における面衝撃強さ、組成物のメルトフローを評価した(表2)。なお、各種評価の方法は以下の通りである。
引張り弾性率:JISK−6872に準拠して、シートの押出し方向及び垂直方向につき測定した。(単位Kg/cm
面衝撃強さ:重錘形状が1/2インチのものを用いてASTMD1709に準拠して測定した(単位Kg・cm)
メルトフローレート:ISO−R1133に準拠(200℃、5Kg荷重)
【0041】
【表2】
Figure 0003599072
【0042】
結果は表2に記載するように、成分(A)としてアニオン重合の分岐状ポリスチレンを用いたスチレン系樹脂組成物は、ほぼ同一分子量のアニオン重合リニアーポリスチレンを用いたスチレン系樹脂組成物に比較して、著しく流動性が大であり、また、引張り弾性率の値で押出し方向と垂直方向の値の差が少ないという特徴を示している。
更に、ラジカル重合のポリスチレンを用いたスチレン系樹脂組成物に比較して弾性率及び面衝撃強さ共に格段に優れた効果を示している。
【0043】
【発明の効果】
ゴム変性ビニル芳香族重合体にアニオン重合の星型分岐構造を有するビニル芳香族重合体を配合することにより、得られたビニル芳香族重合体樹脂組成物は、良好な流動性を有し、かつ耐面衝撃性と剛性のバランスに優れた効果を有し、家電製品、事務機器、工業部品、日用雑貨など多岐にわたる分野で利用可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a vinyl aromatic polymer resin composition having good fluidity despite having a high molecular weight vinyl aromatic polymer in the matrix component, and having excellent mechanical strength. About. The composition of the present invention is particularly excellent in sheet moldability, is excellent in balance between surface impact resistance and rigidity, and can provide a sheet having a good appearance. Furthermore, a high rigidity and high impact resistance grade can be obtained for injection molding from good fluidity.
[0002]
[Prior art]
Rubber-modified polystyrene represented by HIPS is inexpensive, has excellent processability, and has excellent impact strength and electrical insulation properties, and is therefore used in a wide variety of fields such as home appliances, office equipment, industrial parts, and daily necessities. There has been some rule of thumb in the past regarding resin substitution in the resin industry, where resin applications start with relatively high-end, expensive resins and, as the product becomes more widespread, move to lower-grade resins. It is to do.
[0003]
This tendency also applies to polystyrene-based resins. For example, when HIPS is used in applications where ABS resins have been used in the past, higher impact resistance and higher stiffness can be achieved while maintaining the easy moldability, which is an advantage of polystyrene-based resins. Is required. However, HIPS resins have a trade-off relationship in that those having excellent impact resistance have low rigidity, whereas those having high rigidity have low impact resistance, and in particular, satisfy both the surface impact resistance and the rigidity at the same time. At present, HIPS has not been obtained.
[0004]
Generally, the rubber-modified polystyrene is obtained by polymerizing styrene in the presence of a rubber-like polymer, and the rubber-modified polystyrene thus obtained is a resin composed of linear (linear) polystyrene. In the continuous phase, the rubbery polymer is present as a dispersed phase.
[0005]
As is well known, to increase the impact resistance of rubber-modified polystyrene, it is effective to increase the content of the rubber-like polymer in the resin composition, but on the other hand, there is a problem that rigidity and fluidity decrease. is there. For this reason, in order to improve the balance between the impact resistance and rigidity of rubber-modified polystyrene and the fluidity, it is important to impart high impact resistance using as little of the rubber-like polymer as possible. There is a need for a method for further improving the balance between impact resistance and fluidity under the combined content. In addition, various techniques for controlling the molecular weight and molecular weight distribution of the polystyrene portion of the continuous phase in order to enhance the balance between impact resistance and fluidity have been studied, but no satisfactory effect has been obtained yet.
[0006]
[Problems to be solved by the invention]
The present invention is intended to provide a vinyl aromatic polymer resin composition which can be substituted for applications in which a higher-order resin than the vinyl aromatic polymer resin has been used, and has an improved balance between impact resistance and fluidity. is there.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that a vinyl aromatic polymer having an ultrahigh molecular weight star-branched structure having a weight average molecular weight of 500,000 or more and formed by anionic polymerization (hereinafter referred to as a star) Resin or a star-branched polymer) is blended with a rubber-modified vinyl aromatic polymer produced by ordinary radical polymerization. The resin composition contains an ultrahigh molecular weight vinyl aromatic polymer as a matrix component. Nevertheless, it shows good fluidity, and its mechanical properties such as impact resistance and rigidity and thermal properties such as heat resistance are much better than ordinary radical polymerized rubber-modified vinyl aromatic polymer. And completed the present invention.
[0008]
The present invention is characterized in that a continuous phase of a rubber-modified vinyl aromatic polymer contains an ultra-high molecular weight vinyl aromatic polymer which is a star polymer having a specific structure formed by anionic polymerization in a continuous phase. In the case of the vinyl aromatic polymer of, for example, an ultra-high molecular weight linear anionic vinyl aromatic polymer or a linear radically polymerized vinyl aromatic polymer, the fluidity of the resin composition is greatly reduced, and the effect of the present invention cannot be achieved.
[0009]
The star polymer having a specific structure synthesized by anionic polymerization referred to in the present invention is a prepolymer in a living state having a uniform linear molecular weight by anionic polymerization, a low molecular weight polyfunctional compound (coupling agent) or a small amount of divinylbenzene. It is obtained by reacting with polyfunctional monomers such as. Furthermore, it can also be synthesized using a polyfunctional anionic polymerization initiation catalyst synthesized from a polyfunctional vinyl monomer.
[0010]
The star polymer in the present invention refers to a star polymer defined in New Edition Dictionary of Polymers (Asakura Shoten) p432. In the case of the present invention, it is a radial-type polymer in which n vinyl aromatic polymers are bonded around a polyfunctional low molecular weight compound residue or a polyvinyl aromatic residue. Here, the base compound of the polyfunctional compound residue or the polyvinyl compound residue is a low molecular weight compound having a molecular weight of about 2,000 or less. The number of branched polymers is 3 to 8.
The star polymer may be, for example, a mixture of a three-branched and a four-branched polymer.
[0011]
The molecular weight of the star-branched polymer which is the component (A) of the present invention is in a range of 500,000 to 5,000,000 as a weight average molecular weight (Mw). Normally, in the anionic polymerization, the molecular weight is adjusted by the amount of organolithium used as a catalyst with respect to the charged monomer amount, but in the star-shaped branched polymer of the present invention, the molecular weight jumps according to the number of branches due to a coupling reaction. In the case of the present invention, the weight average molecular weight (Mw) of the star-branched polymer after the coupling reaction is in the range of 500,000 to 5,000,000, more preferably 500,000 to 2,000,000, further preferably 500,000 to 1,500,000. is there.
[0012]
When the weight average molecular weight of the star-shaped branched polymer is 500,000 or less, the fluidity of the composition becomes high. However, as a composition for sheet use, the fluidity becomes too high and adversely affects the extrusion stability. Is also unfavorable because the stiffness and surface impact strength tend to decrease. The star-shaped branched polymer can be obtained by a coupling reaction described below. The branched polymer before coupling has a molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of 1.5 or less and has a uniform chain length of vinyl aromatic. A group polymer is preferable, and the molecular weight distribution of the obtained star-shaped branched polymer may be in the range of 1.0 to 3.0, preferably 1.0 to 2.0. The synthesis of the star-shaped branched polymer by the anionic polymerization method used in the present invention is carried out by reducing the active one-terminal vinyl aromatic polymer obtained by polymerizing a vinyl aromatic monomer in a hydrocarbon solvent using an organolithium compound. It is obtained by performing a coupling reaction with a polyfunctional compound having a molecular weight.
[0013]
In the above method, examples of the organic lithium compound include n-propyl lithium, iso-propyl lithium, n-butyl lithium, iso-butyl lithium, sec-butyl lithium, tert-butyl lithium, phenyl lithium and the like.
[0014]
The polyfunctional compound used for the coupling reaction is a low molecular weight compound having 3 to 8 functional groups capable of forming a bond by reacting with an active lithium terminal. Examples of these low molecular weight compounds include polyhalogen compounds, polyepoxy compounds, polycarboxylic acid ester compounds, polyketone compounds, polycarboxylic anhydrides, and the like. Specific examples include silicon tetrachloride, di (trichlorosilicone). Ryl) ethane, 1,3,5-tribromobenzene, methyltrichlorotin, epoxidized soybean oil, tetraglycidyl 1,3-bisaminomethylcyclohexane, dimethyl oxalate, tri-2-ethylhexyl trimellitate, pyromellitic acid Dianhydride, diethyl carbonate and the like.
[0015]
In carrying out the anionic polymerization method, the lithium compound is added in an amount of 0.05 to 0.5 parts by weight based on 100 parts by weight of the vinyl aromatic monomer. Further, the above polyfunctional compound is added and reacted in an amount of 0.5 to 1.5 times equivalent to the organic lithium. The reaction proceeds very quickly and is usually completed in minutes to tens of minutes. As a solvent for the above reaction, cyclohexane, n-hexane, benzene, toluene, ethylbenzene and the like are used. The reaction temperature of the above-mentioned anionic polymerization method is carried out in the range of -30 to 150 ° C, and the polymerization time is usually several seconds to several hours, depending on the concentration of the hydrocarbon solvent and the polymerization temperature. These reactions can be performed in either a batch system or a continuous system, but a batch system having a narrower molecular weight distribution can be obtained.
[0016]
Separately from the above coupling reaction, a vinyl aromatic monomer is polymerized in a hydrocarbon solvent using an organolithium compound as an initiator, and the one-terminal active vinyl aromatic polymer present in the living room after completion of the polymerization is used as an initiator. By adding a small amount of a polyfunctional vinyl aromatic monomer (for example, divinyl benzene) and polymerizing it, it is possible to synthesize a multi-branched vinyl aromatic polymer. The ratio of the polyfunctional vinyl aromatic monomer to be added to the organolithium compound used as the polymerization initiator in the present method is in the range of 0.1 to 1.0 in molar ratio. According to this method, it is possible to synthesize a multibranched branched polymer having a somewhat broad molecular weight distribution and substantially similar to a star polymer.
[0017]
By blending the star-branched polymer as the component (A) obtained by the above polymerization method with a known rubber-modified vinyl aromatic polymer as the component (B) described below, the vinyl aromatic polymer of the present invention is obtained. A united resin composition is obtained. What is necessary is to increase the content of the rubbery polymer in the rubber-modified vinyl aromatic polymer because the rubbery polymer in the rubber-modified vinyl aromatic polymer is to be diluted by the star-shaped branched polymer. It is important to keep it. Although it depends on the impact strength and rigidity of the target vinyl aromatic polymer resin composition, the content of the rubbery polymer in the rubber-modified vinyl aromatic polymer to be blended generally ranges from 6 to 30% by weight. It is suitable.
[0018]
The known rubber-modified vinyl aromatic polymer which is the component (B) of the present invention can be prepared from styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ethylstyrene, P-tert in the presence of a rubbery polymer. And a mixture of two or more kinds of α-alkyl-substituted styrenes such as α-methylstyrene and the like. A polymer in which a rubbery polymer is present as dispersed particles in a continuous phase formed by coalescence.
[0019]
Typical examples include a rubber-modified polystyrene known as HIPS, and a rubber-modified styrene-based resin composition in which the styrene unit of the polystyrene phase is replaced with a vinyl aromatic monomer unit other than the above styrene. I can do it. For the purpose of the present invention, the branched vinyl aromatic polymer of the component (A) and the rubber-modified vinyl aromatic polymer of the component (B) are preferably composed of the same vinyl aromatic monomer.
[0020]
The rubbery polymer in the component (B) refers to a polymer having a glass transition temperature of -30 ° C or lower. Specific examples include polybutadiene, styrene-butadiene rubber (SBR), diene rubbers such as acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene rubber (EPDM), and acrylic rubber. As the polybutadiene rubber, both high cis rubber and low cis rubber can be suitably used. Further, as the above-mentioned polybutadiene rubber, SBR and NBR, those obtained by hydrogenating a part or all of unsaturated double bonds thereof can be suitably used.
[0021]
The component (B) is generally prepared by subjecting a vinyl aromatic monomer to bulk, bulk / suspension, or emulsion polymerization in the presence of the rubbery polymer. The method is economically superior. In the case of bulk polymerization, a small amount of an inert solvent such as ethylbenzene or toluene may be added.
[0022]
By the above method, by polymerizing the vinyl aromatic monomer in the presence of the rubber-like polymer, the vinyl aromatic polymer is partially grafted around the rubber-like polymer particles, and the rubber-like polymer particles Forms a dispersed phase having a structure in which some vinyl aromatic polymer particles are included inside. Since the graft component and the encapsulated vinyl aromatic polymer particles are contained in the dispersed phase, the weight of the dispersed phase of the rubber-modified vinyl aromatic polymer becomes higher than the weight of the rubbery polymer.
[0023]
The ratio of the weight of the dispersed phase to the weight of the rubbery polymer is in the range of about 1.5 to 3.5 for bulk, bulk / suspension polymerization. The dispersed phase can be separated and collected by dissolving it in a good solvent for the vinyl aromatic polymer constituting the continuous phase of the rubber-modified vinyl aromatic resin composition, for example, methyl ethyl ketone, and centrifuging.
The weight average molecular weight of the vinyl aromatic polymer constituting the continuous phase of the component (B) may be in the range of 150,000 to 300,000 according to a conventional method, but from 200,000 to 300000 for the purpose of the present invention. Thousands are preferred. Further, the average particle size of the dispersed phase formed by the rubbery polymer as the component (B) is adjusted to the range of 0.1 to 4.0 μm. A more preferable range of the particle diameter is 0.4 to 3 μm. The swelling index (Swelling Index) for toluene, which is a measure of the degree of crosslinking of the dispersed phase particles, is adjusted to a range of 6 to 14.
[0024]
The vinyl aromatic polymer resin composition of the present invention can be obtained by mixing the star-shaped branched vinyl aromatic polymer (A) and the rubber-modified vinyl aromatic polymer (B). In this case, the component (A) The proportion of the component (A) to the continuous phase in the finally obtained vinyl aromatic polymer resin composition is such that the proportion of the component (A) is 5% by weight or more, more preferably 10% by weight or more. Is preferred.
[0025]
The components (A) and (B) may be mixed by melt-kneading with a known device such as a kneader, a Banbury mixer, a single-screw or twin-screw extruder, or the like. More preferably, anionic polymerization is carried out, and a polymerization liquid containing a star-shaped branched polymer synthesized by deactivating living anions by a coupling reaction and a polymerization liquid of the component (B) in the course of bulk polymerization are mixed. After the polymerization of the component (B) is continued for a desired period of time and the polymerization is completed, the residual monomer and an inert solvent such as ethylbenzene are removed by a devolatilizer to obtain the vinyl aromatic polymer resin composition of the present invention. .
[0026]
The vinyl aromatic polymer resin composition of the present invention optionally contains additives such as higher fatty acids, higher fatty acid metal salts, stabilizers such as polydimethylsiloxane and hindered phenol, pigments, plasticizers, and antistatic agents. Can be added.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the present invention will be described, but the scope of the present invention is not limited to these embodiments.
[0028]
Reference Example 1 (adjustment of rubber-modified polystyrene B1)
Polybutadiene (Nihon Zeon Co., Ltd., Nipol 1220SL) was dissolved in styrene, and then small amounts of ethylbenzene and t-butylperoxyisopropyl carbonate were added to prepare a polymerization stock solution having the following composition. (Unit weight parts)
・ Polybutadiene 9.8
・ Styrene 76.8
・ Ethylbenzene 13.0
T-butyl peroxyisopropyl carbonate 0.04
.Alpha.-methylstyrene dimer 0.02
・ Polydimethylsiloxane 0.10
[0029]
The polymerization stock solution was continuously fed at 2.2 liter / hr to a 6.2-liter three-tank reactor equipped with a stirrer. The reactor internal temperature was controlled so that the solid content concentration at the outlet of the first tank reactor was 38% by weight. At the same time, the temperature inside the reactor was adjusted so that the solid content concentration at the outlet of the reactor in the final tank was 80% by weight. Next, the mixture was fed to a devolatilizer under a vacuum at 230 ° C. to remove unreacted styrene and ethylbenzene, and the mixture was granulated with an extruder to obtain pellet-shaped rubber-modified polystyrene B1. The proportion of polybutadiene in B1 was 12.3% by weight. The weight average molecular weight and the number average molecular weight of the continuous phase determined by gel permeation chromatography (hereinafter abbreviated as GPC) of the methyl ethyl ketone soluble portion of B1 were 254,000 and 92,000, respectively. The average particle size of the dispersed phase was 1.5 μm, and the swelling index for toluene was 9.8.
[0030]
Reference Example 2 (adjustment of branched polystyrene A1 and A2)
An autoclave was charged with 14.0 kg of styrene and 60 kg of cyclohexane, and the internal temperature was controlled at 50 ° C. Next, a 10% cyclohexane solution containing 7.6 g of n-butyllithium was injected to start the reaction. Four minutes later, the internal temperature rose to 75 ° C. The reaction solution was sampled, and the molecular weight was measured by GPC. As a result, the weight average molecular weight at this point was 179,000, and the number average molecular weight was 170,000. Then, the autoclave was heated to 80 ° C., and a 20% cyclohexane solution containing 10.0 g of tetraglycidyl 1,3-bisaminomethylcyclohexane (hereinafter abbreviated as TED) was added in two portions to carry out the coupling reaction. Carried out. After stirring for 20 minutes, the polymer was precipitated with methanol to recover a branched polymer A1.
[0031]
Its GPC chart was a mixture of 3- and 4-branched polystyrene containing 15.2% of uncoupled low molecular weight. This had a weight average molecular weight of 5280,000 and a number average molecular weight of 350,000. TED is a tetrafunctional coupling agent, but the formation of a slightly more than 60% of a three-branched polymer is considered to be due to steric hindrance that the active terminal styryllithium hardly reacts with the fourth epoxy group.
The synthesis conditions of A1 in Reference Example 2 were partially changed and the same treatment was carried out to obtain a star-shaped branched polymer containing 80% of a 3-branched polymer and having a weight average molecular weight of 706,000 and a number average molecular weight of 53.50000. A2 was synthesized. Table 1 shows the analysis results and the melt flow rates.
[0032]
Reference Example 3 (adjustment of 4-branched polystyrene A3, A4)
An autoclave was charged with 60 kg of cyclohexane and 10.0 kg of a styrene monomer, and the internal temperature was controlled at 50 ° C. Then, a 10% cyclohexane solution containing 5.2 g of n-butyllithium was injected to initiate polymerization. After 5 minutes, the internal temperature rose to 80 ° C. A part of the reaction solution was sampled and subjected to GPC analysis. As a result, it was found that the polymer was a polymer having a weight average molecular weight of 182.2 million and a number average molecular weight of 176.000. Thereafter, the internal temperature of the autoclave was raised to 80 ° C., and a 10% cyclohexane solution containing 2.8 g of di (trichlorosilyl) ethane was added as a coupling agent. The reaction was carried out with stirring for 20 minutes. The reaction solution was treated in methanol to recover the branched polymer A3.
[0033]
It had a weight average molecular weight of 704,000 and a number average molecular weight of 612,000, and 90% or more were 4-branched polymers. The di (trichlorosilyl) ethane used as the coupling agent was a hexafunctional coupling agent, but acted only on the basis of steric hindrance or tetrafunctional as in the case of TED. The same treatment was performed by adjusting the amounts of the catalyst and the coupling agent to obtain a star-shaped branched polymer A4 having a weight average molecular weight of 1,730,000 and a number average molecular weight of 1,230,000.
[0034]
Reference Example 4 (adjustment of 6-branched polystyrene, 8-branched polystyrene A5, A6)
In an autoclave, 60 kg of cyclohexane and 10.0 kg of styrene monomer were charged, and a catalyst of a 10% cyclohexane solution containing 8.0 g of n-butyllithium was added at an internal temperature of 50 ° C. to carry out polymerization. At this time, a polymer having a weight average molecular weight of 121,000 and a number average molecular weight of 112,000 was prepared, and a 10% cyclohexane solution containing 35 g of p-divinylbenzene was added thereto. After reacting for 20 minutes, the reaction solution was poured into a large amount of methanol, and the polymer was precipitated to obtain a branched polymer A5. The result of GPC analysis of this product was a branched polymer having a weight-average molecular weight of 7380,000 and a number-average molecular weight of 447,000, having an average of 6 branches and almost a star shape.
[0035]
In the same manner as in the present reference example, the average eight-branched polymer A6 having a weight average molecular weight of 63,000 and a number average molecular weight of 3,470,000 was obtained by changing the amounts of n-butyllithium and divinylbenzene. When a branched polymer is obtained using divinylbenzene, the number of branches is adjusted by the amount of added divinylbenzene, but the polymer has a molecular weight distribution broader than that of a coupling agent and has a structure substantially similar to a star-shaped polymer. Is obtained.
[0036]
Reference Example 5 (adjustment of linear monodisperse polystyrene L1, L2)
60 kg of cyclohexane and 10.0 kg of styrene monomer were charged into an autoclave, and a cyclohexane solution containing 2.5 g of n-butyllithium was injected at an initial reaction temperature of 50 ° C. to perform a polymerization reaction. The mixture was reacted for 20 minutes, and the polymer was precipitated in methanol to obtain a linear monodispersed polymer L1. This was a nearly monodisperse polymer having a weight average molecular weight of 5340,000 and a number average molecular weight of 51,840,000. Similarly, a linear polymer L2 having a weight average molecular weight of 735,000 and a number average molecular weight of 68.050,000 was obtained.
[0037]
Reference Example 6 (adjustment of low molecular weight 3-branched polystyrene A7 for comparative example)
10 kg of styrene and 60 kg of cyclohexane were charged into an autoclave, and the internal temperature was adjusted to 50 ° C. A 10% cyclohexane solution containing 4.8 g of n-butyllithium was injected and allowed to react for 20 minutes. At this time, the weight average molecular weight of the prepolymer was 15,000. Next, the internal temperature was raised to 80 ° C., and a cyclohexane solution containing 0.95 moles of TED per styryl living polymer was added, followed by coupling for 20 minutes to obtain polymer A7. This was a predominantly three-branched polystyrene containing 15.8% uncoupled and having a weight average molecular weight of 385,000.
Table 1 shows the properties of the samples prepared in the reference examples and the sample properties used in the examples and comparative examples.
[0038]
[Table 1]
Figure 0003599072
[0039]
As is clear from Table 1, star-branched polystyrene synthesized by anionic polymerization has much better fluidity than linear polystyrene at the same molecular weight, and the greater the number of branches, the greater the fluidity. I understand.
[0040]
Examples 1 to 6 and Comparative Examples 1 to 4
The components (A) and (B) adjusted in the reference example were blended at the ratios shown in Table 2 and formed into a sheet having a thickness of 0.7 mm using a 40 mm sheet extruder. The tensile modulus measured in the vertical direction, the surface impact strength at 23 ° C., and the melt flow of the composition were evaluated (Table 2). In addition, various evaluation methods are as follows.
Tensile modulus: Measured in the extrusion direction and the vertical direction of the sheet according to JIS K-6872. (Unit Kg / cm 2 )
Surface impact strength: Measured according to ASTM D1709 using a weight having a shape of 1/2 inch (unit: Kg · cm)
Melt flow rate: conforms to ISO-R1133 (200 ° C, 5kg load)
[0041]
[Table 2]
Figure 0003599072
[0042]
The results are shown in Table 2. As shown in Table 2, the styrenic resin composition using an anionically polymerized branched polystyrene as the component (A) was compared with a styrenic resin composition using an anionically polymerized linear polystyrene having almost the same molecular weight. This shows that the fluidity is remarkably large, and that the difference between the value in the tensile direction and the value in the vertical direction is small.
Furthermore, compared to a styrene resin composition using radically polymerized polystyrene, the elastic modulus and surface impact strength are far superior.
[0043]
【The invention's effect】
By blending the rubber-modified vinyl aromatic polymer with a vinyl aromatic polymer having a star-shaped branched structure of anionic polymerization, the obtained vinyl aromatic polymer resin composition has good fluidity, and It has an excellent effect on the balance between surface impact resistance and rigidity, and can be used in a wide variety of fields such as home appliances, office equipment, industrial parts, and daily necessities.

Claims (5)

成分(A)重量平均分子量(Mw)が50万〜500万のアニオン重合によって得られる星型分岐構造を有するビニル芳香族重合体1〜50重量%、及び
成分(B)ラジカル重合によって得られるゴム変性ビニル芳香族重合体99〜50重量%からなることを特徴とするビニル芳香族重合体樹脂組成物。
Component (A) 1 to 50% by weight of a vinyl aromatic polymer having a star-shaped branched structure obtained by anionic polymerization having a weight average molecular weight (Mw) of 500,000 to 5,000,000, and rubber obtained by component (B) radical polymerization A vinyl aromatic polymer resin composition comprising 99 to 50% by weight of a modified vinyl aromatic polymer.
成分(A)が10〜50重量%、成分(B)が90〜50重量%である請求項1記載のビニル芳香族重合体樹脂組成物。The vinyl aromatic polymer resin composition according to claim 1, wherein the component (A) is 10 to 50% by weight and the component (B) is 90 to 50% by weight. 成分(A)が重量平均分子量(Mw)が50万〜200万であり、分子量分布が1.0以上3.0以下である請求項1又は2に記載のビニル芳香族重合体樹脂組成物。The vinyl aromatic polymer resin composition according to claim 1 or 2, wherein the component (A) has a weight average molecular weight (Mw) of 500,000 to 2,000,000, and a molecular weight distribution of 1.0 to 3.0. 成分(A)が多官能低分子量化合物残基を中心に枝ポリマーとして分子量分布(重量平均分子量Mw/数平均分子量Mn)が1.5以下の鎖長のそろったビニル芳香族重合体が3〜8本結合している星型分岐構造を有し、重量平均分子量(Mw)が50万〜500万であり、分子量分布が1.0以上3.0以下である分岐状ビニル芳香族重合体からなる請求項1〜3のいずれかに記載のビニル芳香族重合体樹脂組成物。Component (A) is a branched aromatic polymer having a molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of 1.5 or less as a branched polymer around a polyfunctional low molecular weight compound residue. A branched vinyl aromatic polymer having a star-shaped branched structure having eight bonds, a weight average molecular weight (Mw) of 500,000 to 5,000,000, and a molecular weight distribution of 1.0 or more and 3.0 or less. The vinyl aromatic polymer resin composition according to any one of claims 1 to 3. 成分(B)の連続相を構成するビニル芳香族重合体の重量平均分子量(Mw)が15万〜30万であり、ゴム状重合体の成す分散相平均粒子径が0.1〜4.0μm、かつゴム状重合体の含有量が6〜30重量%であるゴム変性ビニル芳香族重合体からなる請求項1〜4のいずれかに記載のビニル芳香族重合体樹脂組成物。The weight average molecular weight (Mw) of the vinyl aromatic polymer constituting the continuous phase of the component (B) is 150,000 to 300,000, and the average particle diameter of the dispersed phase formed by the rubbery polymer is 0.1 to 4.0 μm. The vinyl aromatic polymer resin composition according to any one of claims 1 to 4, comprising a rubber-modified vinyl aromatic polymer having a rubber-like polymer content of 6 to 30% by weight.
JP34626595A 1995-12-13 1995-12-13 Vinyl aromatic polymer-containing resin composition Expired - Fee Related JP3599072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34626595A JP3599072B2 (en) 1995-12-13 1995-12-13 Vinyl aromatic polymer-containing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34626595A JP3599072B2 (en) 1995-12-13 1995-12-13 Vinyl aromatic polymer-containing resin composition

Publications (2)

Publication Number Publication Date
JPH09157487A JPH09157487A (en) 1997-06-17
JP3599072B2 true JP3599072B2 (en) 2004-12-08

Family

ID=18382237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34626595A Expired - Fee Related JP3599072B2 (en) 1995-12-13 1995-12-13 Vinyl aromatic polymer-containing resin composition

Country Status (1)

Country Link
JP (1) JP3599072B2 (en)

Also Published As

Publication number Publication date
JPH09157487A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
US4304881A (en) Alkenyl aromatic resin composition having an excellent impact strength
KR101205204B1 (en) Low Gloss Thermoplastic Resin Having Excellent Heat Resistance and Impact Strength and Method of Preparing the Same
WO2001062813A1 (en) Block copolymer rubber, resin modifier, and resin composition
US4582876A (en) High-impact polyester/styrene-maleic anhydride copolymer blends
JPS6348317A (en) High-impact polystyrene resin and its production
EP0924256A1 (en) Polybutadiene rubber and impact-resistant aromatic vinyl resin compositions
JP3691149B2 (en) Method for producing rubber-reinforced vinyl aromatic copolymer
JPH11335433A (en) New rubbery polymer, its production and resin composition of the same
JPH0133485B2 (en)
JPS6366862B2 (en)
US4444952A (en) Thermoplastic molding composition
JP3985293B2 (en) Block copolymer and method for producing the same
JP3599072B2 (en) Vinyl aromatic polymer-containing resin composition
JP4114985B2 (en) Impact-resistant styrenic resin composition using a novel rubbery polymer
KR101158707B1 (en) Thermoplastic Resin Having Excellent Heat Resistance and Impact Strength and Method of Preparing the Same
JP3658861B2 (en) Resin composition containing star-shaped branched polystyrene
JP2847521B2 (en) Improved polybutadiene rubber
JP3414429B2 (en) Rubber-modified impact-resistant styrenic resin composition and method for producing the same
EP2042531B1 (en) Block copolymer, composition for resin modification, and modified resin composition
JP3254060B2 (en) Rubber-modified vinyl aromatic resin composition
JPH0597938A (en) Rubber-modified vinyl aromatic resin composition and its production
JPH10158338A (en) Conjugated dien-based polymer and its production
JP3939036B2 (en) Novel rubbery polymer composition and impact-resistant styrenic resin composition
JPH09302051A (en) High-gloss high-impact styrene resin composition and its production
JPS6152844B2 (en)

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees