JP3598416B2 - Heat transport device for electronic equipment - Google Patents

Heat transport device for electronic equipment Download PDF

Info

Publication number
JP3598416B2
JP3598416B2 JP2001368920A JP2001368920A JP3598416B2 JP 3598416 B2 JP3598416 B2 JP 3598416B2 JP 2001368920 A JP2001368920 A JP 2001368920A JP 2001368920 A JP2001368920 A JP 2001368920A JP 3598416 B2 JP3598416 B2 JP 3598416B2
Authority
JP
Japan
Prior art keywords
heat
flow path
header
liquid
transport device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001368920A
Other languages
Japanese (ja)
Other versions
JP2002196843A (en
Inventor
繁男 大橋
敏夫 畑田
伸司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001368920A priority Critical patent/JP3598416B2/en
Publication of JP2002196843A publication Critical patent/JP2002196843A/en
Application granted granted Critical
Publication of JP3598416B2 publication Critical patent/JP3598416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は電子機器の熱輸送デバイスに係り、特に電子部品を冷却し所定の温度に保つ熱輸送デバイスに関する
【0002】
【従来の技術】
従来の電子装置は、特開昭63−250900号公報、特開平3−255697号公報、実開平5−29153号公報に記載のように、独立の金属板、もしくは、筐体の一部を構成する金属板を、発熱部材と金属筐体壁との間に介在させ、発熱部材で発生する熱を放熱部である金属筐体壁まで熱伝導により輸送して放熱している。また、特開昭55−71092号公報に記載のように、金属筐体壁面にヒ−トパイプを形成し、発熱部材を熱的に金属筐体壁と接続することによって、発熱部材で発生する熱を金属筐体壁で放熱している。
【0003】
【発明が解決しようとする課題】
上記従来例で、特開昭63−250900号公報、特開平3−255697号公報、実開平5−29153号公報の例では、発熱部材から金属筐体壁までの伝熱経路が、筐体壁の厚さ1mm前後の薄い断面でしかないので効率よく熱伝導されない。したがって、発熱量の増大に十分対応することができなかった。また、部品配列によっては、必ずしも、金属筐体壁までが短い伝導距離にあるとは限らない。そのため、発熱部材を筐体近辺に配置するなど、部品配列あるいは筐体構造が制限されていた。一方、高性能が要求される電子機器などにおいて、発熱部材を含む部品配列は、電子回路の高速化に起因する配線長さなどの関係で、性能に大きな影響を及ぼす。したがって、従来例では、電子機器のコンパクト化、高性能化が妨げられていた。また、特開昭55−71092号公報の例においても同様に、発熱部材を直接、金属筐体壁に接続しなければならず、発熱部材を含む部品配列あるいは筐体構造が制限されていた。そのため、最適な部品配列を得ることを優先させた場合、発熱部材に個別に放熱フィンを設置する等の方策が必要となり、筐体が大きくならざるを得なかった。
【0004】
本発明は、発熱部材である電子部品が他の部材とともに狭い空間内に搭載された電子機器の発熱部材で発生する熱を放熱部まで効率良く輸送して発熱部材を所定の温度に冷却する熱輸送デバイスを提供することを課題とする
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の熱輸送デバイスは、内部に液流路を有し冷却対象の電子部品に取り付けられる薄型の受熱部材と、内部に液流路を有し前記電子部品が収納される筐体の壁面部に取り付けられる放熱部材と、前記受熱部材と前記放熱部材の液流路に接続され液体の循環流路を形成する樹脂製のフレキシブルチューブと、前記循環流路に備えられた液駆動装置とを有してなり、前記循環流路に前記液体を封入して一体に構成してなることを特徴とする。この場合において、受熱部材の液流路は、電子部品の熱を受ける受熱面に沿って蛇行させて形成することができる。さらにこの場合は、フレキシブルチューブが接続された受熱部材の接続部は、受熱部材の辺部に形成され、かつ内部の液流路の延在方向に延設して形成することができる。
【0006】
上記構成によれば、電子部品の熱を輸送する媒体として、金属等よりも比熱が大きく、かつ通流することにより熱輸送できる液体(例えば、水)を用いたから、固定して用いる金属等の熱伝導部材に比べて熱輸送効率を大きく向上できる。また、その液体を受熱部材と放熱部材との間で循環させる流路に、引き回しが自由で、かつ絶縁性及び断熱性を備えた樹脂製のフレキシブルチューブを用いたから、他の部品に接して配設しても他の部品に及ぼす熱影響を抑えることができ、電気絶縁や部品配列に左右されることなく、かつ狭隘な部品間に配設できる。
【0007】
【発明の実施の形態】
以下、本発明のいくつかの実施の形態を、図面を参照して説明する。図1に、本発明の第1の実施形態を示す。電子機器は、複数の半導体素子を搭載した配線基板2、キ−ボード4、ディスク装置6、表示装置8などからなり、金属製の筐体10の中に収容されている。配線基板2に搭載された半導体素子のうち、発熱量の特に大きい半導体素子12は、受熱ヘッダ14、放熱ヘッダ16、フレキシブルチューブ18等で構成される熱輸送デバイスによって冷却される。図示したように、半導体素子12と受熱ヘッダ14とはサ−マルコンパウンド、あるいは、高熱伝導シリコンゴムなどを挟んで接触させ、半導体素子12で発生する熱を効率よく受熱ヘッダ14に伝える。さらに、半導体素子12に接続された受熱ヘッダ14はフレキシブルチューブ18によって、表示装置8の背面部の筐体壁に設置された放熱ヘッダ16に接続されている。放熱ヘッダ16は、サ−マルコンパウンド、あるいは、高熱伝導シリコンゴムを介して、もしくは、直接ねじ20止めなどの手段によって金属製筐体壁と熱的かつ物理的に取り付けられる。
【0008】
受熱ヘッダ14、放熱ヘッダ16の内部には流路が形成され、液体が封入されている。さらに、放熱ヘッダ16の内部には液駆動装置が組み込まれており、受熱ヘッダ14と放熱ヘッダ16との間で液が駆動される。液体の駆動は、両者間での往復動、あるいは、循環による。受熱ヘッダ14と放熱ヘッダ16間はフレキシブルチュ−ブによって接続されるので、非常に狭い筐体内に多数の部品が実装された状態においても、実装構造に左右されることなく、高発熱半導体素子と放熱部である筐体壁とが容易に接続できるとともに、熱輸送が液の駆動によって行われるので、高発熱半導体素子で発生する熱は、効果的に放熱ヘッダに輸送される。放熱部においては、放熱ヘッダと金属製筐体壁とが熱的に接続されているので、金属製筐体の高い熱伝導率のために熱が広く筐体壁に拡散され高い放熱性能が得られる。したがって、効率的に半導体素子を冷却することができる。
【0009】
図2に、図1で用いている熱輸送デバイスの詳細を示す。受熱ヘッダ14、放熱ヘッダ16の内部にはフィンが設けられており、液流路を形成するとともにヘッダ壁より内部の液体に効率よく熱を伝える。さらに、放熱ヘッダ16は、内部に液駆動機構を内蔵している。受熱ヘッダ14は、半導体素子12などの発熱部材(発熱部材1ともいう)の大きさに応じて任意の大きさに設定でき、発熱部材1に接触などの手段によって熱的に接続される。また、金属板(銅、アルミなど)に金属パイプを溶接した構造であってもよい。一方、放熱ヘッダ内部の液駆動機構は、一例として、流路の一部をシリンダ22としピストン24をモータ26及びリンク機構28によって往復駆動させる機構を示した。放熱ヘッダ16は、金属製の筐体10の壁に取り付けられるが、取付け構造として筐体壁にネジ止め用のボス30をダイカスト成型時に一体で形成してもよい。また、受熱ヘッダ14と放熱ヘッダ16を接続するフレキシブルチューブ18は、樹脂製でよく内径2mm前後のものを用いる。したがって、受熱ヘッダ14、放熱ヘッダ16とも薄型化が可能で、狭い空間に実装された高発熱半導体素子であっても効果的に冷却できる。
【0010】
図3に本発明の第2の実施形態を示す。本実施形態においては、放熱ヘッダ16の取付けられる金属製筐体10のうち表示部側の筐体の内側にフィン32a,32bが一体成型で設けられている。フィン32aの高さは、放熱ヘッダ16の厚さと同程度で、表示器の取り付けに支障をきたさないようにする。また、互いに直角方向にフィンを設けることによって筐体に高い剛性を持たせることができる。ただし、機器使用時において、水平方向になるフィン32bは、鉛直方向のフィン32aよりも高さを低くし、自然対流による上昇空気の流動を妨げないようにしている。さらに、筐体に空気孔34を設け自然対流放熱を促進している。
【0011】
図4に本発明の第3の実施形態を示す。本実施形態においては、熱輸送デバイスを構成する放熱ヘッダの流路36が、金属製筐体10の壁面に金属筐体成型時にダイカストによる一体成型で直接形成されている。放熱ヘッダの流路36は、フレキシブルチューブ18と接続されたフタ38によって密閉され、発熱半導体素子に取り付けられる受熱ヘッダ14と放熱ヘッダの流路36との間で、フレキシブルチューブ18を介して別途設けられる液駆動装置40によって液体が駆動される。液体の駆動は、小型ポンプによる液循環、もしくは、図2で一例として示した液駆動機構が用いられる。本実施形態によれば、放熱ヘッダと放熱面である金属製筐体壁面との接触熱抵抗がなくなるので効果的な放熱ができるとともに、放熱ヘッダの流路が金属筐体成型時にダイカストによる一体成型で形成されるため複雑な流路構造の形成も可能である。
【0012】
図5に本発明の第4の実施形態を示す。本実施形態においては、熱輸送デバイスを構成する放熱部が金属製のパイプ42であって、金属製筐体10に直接取付けられる。金属製パイプ42は、フレキシブルチューブ18にコネクタ44a,44bによって接続され、発熱半導体素子に取り付けられる受熱ヘッダと金属製パイプ42との間で、フレキシブルチューブ18を介して別途設けられる液駆動装置によって液体が駆動される。なお、金属製パイプは、フレキシブルチュ−ブと同程度の内径(2mm前後)のものをもちいる。一方、筐体壁には、U字状の溝部46が一体成型で設けられており、金属製パイプをこのU字状の溝部46に嵌め込むことによって、特に、溶接などの手段によらなくても効率良く熱的に接続することが可能である。本実施形態によれば、放熱部と金属製筐体とが金属製パイプによる線状の接触であっても、金属製筐体の高い熱伝導率のために熱が広く筐体壁に拡散されるとともに、簡単な構造で筐体壁全面に液流路を構成する金属製パイプを設置することも可能で、筐体壁の広い面積を有効に放熱面として利用できる。このため、高い放熱性能が得られる。
【0013】
図6に本発明の第5の実施形態を示す。電子機器は、複数の半導体素子を搭載した配線基板2、キ−ボード4、ディスク装置6、表示装置8などからなり、金属製の筐体10の中に収容されている。配線基板2に搭載された半導体素子のうち、発熱量の特に大きい半導体素子12は、受熱ヘッダ14、放熱ヘッダ16、フレキシブルチューブ18等で構成される熱輸送デバイスによって冷却される。半導体素子12と受熱ヘッダ14とはサ−マルコンパウンド、あるいは、高熱伝導シリコンゴムなどを挟んで接触させ、半導体素子12で発生する熱を効率よく受熱ヘッダ14に伝える。さらに、半導体素子12に接続された受熱ヘッダ14はフレキシブルチューブ18によって、配線基板等が搭載された本体側の筐体壁に設置された放熱ヘッダ16に接続されている。放熱ヘッダ16は、サ−マルコンパウンド、あるいは、高熱伝導シリコンゴムを介して、もしくは、直接ねじ止めなどの手段によって金属製筐体壁と熱的かつ物理的に取り付けられる。受熱ヘッダ14、放熱ヘッダ16の内部には流路が形成され、液体が封入されている。熱輸送デバイスの詳細は、図2で示したものと同様である。ただし、図2で示した放熱ヘッダにおいては、液駆動機構が放熱ヘッダ全体の厚さを規定している。したがって、極めて狭い実装空間しか得られないような装置においては、液駆動装置を放熱ヘッダから分離して設置してもよい。
【0019】
【発明の効果】
本発明によれば、発熱部材である電子部品が他の部材とともに狭い空間内に搭載された電子機器の発熱部材で発生する熱を、放熱部まで効率良く輸送でき、発熱部材を所定の温度に効率的に冷却することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の斜視図。
【図2】図1の実施形態の詳細斜視図。
【図3】本発明の第2の実施形態の斜視図。
【図4】本発明の第3の実施形態の構成説明図。
【図5】本発明の第4の実施形態の斜視図。
【図6】本発明の第5の実施形態の斜視図。
【符号の説明】
2 配線基板
4 キ−ボード
6 ディスク装置
8 表示装置
10 金属製筐体
12 半導体素子発熱部材
14 受熱ヘッダ
16 放熱ヘッダ
18 フレキシブルチューブ
20 ねじ
22 シリンダ
24 ピストン
26 モータ
28 リンク機構
30 ボス
32a,32b フィン
34 空気孔
36 流路
38 フタ
40 液駆動装置
42 金属製パイプ
44a,44b コネクタ
46 U字状の溝部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat transport device of the electronic device, to a heat transport device, in particular keeping the electronic components in the cooled predetermined temperature.
[0002]
[Prior art]
A conventional electronic device includes an independent metal plate or a part of a housing as described in JP-A-63-250900, JP-A-3-255697, and JP-A-5-29153. A metal plate is interposed between the heat-generating member and the metal housing wall, and the heat generated by the heat-generating member is transported to the metal housing wall, which is a heat radiating portion, by heat conduction and radiated. Further, as described in Japanese Patent Application Laid-Open No. 55-71092, a heat pipe is formed on the wall of a metal housing and the heat generating member is thermally connected to the wall of the metal housing to thereby generate heat generated by the heat generating member. Is dissipated by the metal housing wall.
[0003]
[Problems to be solved by the invention]
In the above conventional example, in the examples of JP-A-63-250900, JP-A-3-255697, and JP-A-5-29153, the heat transfer path from the heat-generating member to the metal casing wall is formed by the casing wall. It has only a thin section of about 1 mm in thickness, so that heat is not efficiently conducted. Therefore, it was not possible to sufficiently cope with an increase in the amount of heat generated. Further, depending on the component arrangement, the conduction distance to the metal housing wall is not always short. For this reason, the arrangement of parts or the structure of the housing has been limited, such as disposing the heating member near the housing. On the other hand, in an electronic device or the like that requires high performance, the arrangement of components including a heat-generating member has a great effect on performance due to a wiring length and the like due to an increase in speed of an electronic circuit. Therefore, in the conventional example, downsizing and high performance of the electronic device have been hindered. Similarly, in the example of Japanese Patent Application Laid-Open No. 55-71092, the heat-generating member must be directly connected to the metal housing wall, and the arrangement of components including the heat-generating member or the housing structure is limited. Therefore, when giving priority to obtaining the optimal component arrangement, it is necessary to take measures such as installing radiation fins individually on the heat-generating members, and the housing has to be enlarged.
[0004]
This onset Ming, heat electronic components is exothermic member is generated in the heating member of an electronic device mounted in a narrow space together with other members, the heat radiating portion or in efficiently transported to the heat generating member to a predetermined temperature It is an object to provide a heat transport device for cooling.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the heat transport device of the present invention has a thin heat receiving member that has a liquid flow path inside and is attached to an electronic component to be cooled, and the electronic component has a liquid flow path inside. A heat radiating member attached to a wall surface of the housing to be housed; a resin flexible tube connected to the heat receiving member and the liquid flow path of the heat radiating member to form a liquid circulation flow path; and provided in the circulation flow path. And a liquid drive device provided therein, wherein the liquid is sealed in the circulation flow path to be integrally formed. In this case, the liquid flow path of the heat receiving member can be formed to meander along the heat receiving surface of the electronic component that receives heat. Further, in this case, the connecting portion of the heat receiving member to which the flexible tube is connected can be formed on the side of the heat receiving member and can be formed to extend in the extending direction of the internal liquid flow path.
[0006]
According to the above configuration, as a medium for transporting heat of the electronic component, a liquid (for example, water) having a higher specific heat than a metal or the like and capable of transporting heat by flowing is used. The heat transport efficiency can be greatly improved as compared with the heat conduction member. In addition, since a resin-made flexible tube, which can be freely routed and has insulation and heat insulation properties, is used for a flow path for circulating the liquid between the heat-receiving member and the heat-dissipating member, it is disposed in contact with other components. Even if it is installed, the thermal effect on other parts can be suppressed, and it can be arranged between narrow parts without being affected by electrical insulation or arrangement of parts.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, some embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. The electronic device includes a wiring board 2 on which a plurality of semiconductor elements are mounted, a keyboard 4, a disk device 6, a display device 8, and the like, and is housed in a metal housing 10. Among the semiconductor elements mounted on the wiring board 2, the semiconductor element 12 that generates a particularly large amount of heat is cooled by a heat transport device including a heat receiving header 14, a heat radiation header 16, a flexible tube 18, and the like. As shown in the figure, the semiconductor element 12 and the heat receiving header 14 are brought into contact with each other with a thermal compound or a high thermal conductive silicon rubber interposed therebetween, and the heat generated in the semiconductor element 12 is efficiently transmitted to the heat receiving header 14. Further, the heat receiving header 14 connected to the semiconductor element 12 is connected by a flexible tube 18 to a heat radiating header 16 installed on a housing wall on the back of the display device 8. The heat radiating header 16 is thermally and physically attached to the metal housing wall via a thermal compound, a high thermal conductive silicon rubber, or directly by means of a screw 20 or the like.
[0008]
A flow path is formed inside the heat receiving header 14 and the heat radiation header 16, and a liquid is sealed therein. Further, a liquid driving device is incorporated in the heat radiation header 16, and the liquid is driven between the heat receiving header 14 and the heat radiation header 16. The liquid is driven by reciprocation or circulation between the two. Since the heat-receiving header 14 and the heat-radiating header 16 are connected by a flexible tube, even when a large number of components are mounted in a very narrow housing, the heat-generating semiconductor element and the heat-generating semiconductor element can be connected independently of each other. The heat can be easily connected to the housing wall, which is the heat radiating portion, and the heat is transported by driving the liquid. Therefore, the heat generated in the high heat generating semiconductor element is effectively transported to the heat radiating header. In the heat radiating section, the heat radiating header and the metal housing wall are thermally connected, so the heat is widely diffused to the housing wall due to the high thermal conductivity of the metal housing, and high heat radiation performance is obtained. Can be Therefore, the semiconductor element can be efficiently cooled.
[0009]
FIG. 2 shows details of the heat transport device used in FIG. Fins are provided inside the heat receiving header 14 and the heat radiation header 16 to form a liquid flow path and efficiently transmit heat to the liquid inside from the header wall. Further, the heat dissipation header 16 has a liquid drive mechanism built therein. The heat receiving header 14 can be set to any size in accordance with the size of the heat generating member (also referred to as the heat generating member 1) such as the semiconductor element 12, and is thermally connected to the heat generating member 1 by means such as contact. Further, a structure in which a metal pipe is welded to a metal plate (copper, aluminum, or the like) may be used. On the other hand, as the liquid drive mechanism inside the heat radiation header, as an example, a mechanism in which a part of the flow path is used as the cylinder 22 and the piston 24 is reciprocated by the motor 26 and the link mechanism 28 is shown. The heat radiating header 16 is attached to the wall of the metal casing 10, but a boss 30 for screwing to the casing wall may be formed integrally with the casing wall at the time of die casting. The flexible tube 18 connecting the heat receiving header 14 and the heat radiating header 16 is made of resin and has an inner diameter of about 2 mm. Therefore, both the heat receiving header 14 and the heat radiating header 16 can be made thin, and even a high heat generating semiconductor element mounted in a small space can be effectively cooled.
[0010]
FIG. 3 shows a second embodiment of the present invention. In the present embodiment, the fins 32a and 32b are integrally formed on the inside of the display-side housing of the metal housing 10 to which the heat radiation header 16 is attached. The height of the fins 32a is substantially equal to the thickness of the heat radiation header 16 so as not to hinder the mounting of the display. By providing the fins at right angles to each other, the housing can have high rigidity. However, when the device is used, the height of the horizontal fins 32b is lower than that of the vertical fins 32a so as not to hinder the flow of the rising air due to natural convection. Further, an air hole 34 is provided in the housing to promote natural convection heat radiation.
[0011]
FIG. 4 shows a third embodiment of the present invention. In the present embodiment, the flow path 36 of the heat dissipation header constituting the heat transport device is directly formed on the wall surface of the metal housing 10 by integral molding by die casting when the metal housing is molded. The flow path 36 of the heat radiation header is hermetically sealed by a lid 38 connected to the flexible tube 18, and is separately provided between the heat receiving header 14 attached to the heat generating semiconductor element and the flow path 36 of the heat radiation header via the flexible tube 18. The liquid is driven by the liquid driving device 40 to be driven. For the driving of the liquid, liquid circulation by a small pump or a liquid driving mechanism shown as an example in FIG. 2 is used. According to this embodiment, there is no contact thermal resistance between the heat dissipation header and the metal housing wall surface as the heat dissipation surface, so that effective heat dissipation can be performed, and the flow path of the heat dissipation header is integrally molded by die casting when molding the metal housing. , It is possible to form a complicated flow path structure.
[0012]
FIG. 5 shows a fourth embodiment of the present invention. In the present embodiment, the heat radiating portion constituting the heat transport device is a metal pipe 42 and is directly attached to the metal housing 10. The metal pipe 42 is connected to the flexible tube 18 by connectors 44a and 44b, and is connected between the heat receiving header attached to the heat-generating semiconductor element and the metal pipe 42 by a liquid driving device separately provided via the flexible tube 18. Is driven. The metal pipe has an inner diameter (about 2 mm) similar to that of the flexible tube. On the other hand, a U-shaped groove portion 46 is provided on the housing wall by integral molding, and by fitting a metal pipe into the U-shaped groove portion 46, particularly without using a means such as welding. Can also be efficiently thermally connected. According to the present embodiment, even when the heat radiating portion and the metal casing are in linear contact with the metal pipe, heat is widely diffused to the casing wall due to the high thermal conductivity of the metal casing. In addition, it is possible to install a metal pipe constituting a liquid flow path on the entire surface of the housing wall with a simple structure, so that a large area of the housing wall can be effectively used as a heat radiation surface. Therefore, high heat dissipation performance can be obtained.
[0013]
FIG. 6 shows a fifth embodiment of the present invention. The electronic device includes a wiring board 2 on which a plurality of semiconductor elements are mounted, a keyboard 4, a disk device 6, a display device 8, and the like, and is housed in a metal housing 10. Among the semiconductor elements mounted on the wiring board 2, the semiconductor element 12 that generates a particularly large amount of heat is cooled by a heat transport device including a heat receiving header 14, a heat radiation header 16, a flexible tube 18, and the like. The semiconductor element 12 and the heat receiving header 14 are brought into contact with each other with a thermal compound or high thermal conductive silicon rubber interposed therebetween, and the heat generated in the semiconductor element 12 is efficiently transmitted to the heat receiving header 14. Further, the heat receiving header 14 connected to the semiconductor element 12 is connected by a flexible tube 18 to a heat radiation header 16 installed on a housing wall of the main body on which a wiring board and the like are mounted. The heat radiating header 16 is thermally and physically attached to the metal housing wall via a thermal compound, a high heat conductive silicon rubber, or directly by means of screws or the like. A flow path is formed inside the heat receiving header 14 and the heat radiation header 16, and a liquid is sealed therein. The details of the heat transport device are the same as those shown in FIG. However, in the heat dissipation header shown in FIG. 2, the liquid drive mechanism regulates the thickness of the entire heat dissipation header. Therefore, in a device in which only a very narrow mounting space can be obtained, the liquid drive device may be installed separately from the heat radiation header.
[0019]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the heat | fever generate | occur | produced by the heat generating member of the electronic device by which the electronic component which is a heat generating member was mounted in the narrow space with other members can be efficiently transported to a heat radiating part, and the heat generating member is set to predetermined temperature. It can be cooled efficiently.
[Brief description of the drawings]
FIG. 1 is a perspective view of a first embodiment of the present invention.
FIG. 2 is a detailed perspective view of the embodiment of FIG.
FIG. 3 is a perspective view of a second embodiment of the present invention.
FIG. 4 is a configuration explanatory view of a third embodiment of the present invention.
FIG. 5 is a perspective view of a fourth embodiment of the present invention.
FIG. 6 is a perspective view of a fifth embodiment of the present invention.
[Explanation of symbols]
2 Wiring board 4 Key board 6 Disk device 8 Display device 10 Metal casing 12 Semiconductor element heating member 14 Heat receiving header 16 Heat dissipation header 18 Flexible tube 20 Screw 22 Cylinder 24 Piston 26 Motor 28 Link mechanism 30 Boss 32a, 32b Fin 34 Air hole 36 Flow path 38 Lid 40 Liquid drive device 42 Metal pipes 44a, 44b Connector 46 U-shaped groove

Claims (3)

内部に液流路を有し冷却対象の電子部品に取り付けられる薄型の受熱部材と、内部に液流路を有し前記電子部品が収納される筐体の壁面部に取り付けられる放熱部材と、前記受熱部材と前記放熱部材の液流路に接続され液体の循環流路を形成する樹脂製のフレキシブルチューブと、前記循環流路に備えられた液駆動装置とを有してなり、前記循環流路に前記液体を封入して一体に構成してなる電子機器用の熱輸送デバイス。A thin heat-receiving member that has a liquid flow path inside and is attached to an electronic component to be cooled; A resin-made flexible tube connected to the heat receiving member and the liquid flow path of the heat radiation member to form a liquid circulation flow path; and a liquid drive device provided in the circulation flow path, wherein the circulation flow path A heat transport device for electronic equipment, wherein the heat transfer device is integrally formed by sealing the liquid. 前記受熱部材の前記液流路は、前記電子部品の熱を受ける受熱面に沿って蛇行させて形成されてなることを特徴とする請求項1に記載の電子機器用の熱輸送デバイス。The heat transport device according to claim 1, wherein the liquid flow path of the heat receiving member is formed to meander along a heat receiving surface of the electronic component that receives heat. 前記フレキシブルチューブが接続された前記受熱部材の接続部は、前記受熱部材の辺部に形成され、かつ内部の液流路の延在方向に延設されてなることを特徴とする請求項2に記載の電子機器用の熱輸送デバイス。The connecting portion of the heat receiving member to which the flexible tube is connected is formed on a side of the heat receiving member and extends in a direction in which an internal liquid flow path extends. A heat transport device for an electronic device according to the above.
JP2001368920A 2001-12-03 2001-12-03 Heat transport device for electronic equipment Expired - Lifetime JP3598416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001368920A JP3598416B2 (en) 2001-12-03 2001-12-03 Heat transport device for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001368920A JP3598416B2 (en) 2001-12-03 2001-12-03 Heat transport device for electronic equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28485593A Division JP3385482B2 (en) 1993-11-15 1993-11-15 Electronics

Publications (2)

Publication Number Publication Date
JP2002196843A JP2002196843A (en) 2002-07-12
JP3598416B2 true JP3598416B2 (en) 2004-12-08

Family

ID=19178417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001368920A Expired - Lifetime JP3598416B2 (en) 2001-12-03 2001-12-03 Heat transport device for electronic equipment

Country Status (1)

Country Link
JP (1) JP3598416B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3651677B2 (en) 2002-07-12 2005-05-25 株式会社東芝 Heating element cooling device and electronic device
US20070006996A1 (en) * 2003-06-27 2007-01-11 Kazuyuki Mikubo Cooler for electronic equipment

Also Published As

Publication number Publication date
JP2002196843A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
JP3385482B2 (en) Electronics
JP4223628B2 (en) Electronic equipment cooling device
JP3852253B2 (en) Electronic component cooling device and electronic equipment
JP3594900B2 (en) Display integrated computer
US20060021737A1 (en) Liquid cooling device
JP2001159931A (en) Computer
JP5472955B2 (en) Heat dissipation module
WO2003043397A1 (en) Electronic apparatus
JPH06266474A (en) Electronic apparatus equipment and lap top electronic apparatus equipment
KR20050040681A (en) Liquid cooled system
TWI731622B (en) Automotive electronic device
CN113939152A (en) Water-cooling heat dissipation module and electronic equipment
JP2004293833A (en) Cooling device
JP4012773B2 (en) Electronics
JP2000269676A (en) Cooling device of electronic equipment
JP3598416B2 (en) Heat transport device for electronic equipment
JP3755535B2 (en) Heat transport device
JP2006074029A (en) Heat transport device
JP5321526B2 (en) Semiconductor module cooling device
TWI424140B (en) Flattened heat dissipation structure with fins parallel to heat receiving surface
JP5100165B2 (en) Cooling board
JP3593659B2 (en) Heat transport device for electronic equipment
JP3731601B2 (en) Heat transport device
JPH10107192A (en) Heat sink
JP4229738B2 (en) Heat pipe type heat dissipation unit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040831

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term