JP3596632B2 - Wood processing machine - Google Patents

Wood processing machine Download PDF

Info

Publication number
JP3596632B2
JP3596632B2 JP12569395A JP12569395A JP3596632B2 JP 3596632 B2 JP3596632 B2 JP 3596632B2 JP 12569395 A JP12569395 A JP 12569395A JP 12569395 A JP12569395 A JP 12569395A JP 3596632 B2 JP3596632 B2 JP 3596632B2
Authority
JP
Japan
Prior art keywords
signal
material feeding
speed
distance
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12569395A
Other languages
Japanese (ja)
Other versions
JPH08294902A (en
Inventor
晋二 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP12569395A priority Critical patent/JP3596632B2/en
Publication of JPH08294902A publication Critical patent/JPH08294902A/en
Application granted granted Critical
Publication of JP3596632B2 publication Critical patent/JP3596632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、送材速度が可変となる送材装置により材料を往復動させ切削を行う木材加工機に関するものである。
【0002】
【従来の技術】
テーブル上に載置した材料を送材装置で往復動させ、復路(図1の矢印B方向)で材料の上面を鉋刃で切削する木材加工機において、材料を図1の矢印A方向へ送材してから、送材装置の回転方向を逆転させて、送材方向をB方向に逆転する際、送材方向における材料の終端の位置は、鉋刃4と駆動ローラ5の右端付近の間(図1からみてL2の間隔)に位置していなければならない。なぜなら、例えば、材料の終端位置が鉋刃よりも手前に位置しているときに材料を逆転させると、鉋刃よりも手前に位置している材料の上面が鉋刃で切削されずにB方向へ送材されてしまう。逆に材料の終端位置が送材装置の終端付近から図1の左側に位置してしまうと、送材装置の回転方向を逆転させて材料をB方向に逆転しようとしても、材料は送材装置上に支持されず、B方向への送材ができなくなる。
また、小形の木材加工機においては、前記した距離L2の距離が必然的に短くなるため、材料の逆転位置をより高精度に行わなければならない。
【0003】
従来、往復動における逆転位置のばらつきをなくす(距離L2の範囲内で材料の送材方向を逆転させる)ものとして、特開昭62−239880号公報がある。この木材加工機は、送材装置の正逆動作により材料を往復動させ鉋刃で切削する超仕上鉋盤と称されるもので、送材制御にパルス発生手段を設け、このパルスを計数する距離計数回路を用い、材料の送材距離を測定し、一定の距離に達したとき、送材装置を消勢し、材料を慣性送行させたあと、送材装置に設けた電磁ブレーキで材料を停止させ、逆転送材させる。これにより、往復動における材料の逆転位置のばらつきをなくしている。
【0004】
また、他に特開昭57−142302号公報に開示されるものがある。これは、前述と同じ超仕上鉋盤と称されるもので、距離測定手段からの出力を受け、材料の送行距離を計測し、一定の距離に達したとき、送材装置を消勢し、慣性送行させ、距離測定手段からのパルス出力の周期幅をあらかじめ設定した幅と比較して、大きくなったときに送材装置を逆転させ、材料の往復動を行うものである。
【0005】
【発明が解決しようとする課題】
従来の特開昭62−239880号公報によるものは、送材速度にかかわらず、一定の送行距離を送行させたあと、電磁ブレーキを動作させるまでの間に慣性送行させているため、材料の重量、そり曲がりの違いにより、慣性送行距離が若干ばらつき、正確な材料の逆転位置が得られなかった。特に、送材装置の送材速度を変えることができるものにあっては、さらに、慣性量のばらつきが加わり、逆転位置が全く定まらず、往復動を繰り返せば、上記で説明したように材料に切削残りが発生する。また、電磁ブレーキによる制動は、電磁ブレーキを定期的にメンテナンスしないと、制動力が変化するため手間がかかり作業性の悪化を招いていた。
【0006】
特開昭57−142302号公報によるものは、ブレーキ手段を使用しないためブレーキ手段のメンテナンスは必要としないが、パルス幅の比較だけでは、慣性送行距離は計測できず、材料の逆転位置は一定とならない問題がある。
【0007】
本発明の目的は、先の木材加工機の問題点を解消し、送材の逆転位置を精度良く行うことである。
【0008】
【課題を解決するための手段】
上記の目的を達成するためには、テーブルと該テーブルに対向する昇降体を有し、前記テーブルと昇降体のいずれかに加工刃物と送材装置を具備し、テーブルと昇降体の間に送材路を形成し、該送材装置により材料を往復動させ加工刃物により加工を行い、かつ、送材装置の送材速度を変える変速手段を設けた木材加工機において、材料の送材方向の終端の信号を検出する終端検出手段を送材路の適所に設け、前記送材装置に送材距離に比例した信号を出力する距離測定手段を設け、前記変速手段の変速に比例した信号を出力する速度検知手段を設け、かつ、送材装置の電気的制動手段を設け、前記終端検出手段の信号、距離測定手段の信号および速度検知手段の信号を受け、送材装置の往復動の逆転位置を制御する制御手段を設けたものである。
【0009】
【作用】
上記のように構成された木材加工機の送材装置は、送材路に設けた終端検出器が、材料の終端を検出すると信号を発する。この信号を制御手段が受け、制御手段は、距離測定手段を駆動させ材料の終端の送行距離を測定し、同時に速度検知手段の信号を受け、送材装置の送材速度を検知する。
制御手段には、あらかじめ送材装置の送材速度に対応した送行距離が設定されており、制御手段は、速度検知手段の信号を受け、あらかじめ設定された送行距離を割り出し、距離測定手段と比較し、距離測定手段の距離があらかじめ設定した送行距離に達したとき、制御手段は送材装置を消勢し、電気的制動手段にてあらかじめ定めた制動力で送材装置の送行を減速させる。同時に、制御手段は減速を始めたときからの減速距離を距離測定手段により測定し、減速送行距離があらかじめ設定した減速距離に達したときに送材装置を逆転送材させる。
【0010】
【実施例】
本発明の一実施例を図1〜図5を用いて説明する。なお、本実施例では、木材加工機のうち超仕上鉋盤を例に説明する。
図において、テーブル1の後部に並列に立設したコラム2、2の上端に昇降体となるヘッド3を支持し、ヘッド3の中央部には、加工刃物となる鉋刃4が出没調整可能に配置してある。テーブル1の上部にあってヘッド3の下方には前後に一対の駆動ローラ5、従動ローラ6を軸支して、これらローラ5、6にベルト式の送材部材7を張り渡し、これらローラ5,6、送材部材7で送材装置を構成している。なお、送材装置はベルトに代わり複数のローラを使用しても構わない。
【0011】
テーブル1内には、送材部材7駆動用モータ8を設け、モータ8は、プーリ12と駆動ローラ5に設けたプーリ13間に無端ベルト14を張り渡すことにより、送材部材7はモータ8からプーリ12、無端ベルト14、プーリ13、駆動ローラ5を介してローラ5,6間を正逆方向に循環回送する。
モータ8はインバータ9とインバータ9に設けた回転式の可変抵抗器10とからなる変速手段により変速可能となっている。可変抵抗器10の回転中心軸に可変抵抗器10と同期して回転する速度検出手段となる速度検出抵抗器11が設けられ、速度検出抵抗器11でモータ8の回転数、すなわち、材料17の送材速度を検出する。
【0012】
テーブル1には昇降用モータ15により回転するフィードスクリュ16が嵌合し、フィードスクリュ16の上端にヘッド3を支持することで、ヘッド3はコラム2、2を案内に昇降自在となる。
【0013】
材料17の送材路となる送材部材7とヘッド3との間の間隙は、昇降操作スイッチ18で昇降用モータ15を起動させ、フィードスクリュ16を介してヘッド3を昇降させることにより調整される。材料厚さ検出器19が図1において、ヘッド3の下面の右端に装着され、ヘッド3を下降させテーブル1上に載置した材料17上面に材料厚さ19が当接すると、材料厚さ検出器19から検知信号が出るようになっている。また、ヘッド3の下面で材料厚さ検出器19により内側に材料17の送材方向終端17a,17bを検出する終端検出器20が設けられ、終端検出器20から終端17a又は終端17bが外れたとき、終端検出器20から検出信号を発するようにしてある。
【0014】
次に図3のブロック図を用いて、送材装置の制御構成を説明すると、駆動ローラ5の軸端に駆動ローラ5の回転に比例したパルスを出力する距離測定手段となるパルス発生器22が設けられ、その出力信号が制御器21に入力されるようになっている。モータ8の電気的制動手段となる回生制動回路23はインバータ9内に設けられ、回生制動回路23はインバータ9に停止信号が入力されると駆動されるようになっている。なお、回生制動回路23に代わり電気的制動手段とした直流制動回路を用いてもよい。インバータ9には回生制動回路23の減速の傾き(速度/時間)すなわち、制動力をあらかじめ1つだけ設定している。インバータ9を制御する制御信号は、制御器21より出力され、回生制動回路23は、インバータ9を介して駆動される。また、制御器21には、前記した材料厚さ検出器19、終端検出器20、昇降操作スイッチ18が接続され、また、あとで説明するが送材部材7の送材速度にあった送行距離データL1,L1’と、減速時の制動距離データL2,L2’および所定の減速時間T1があらかじめ設定されている。制御器21は、公知のマイクロコンピュータ、シーケンサ、デジタルIC回路等を用いている。
【0015】
上記構成において、材料17をテーブル1上でA方向に送材して、材料17の終端17a(右端)が鉋刃4上を通過したあと、送材部材7の送材方向を逆転させ、復路で材料17の上面を鉋刃4で切削する場合について、図4を用いて説明する。まず、ヘッド3を昇降させて送材部材7とヘッド3との間の間隔を切削する材料17の高さ以上にし、次に材料17をヘッド3に設けた材料厚さ検出器19の下のテーブル1上に載置し、ヘッド3を下降させる。これにより材料厚さ検出器19も下降し、材料17の上面に当接することにより、材料厚さ検出器19から検出信号を出力する。この信号を制御器21が受け、ヘッド3の下降動作を停止させると同時に、インバータ9を駆動させモータ8を回転させる。このときのモータ8の回転数は、インバータ9に接続される可変抵抗器10の信号により決められる。
【0016】
可変抵抗器10で高速(V1)に設定した場合、速度V1でモータ8が回転し、無端ベルト14を介して駆動ローラ5を回転させ、送材部材7を矢印A方向にV1の速度で循環回送させる。次に、材料17を送材部材7上に載せると、矢印A方向へ搬送される。材料17の終端17aを終端検出器20が検出すると、終端検出器20から検出信号が出力され、この信号を受けて、制御器21は可変抵抗器10に設けた可変抵抗器10に同期する速度検出抵抗器11の信号によりモータ8の回転数、つまり材料17の送材速度を検出する。この信号を受け、制御器21は検出した送材速度に合う送材距離L1および減速時の制動距離L2を割り出す。また、終端検出器20の検出信号を受けると同時に制御器21は、パルス発生器22から発生するパルス信号をカウントする。
【0017】
次に、制御器21は送材距離L1に相当するパルス数をカウントしたときに、カウント「0」にして、インバータ9に停止信号を出力する。すると、インバータ9は回生制動回路23を駆動させ、あらかじめ定めた減速の傾き(速度V1/時間T1)でモータ8を減速させる。同時に、制御器21は、あらかじめ設定されている減速時の制動距離L2に相当するパルス信号をパルス発生器22でカウントし、材料17の終端17aが図2に示す位置に達すると、インバータ9に逆転の駆動信号を出し、モータ8を逆回転させる。材料17は、矢印B方向へ返送され、このとき、鉋刃4で材料17の上面が切削される。次に、材料17の終端17b(左端)が鉋刃4を通過し、終端17bを終端検出器20が検出し、検出信号を出力すると、この信号を受けて制御器21は、インバータ9に停止信号を出力する。これによりモータ8は停止される。
【0018】
例外的に材料17のそり曲がり、節目等の原因で制動距離L2に達する前に材料が停止してしまう場合がある。この状態になると、距離L2に達していないため、制御器21からインバータ9に逆転の駆動信号が出力されず、材料17の送材方向が逆転されないまま停止した状態となる。このため、あらかじめ定めた減速時間T1を設けることにより、材料17の終端17aが距離L2に達してなくても、減速時間T1がたてば、制御器21からインバータ9に逆転の駆動信号が出力され、材料17の送材方向を逆転するようにしている。なお、本実施例では、減速時間T1は、送材速度が高速V1の状態で、材料17が制動距離L2を移動する際の時間と同一に設定されている。
【0019】
次に、可変抵抗器10を調整し、V2(低速)の速度にしたときについて説明する。速度検出抵抗器11は可変抵抗器10と同期して動作するので、V2に対応した速度信号を出力する。制御器21は、この信号を受けて距離L1’および減速時の制動距離L2’を割り出す。また、速度V1(高速)時と同様に終端検出器20が材料17の終端17aを検出すると、終端検出器20から検出信号が出力され、この信号を受けて、制御器21は速度検出抵抗器11の信号によりモータ8の回転数、つまり材料17の送材速度を検出する。この信号を受け、制御器21は検出した送材速度に合う送材距離L1’および減速時の制動距離L2’を割り出す。また、終端検出器20の検出信号を受けると同時に制御器21は、パルス発生器22から発生するパルス信号をカウントする。
【0020】
次に、制御器21は送材距離L1’に相当するパルス数をカウントしたときに、カウント「0」にして、インバータ9に停止信号を出力すると、インバータ9は回生制動回路23を駆動させ、あらかじめ定めた減速の傾き(速度V2/時間T1)でモータ8を減速させる。同時に制御器21は、パルス発生器22から発生するパルス信号をカウントする。制御器21は、あらかじめ設定されている減速時の制動距離L2’に相当するパルス信号をカウントし、材料17の終端17aが図2に示す位置に達すると、インバータ9に逆転の駆動信号を出し、モータ8を逆回転させる。これ以降は、V1(高速)時と同じである。
【0021】
よって、送材速度にあった送材の送行距離で材料17が逆転するので、逆転位置のばらつきが少なくなる。
【0022】
前述の実施例では、往復切削による超仕上鉋盤を例としたが、往復切削のかんな盤に上記構成を用いても、同様な効果が得られる。また、速度検出抵抗器11にて速度を検出しているが、直接、送材装置に速度の検出手段を設けるか、または、距離検出手段のパルス信号の幅又はパルス信号周期を測ることによって、速度を検出しても構わない。
【0023】
上記した実施例では、逆転時における材料の終端を定位置、つまり材料17が送行する距離L(L1+L2)を常に一定とし、かつ減速時の制動力を一定としているため、L=L1+L2を成り立たせるためには、速度検出手段の信号をもとに距離を割り出し、送材速度にあわせてL1、L2を変化させる必要がある。送材速度が速い場合は、送行距離L1を短く、制動距離L2を長くし、送材速度が遅い場合は、送行距離L1を長く(L1’)、制動距離L2を短く(L2’)している。
【0024】
他の実施例として、図5に示すように、減速の傾き(V1/T1,V2/T1)すなわち制動力を送材速度に応じて可変させることで、送材速度にかかわらず、L1、L2を常に一定とし、送材速度が速いときは制動距離L2での制動力を強く、遅いときには制動力を弱くすることでも、上記したように逆転時における材料の終端を定位置とすることができる。
【0025】
【発明の効果】
本発明によれば、送材装置の速度および距離を検出し、速度にあった逆転位置を決定しているので、材料の負荷変動により送材速度が変わったり、送材速度を可変させても、逆転位置のばらつきが少なく、所定の範囲内で材料の送材方向を逆転させることができる。よって、小形の木材加工機でも正確、かつ高精度な逆転が可能となり、確実に材料を往復動させることができる。
また、制動手段に機械的な機構を用いていないため、メンテナンスの必要がなく、作業性が向上する。
【図面の簡単な説明】
【図1】本発明の一実施例を示す超仕上鉋盤の正面図である。
【図2】材料を送材しているときの超仕上鉋盤の正面図である。
【図3】本発明のブロック図である。
【図4】材料の送材時の運転状態を示す説明図である。
【図5】他の実施例における材料の送材時の運転状態を示す説明図である。
【符号の説明】
5…駆動ローラ、6…従動ローラ、7…送材部材、8…モータ、9…インバータ、10…可変抵抗器、11…速度検出抵抗器、17…材料、17a,17b…材料の終端、20…終端検出器、21…制御器、22…パルス発生器、23…回生制動回路。
[0001]
[Industrial applications]
The present invention relates to a woodworking machine that performs cutting by reciprocating a material by a material feeding device having a variable material feeding speed.
[0002]
[Prior art]
The material placed on the table is reciprocated by the material feeding device, and the material is sent in the direction of arrow A in FIG. 1 in a woodworking machine that cuts the upper surface of the material with a plane blade in the return path (the direction of arrow B in FIG. 1). When the direction of rotation of the material feeding device is reversed after the material is fed, and the direction of material feeding is reversed in the direction B, the end position of the material in the material feeding direction is between the plane blade 4 and the vicinity of the right end of the driving roller 5. (The interval of L2 in FIG. 1). Because, for example, if the material is reversed when the end position of the material is located before the plane blade, the upper surface of the material located before the plane blade is not cut by the plane blade, and Will be sent to Conversely, if the end position of the material is located on the left side of FIG. 1 from the vicinity of the end of the material feeding device, even if the material is rotated in the direction B by reversing the rotation direction of the material feeding device, the material is not transferred to the material feeding device. The material cannot be fed in the B direction because it is not supported above.
Further, in a small-sized wood processing machine, the distance L2 described above is inevitably shortened, so that the reverse rotation position of the material must be performed with higher accuracy.
[0003]
Conventionally, Japanese Unexamined Patent Publication (Kokai) No. 62-239880 discloses a method for eliminating variations in the reverse rotation position during reciprocation (reversing the material feeding direction within a range of a distance L2). This wood processing machine is a so-called super-finishing plane machine that reciprocates the material by a forward / reverse operation of a material feeding device and cuts it with a plane blade. A pulse generating means is provided for material feeding control, and the number of pulses is counted. Using a distance counting circuit, the material feeding distance is measured, and when it reaches a certain distance, the material feeding device is deenergized and the material is sent by inertia. Stop and allow reverse transfer material. This eliminates variations in the reverse rotation position of the material during reciprocation.
[0004]
Another example is disclosed in JP-A-57-142302. This is called the same super-finishing plane as described above, receives the output from the distance measuring means, measures the feeding distance of the material, and when it reaches a certain distance, deactivates the feeding device, The inertia feeding is performed, the cycle width of the pulse output from the distance measuring means is compared with a preset width, and when the width becomes large, the feeding apparatus is reversed to reciprocate the material.
[0005]
[Problems to be solved by the invention]
According to the conventional method disclosed in Japanese Patent Application Laid-Open No. 62-239880, regardless of the material feeding speed, inertia feeding is performed after a certain feeding distance is fed and before an electromagnetic brake is operated. In addition, due to the difference in the warp, the inertial feed distance slightly fluctuated, and an accurate reverse position of the material could not be obtained. In particular, in the case where the material feeding speed of the material feeding device can be changed, furthermore, the variation of the amount of inertia is added, the reverse rotation position is not determined at all, and if the reciprocating motion is repeated, the material is changed as described above. Cutting residue occurs. In addition, if the electromagnetic brake is not regularly maintained, the braking force changes, and the braking force changes.
[0006]
According to Japanese Patent Application Laid-Open No. 57-142302, no maintenance is required for the brake means because the brake means is not used, but the inertia feeding distance cannot be measured only by comparing the pulse width, and the reverse position of the material is fixed. There is no problem.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the wood processing machine and accurately perform the reverse position of the material feeding.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a table and an elevating body opposed to the table are provided, and a processing blade and a material feeding device are provided on one of the table and the elevating body, and a table is provided between the table and the elevating body. In a wood processing machine provided with a speed change means for forming a material path, reciprocating the material by the material feeding device and reciprocating the material by a processing blade, and changing a material feeding speed of the material feeding device, An end detecting means for detecting a signal at the end is provided at an appropriate position in the material feeding path, a distance measuring means for outputting a signal proportional to a material feeding distance is provided in the material feeding apparatus, and a signal proportional to a shift of the speed change means is output. Speed detecting means, and an electric braking means for the material feeding device, and receives the signal of the end detecting means, the signal of the distance measuring means and the signal of the speed detecting means, and detects the reversing position of the reciprocating motion of the material feeding device. With control means for controlling That.
[0009]
[Action]
The material feeding device of the wood processing machine configured as described above emits a signal when the end detector provided in the material feeding path detects the end of the material. This signal is received by the control means, and the control means drives the distance measuring means to measure the feeding distance at the end of the material, and at the same time receives the signal from the speed detecting means to detect the material feeding speed of the material feeding device.
In the control means, a feeding distance corresponding to the material feeding speed of the material feeding apparatus is set in advance, and the control means receives a signal from the speed detecting means, calculates a predetermined feeding distance, and compares the distance with the distance measuring means. Then, when the distance of the distance measuring means reaches a predetermined feeding distance, the control means deactivates the material feeding device and decelerates the feeding of the material feeding device with a predetermined braking force by the electric braking means. At the same time, the control means measures the deceleration distance from the start of deceleration by the distance measuring means, and when the deceleration transport distance reaches a preset deceleration distance, causes the feeder device to reverse-transfer the material.
[0010]
【Example】
One embodiment of the present invention will be described with reference to FIGS. In this embodiment, a description will be given of a super finishing plane machine as an example of a wood processing machine.
In the drawing, a head 3 serving as an elevating body is supported on the upper ends of columns 2 and 2 erected in parallel at a rear part of a table 1, and a plane blade 4 serving as a processing blade is adjustable at a central portion of the head 3 so as to be adjustable. It is arranged. A pair of driving rollers 5 and a driven roller 6 are pivotally supported in front of and below the head 3 above the table 1, and a belt-type feeding member 7 is stretched over these rollers 5, 6. , 6 and the material feeding member 7 constitute a material feeding device. Note that the material feeding device may use a plurality of rollers instead of the belt.
[0011]
A motor 8 for driving a material feeding member 7 is provided in the table 1. The motor 8 is provided with an endless belt 14 extending between a pulley 12 and a pulley 13 provided on the driving roller 5. From the rollers 5, 6 via the pulley 12, the endless belt 14, the pulley 13, and the driving roller 5 in the forward and reverse directions.
The speed of the motor 8 can be changed by a speed change means including an inverter 9 and a rotary variable resistor 10 provided in the inverter 9. A speed detecting resistor 11 serving as speed detecting means for rotating in synchronization with the variable resistor 10 is provided on the rotation center axis of the variable resistor 10. Detect the material feeding speed.
[0012]
A feed screw 16 that is rotated by a lifting motor 15 is fitted to the table 1, and the head 3 is supported on the upper end of the feed screw 16 so that the head 3 can move up and down with the columns 2 and 2 as guides.
[0013]
The gap between the material feeding member 7 and the head 3 which is a material feeding path of the material 17 is adjusted by activating the elevating motor 15 by the elevating operation switch 18 and elevating the head 3 via the feed screw 16. You. A material thickness detector 19 is mounted on the right end of the lower surface of the head 3 in FIG. 1 and the head 3 is lowered to contact the upper surface of the material 17 placed on the table 1 and the material thickness is detected. The detector 19 outputs a detection signal. An end detector 20 for detecting the end 17a, 17b of the material 17 in the material feeding direction is provided inside the lower surface of the head 3 by the material thickness detector 19, and the end 17a or the end 17b is removed from the end detector 20. At this time, a detection signal is issued from the termination detector 20.
[0014]
Next, the control configuration of the material feeding device will be described with reference to the block diagram of FIG. 3. A pulse generator 22 serving as a distance measuring unit that outputs a pulse proportional to the rotation of the driving roller 5 is provided at the shaft end of the driving roller 5. The output signal is provided to the controller 21. A regenerative braking circuit 23 serving as an electrical braking means for the motor 8 is provided in the inverter 9, and the regenerative braking circuit 23 is driven when a stop signal is input to the inverter 9. Note that, instead of the regenerative braking circuit 23, a DC braking circuit as an electric braking means may be used. The inverter 9 is preset with only one deceleration gradient (speed / time) of the regenerative braking circuit 23, that is, only one braking force. A control signal for controlling the inverter 9 is output from the controller 21, and the regenerative braking circuit 23 is driven via the inverter 9. The controller 21 is connected to the above-described material thickness detector 19, end detector 20, and elevating operation switch 18. Further, as will be described later, the feeding distance corresponding to the feeding speed of the feeding member 7. Data L1 and L1 ', braking distance data L2 and L2' during deceleration, and a predetermined deceleration time T1 are set in advance. The controller 21 uses a known microcomputer, sequencer, digital IC circuit, or the like.
[0015]
In the above configuration, the material 17 is fed in the direction A on the table 1, and after the end 17a (right end) of the material 17 passes over the plane blade 4, the feeding direction of the material feeding member 7 is reversed, and The case where the upper surface of the material 17 is cut by the plane blade 4 will be described with reference to FIG. First, the head 3 is moved up and down to make the distance between the material feeding member 7 and the head 3 equal to or higher than the height of the material 17 to be cut, and then the material 17 is placed under the material thickness detector 19 provided on the head 3. It is placed on the table 1 and the head 3 is lowered. As a result, the material thickness detector 19 also descends and comes into contact with the upper surface of the material 17 so that a detection signal is output from the material thickness detector 19. This signal is received by the controller 21 to stop the lowering operation of the head 3 and, at the same time, drive the inverter 9 to rotate the motor 8. The rotation speed of the motor 8 at this time is determined by a signal of the variable resistor 10 connected to the inverter 9.
[0016]
When high speed (V1) is set by the variable resistor 10, the motor 8 rotates at the speed V1, rotates the drive roller 5 via the endless belt 14, and circulates the material feeding member 7 in the direction of arrow A at the speed of V1. Let me forward. Next, when the material 17 is placed on the material feeding member 7, the material 17 is transported in the direction of arrow A. When the termination detector 20 detects the termination 17 a of the material 17, a detection signal is output from the termination detector 20, and in response to this signal, the controller 21 controls the speed synchronized with the variable resistor 10 provided in the variable resistor 10. The rotation speed of the motor 8, that is, the material feeding speed of the material 17 is detected based on the signal of the detection resistor 11. Upon receiving this signal, the controller 21 calculates a material feeding distance L1 and a braking distance L2 during deceleration that match the detected material feeding speed. At the same time as receiving the detection signal of the end detector 20, the controller 21 counts the pulse signal generated from the pulse generator 22.
[0017]
Next, when counting the number of pulses corresponding to the material feeding distance L <b> 1, the controller 21 sets the count to “0” and outputs a stop signal to the inverter 9. Then, the inverter 9 drives the regenerative braking circuit 23 to decelerate the motor 8 at a predetermined deceleration gradient (speed V1 / time T1). At the same time, the controller 21 counts a pulse signal corresponding to a preset braking distance L2 during deceleration by the pulse generator 22, and when the terminal 17a of the material 17 reaches the position shown in FIG. A reverse drive signal is issued to rotate the motor 8 in the reverse direction. The material 17 is returned in the direction of arrow B. At this time, the upper surface of the material 17 is cut by the plane blade 4. Next, when the end 17b (left end) of the material 17 passes through the plane blade 4 and the end detector 20 detects the end 17b and outputs a detection signal, the controller 21 stops the inverter 9 in response to this signal. Output a signal. Thereby, the motor 8 is stopped.
[0018]
Exceptionally, the material 17 may stop before reaching the braking distance L2 due to warpage of the material 17 or a joint. In this state, since the distance L2 has not been reached, the controller 21 does not output a reverse drive signal to the inverter 9 and the material 17 is stopped without reversing the material feeding direction. Therefore, by providing the predetermined deceleration time T1, even if the end 17a of the material 17 does not reach the distance L2, the controller 21 outputs a reverse drive signal to the inverter 9 after the deceleration time T1 elapses. Thus, the material feeding direction of the material 17 is reversed. In the present embodiment, the deceleration time T1 is set to be the same as the time when the material 17 moves the braking distance L2 when the material feeding speed is the high speed V1.
[0019]
Next, the case where the variable resistor 10 is adjusted to V2 (low speed) will be described. Since the speed detecting resistor 11 operates in synchronization with the variable resistor 10, it outputs a speed signal corresponding to V2. The controller 21 receives this signal and calculates the distance L1 ′ and the braking distance L2 ′ during deceleration. When the end detector 20 detects the end 17a of the material 17 as in the case of the speed V1 (high speed), a detection signal is output from the end detector 20, and in response to this signal, the controller 21 sets the speed detection resistor. The number of rotations of the motor 8, that is, the feeding speed of the material 17 is detected by the signal 11. Upon receiving this signal, the controller 21 calculates a material feeding distance L1 'and a braking distance L2' at the time of deceleration that match the detected material feeding speed. At the same time as receiving the detection signal of the end detector 20, the controller 21 counts the pulse signal generated from the pulse generator 22.
[0020]
Next, when the controller 21 counts the number of pulses corresponding to the material feeding distance L1 ′, sets the count to “0” and outputs a stop signal to the inverter 9, the inverter 9 drives the regenerative braking circuit 23, The motor 8 is decelerated at a predetermined deceleration gradient (speed V2 / time T1). At the same time, the controller 21 counts the pulse signal generated from the pulse generator 22. The controller 21 counts a pulse signal corresponding to a preset braking distance L2 ′ during deceleration, and outputs a reverse drive signal to the inverter 9 when the end 17a of the material 17 reaches the position shown in FIG. Then, the motor 8 is rotated in the reverse direction. Subsequent steps are the same as in V1 (high speed).
[0021]
Therefore, since the material 17 reverses at the feeding distance of the material at the material feeding speed, variations in the reverse rotation position are reduced.
[0022]
In the above-described embodiment, a super-finishing plane machine by reciprocal cutting is described as an example. However, the same effect can be obtained by using the above-described configuration for a planer board for reciprocal cutting. In addition, although the speed is detected by the speed detecting resistor 11, the speed is directly detected by providing the speed detecting means in the material feeding device, or by measuring the pulse signal width or the pulse signal period of the distance detecting means. The speed may be detected.
[0023]
In the above-described embodiment, since the end of the material at the time of reverse rotation is a fixed position, that is, the distance L (L1 + L2) that the material 17 travels is always constant and the braking force at the time of deceleration is constant, so that L = L1 + L2 is satisfied. For this purpose, it is necessary to determine the distance based on the signal of the speed detecting means and change L1 and L2 according to the material feeding speed. When the material feeding speed is high, the feeding distance L1 is short and the braking distance L2 is long. When the material feeding speed is low, the feeding distance L1 is long (L1 ') and the braking distance L2 is short (L2'). I have.
[0024]
As another embodiment, as shown in FIG. 5, by changing the deceleration gradient (V1 / T1, V2 / T1), that is, the braking force in accordance with the material feeding speed, L1 and L2 regardless of the material feeding speed. It is also possible to set the end of the material at the time of reverse rotation to a fixed position as described above by always making the braking force at the braking distance L2 high when the material feeding speed is high and weakening the braking force when the material feeding speed is low. .
[0025]
【The invention's effect】
According to the present invention, the speed and the distance of the material feeding device are detected, and the reverse rotation position corresponding to the speed is determined. In addition, there is little variation in the reverse rotation position, and the material feeding direction can be reversed within a predetermined range. Therefore, accurate and high-precision reversal is possible even with a small wood processing machine, and the material can be reciprocated reliably.
Further, since no mechanical mechanism is used for the braking means, there is no need for maintenance, and workability is improved.
[Brief description of the drawings]
FIG. 1 is a front view of a super-finishing plane machine showing one embodiment of the present invention.
FIG. 2 is a front view of the super-finishing plane machine while feeding materials.
FIG. 3 is a block diagram of the present invention.
FIG. 4 is an explanatory diagram showing an operation state at the time of material feeding.
FIG. 5 is an explanatory view showing an operation state at the time of material feeding in another embodiment.
[Explanation of symbols]
Reference numeral 5: drive roller, 6: driven roller, 7: feed member, 8: motor, 9: inverter, 10: variable resistor, 11: speed detection resistor, 17: material, 17a, 17b: end of material, 20 ... Terminal detector, 21 ... Controller, 22 ... Pulse generator, 23 ... Regenerative braking circuit.

Claims (3)

テーブルと該テーブルに対向する昇降体を有し、前記テーブルと昇降体のいずれかに加工刃物と送材装置を具備し、テーブルと昇降体の間に送材路を形成し、該送材装置により材料を往復動させ加工刃物により加工を行い、かつ、前記送材装置の送材速度を変える変速手段を設けた木材加工機において、送材路の適所に設けられ、材料の送材方向の終端の信号を出力する終端検出手段と、前記送材装置の送材距離に比例した信号を出力する距離測定手段と、前記変速手段の出力信号に比例した信号を出力する速度検知手段と、送材装置の電気的制動手段と、前記終端検出手段の信号、距離測定手段の信号および速度検知手段の信号を受け、送材装置の往復動の逆転位置を制御する制御手段とを設け、前記制御手段は、前記終端検出手段の信号を受けてから前記速度検知手段の信号に対応した送材距離に達したことを前記距離測定手段の信号から判断した際に、前記電気的制動手段にて前記送材装置の送行を減速させ、前記速度検知手段の信号に対応した減速送材距離に達したことを前記距離測定手段の信号から判断した際に前記送材装置を逆転させることを特徴とする木材加工機。 A table and a lifting / lowering body opposed to the table, wherein one of the table and the lifting / lowering body is provided with a processing blade and a material feeding device, and a material feeding path is formed between the table and the lifting / lowering body; In a woodworking machine provided with a speed changing means for changing the material feeding speed of the material feeding device, the material is reciprocated and processed by a processing blade, and the material is provided at an appropriate position in a material feeding path, and the material feeding direction is changed. Terminal detecting means for outputting a signal of the terminal, distance measuring means for outputting a signal proportional to a material feeding distance of the material feeding apparatus, speed detecting means for outputting a signal proportional to an output signal of the speed changing means, Electrical braking means for the material feeding device, and control means for receiving a signal from the end detecting means, a signal from the distance measuring means and a signal from the speed detecting means, and controlling a reversing reverse position of the material feeding device, The means is a signal of the end detecting means. When it is determined from the signal of the distance measuring means that the material feeding distance corresponding to the signal of the speed detecting means has been received from the signal, the feeding of the material feeding device is decelerated by the electric braking means, A woodworking machine characterized in that, when it is determined from the signal of the distance measuring means that the decelerated feeding distance corresponding to the signal of the speed detecting means has been reached, the feeding apparatus is reversed. 前記距離測定手段をパルス状の信号を出力するパルス式距離測定手段とし、前記速度検知手段はパルス出力の周期又は幅を計測することにより送材速度を検出することを特徴とする請求項1記載の木材加工機。2. The method according to claim 1, wherein the distance measuring unit is a pulse type distance measuring unit that outputs a pulse signal, and the speed detecting unit detects a material feeding speed by measuring a period or width of a pulse output. Wood processing machine. テーブルと該テーブルに対向する昇降体を有し、前記テーブルと昇降体のいずれかに加工刃物と送材装置を具備し、テーブルと昇降体の間に送材路を形成し、該送材装置により材料を往復動させ加工刃物により加工を行い、かつ、前記送材装置の送材速度を変える変速手段を設けた木材加工機において、送材路の適所に設けられ、材料の送材方向の終端の信号を出力する終端検出手段と、前記送材装置の送材距離に比例した信号を出力する距離測定手段と、前記変速手段の出力信号に比例した信号を出力する速度検知手段と、送材装置の電気的制動手段と、前記終端検出手段の信号、距離測定手段の信号および速度検知手段の信号を受け、送材装置の往復動の逆転位置を制御する制御手段とを設け、前記制御手段は、前記終端検出手段の信号を受けてから送材距離が所定距離に達したことを前記距離測定手段の信号から判断した際に、前記電気的制動手段にて前記速度検知手段の信号に応じた制動力で前記送材装置の送行を減速させ、減速送材距離が所定距離に達したことを前記距離測定手段の信号から判断した際に前記送材装置を逆転させることを特徴とする木材加工機。A table and a lifting / lowering body opposed to the table, wherein one of the table and the lifting / lowering body is provided with a processing blade and a material feeding device, and a material feeding path is formed between the table and the lifting / lowering body; In a woodworking machine provided with a speed changing means for changing the material feeding speed of the material feeding device, the material is reciprocated and processed by a processing blade, and the material is provided at an appropriate position in a material feeding path, and the material feeding direction is changed. Terminal detecting means for outputting a signal of the terminal, distance measuring means for outputting a signal proportional to a material feeding distance of the material feeding apparatus, speed detecting means for outputting a signal proportional to an output signal of the speed changing means, Electrical braking means for the material feeding device, and control means for receiving a signal from the end detecting means, a signal from the distance measuring means and a signal from the speed detecting means, and controlling a reversing reverse position of the material feeding device, The means is a signal of the end detecting means. When it is determined from the signal of the distance measuring means that the material feeding distance has reached the predetermined distance after receiving the signal, the electric braking means uses the braking force according to the signal of the speed detecting means to apply the braking force of the material feeding apparatus. A woodworking machine characterized in that the feeding device is rotated in a reverse direction when the speed of the feeding is reduced, and it is determined from the signal of the distance measuring means that the reduced speed feeding distance has reached a predetermined distance.
JP12569395A 1995-04-25 1995-04-25 Wood processing machine Expired - Fee Related JP3596632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12569395A JP3596632B2 (en) 1995-04-25 1995-04-25 Wood processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12569395A JP3596632B2 (en) 1995-04-25 1995-04-25 Wood processing machine

Publications (2)

Publication Number Publication Date
JPH08294902A JPH08294902A (en) 1996-11-12
JP3596632B2 true JP3596632B2 (en) 2004-12-02

Family

ID=14916371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12569395A Expired - Fee Related JP3596632B2 (en) 1995-04-25 1995-04-25 Wood processing machine

Country Status (1)

Country Link
JP (1) JP3596632B2 (en)

Also Published As

Publication number Publication date
JPH08294902A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
JP6161120B2 (en) Perforation processing equipment
CA1310847C (en) Apparatus for controlling machines for making bags or sacks
JP5522805B2 (en) Knife folding device
US5967963A (en) Apparatus for folding paper sheets
KR102272903B1 (en) horizontal drilling machine
JP3596632B2 (en) Wood processing machine
US4558266A (en) Workpiece transfer apparatus
JPH0423614B2 (en)
JP6198314B2 (en) Perforation processing equipment
JP4510565B2 (en) Conveying apparatus, surface mounting machine, solder coating apparatus, printed wiring board inspection apparatus, and printed wiring board conveying method
US6186493B1 (en) Apparatus and method for supplying a plurality of box sheets along belts at predetermined intervals
US3618788A (en) Paper cutter control
JPH11170201A (en) Travelling circular saw machine
JPH0415724B2 (en)
JPH11198096A (en) Slicer speed controller
CN210287912U (en) Cutting machine
KR920006507B1 (en) Wire electro-erosion machine
JP3978840B2 (en) Slicer
JPS6247143B2 (en)
JP2596482B2 (en) Plate thickness measuring device
JP3738808B2 (en) Laser processing equipment
KR19980064229A (en) Control device of material transfer device
JPS60196320A (en) Automatic take-out device of injection-molded article
JPS6219343A (en) Method and device for positioning and conveying frame structure
JPS6217521B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees