JP3595604B2 - Degassing device - Google Patents

Degassing device Download PDF

Info

Publication number
JP3595604B2
JP3595604B2 JP10783195A JP10783195A JP3595604B2 JP 3595604 B2 JP3595604 B2 JP 3595604B2 JP 10783195 A JP10783195 A JP 10783195A JP 10783195 A JP10783195 A JP 10783195A JP 3595604 B2 JP3595604 B2 JP 3595604B2
Authority
JP
Japan
Prior art keywords
liquid
degassing
membrane
porous membrane
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10783195A
Other languages
Japanese (ja)
Other versions
JPH08281008A (en
Inventor
芳城 野村
靖二 鈴木
睦浩 甘利
Original Assignee
マイクロリス・コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロリス・コーポレイション filed Critical マイクロリス・コーポレイション
Priority to JP10783195A priority Critical patent/JP3595604B2/en
Publication of JPH08281008A publication Critical patent/JPH08281008A/en
Application granted granted Critical
Publication of JP3595604B2 publication Critical patent/JP3595604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は液体中に存在する酸素、炭酸ガス、低分子量の炭化水素、ハロゲン化炭化水素等の気体や気化し易い有機、無機物質を除去・分離するための脱気装置と当該装置を使用する脱気方法に関する。
すなわち、本発明はプリーツ状に折り曲げ両側縁部を液密に結合した、中空部を有してなる例えば円筒形状を有する多孔質膜脱気エレメントと、その中空部に装着した充填物とを、必要箇所を適切に液密、気密に結合してハウジングに収納したことを特徴とする。
【0002】
【従来の技術】
液体中に存在する酸素、炭酸ガス等の気化し易い無機物質や低分子量の炭化水素、ハロゲン化炭化水素等を除去・分離する方法としては常温、加温下の脱気、バブリング法、超音波を利用した脱気法、ヒドラジンによる酸素除去などにみられる化学法、中空糸や平膜状の多孔質膜を介した脱気法など枚挙に暇が無いほどで、それぞれこれに見合う装置が普及してきた。この中でも、多孔質膜を利用した脱気装置は液体の輸送ラインに簡単に取り付けられる特徴がありかなり普及してきた。即ち、古くは公開特許公報昭55−121806号に提案されているように、多孔質膜を利用した脱気装置においては脱気膜で区画された一方の側即ち気相側を液体側より低圧状態にして、他方の側に液体を接触させて液体中に存在する気体を脱気膜を介して一方の側に移動させる技術であり、膜の材質を選定した上で孔の形状と断面積を選定することによりこれら3相で形成される系における液体の表面張力もしくは界面張力と液体圧力と低圧状態との差圧に見合う力のバランスを崩さない範囲、即ち液体が孔を通過しない条件範囲で気体のみを透過させる操作が可能な装置となる。特に、単位体積当りに多大な表面積を確保し得る中空糸膜はかかる装置には好適なものとして多用されているが、中空糸内を流れる液体の圧力損失は平膜を用いた場合に比較して甚大でありポンプの吐出圧力を大きくしなければならない欠点があることは否めない。
【0003】
【発明が解決しようとする課題】
以上のような脱気装置の現状に鑑み液体の輸送ラインに簡単に取り付けられ、且つ中空糸膜を採用した場合に見られる液体の圧力損失を抑制した脱気装置の開発を課題として種々検討した。既に、このような考え方に類似した提案として公開特許公報平3−278805号には内部にスペーサを有する袋状脱気膜と乱流促進材とを重ね合わせてセンターシャフトに巻き付け、かつ袋状脱気膜の内部とセンターシャフトの内部とを連通状態としたスパイラル状脱気膜モジュールが示されている。さらに公開特許公報平5−131122号においても同様な封筒状の疎水性気体透過膜をネット状流路材とともに多孔質中心管のまわりに巻きつけるスパイラル型気体透過膜エレメントを提案している。何れの場合も精緻な構造が製造や加工を面倒にしていることは否めなくより簡便な製法の下に課題を解決することを目指した。
【0004】
これに関し、同じ多孔質平膜を用いるフィルターにヒントを得てプリーツ状に加工して単位体積当りの膜表面積を従って脱気膜面積を大きく取る装置も考えだされてきた。即ち、例えば公開特許公報昭63−59305号に記載のように多孔質膜をサンドイッチあるいはプリーツ状に折り曲げて中央開口部を有する形状(以下円筒形状で代表して説明する。)にし端部を液密に結合せしめた大径側の低圧部と小径側の通液部とに区画されるエレメントをこれを収容する通液出入口と低圧系への接続口を備えた円筒状容器に液密、気密に結合した脱気装置が提案されてきた。
ところで、一定襞幅を有する多孔質膜のプリーツを円筒状のエレメントにするにあたりかかる円筒の内径に一定ピッチ(襞と襞、あるいは表現を替えるなら折り目と折り目との円周上の隣接距離)の構成を持つ形状を想定する場合は一定の軸方向長さのエレメントにあっては体積当りの膜面積は前記円筒半径が大なるほど大きく取れる。しかしながら円筒状のエレメントの径が大きい場合には円筒内部を流れる液体流路径も大きくなりそのため液体が膜面へ接触し難くなり、結果として存在する気体が脱気されずに装置出口を流れ去り脱気効率が低いことが判明した。
一方、円筒状のエレメントの径が小さい場合には膜面と液体間の距離が小さくなり接触は改善されるが体積当りの膜面積が大きく取り難い欠点を有し採用し難い解決方法と云わざるを得なかった。
【0005】
【課題を解決するための手段】
以上のような背景の下に単位体積当りの膜面積が大きいが圧力損失の大きい中空糸膜に代わり、圧力損失の小さい平膜を単位体積当りの膜面積を大きく保持したまま、即ち多孔質膜のプリーツを筒状例えば円筒状のエレメントとし、該エレメント内径を比較的大きくした状態下でも脱気効率を改善することを検討した。
種々検討した結果、エレメント内部の中空部に液本体流と膜間の距離を小さく保持し且つ膜面と液体で構成される界面を更新するための充填物を設置することで以上の課題を解決し得ることを見出した。ここに充填物はピストンフローの生起を回避し多孔質膜プリーツの円筒状エレメント内部の流れに撹乱を与え液膜接触面を常時更新し、膜と液本体沖合いとの距離を低減するものが好ましいことを見いだした。前述したようにその設置場所は液体流路内であり、換言するなら中空部である。充填物の構造について詳述するなら蒸留に用いられるシーブトレーを適当な間隔で積み重ねたもので代表されるような多孔板からなるもの、配管ライン中に配設され液体を分割混合するスタティックミキサー(図2参照)、脱気を促進する超音波発振プローブ等が好ましくさらには単純な構造体として円柱、角柱でも液膜間距離を低減し液体の線速を大きくする等のためと考えられるがそれなりの効果が認められた。充填物の取り付けは液流路が確保出来る限りに於て前記キャップと一体構造としてもよく、ハウジングと一体構造としてもよく、さらにはエレメント内部に、プリーツフィルタのエレメントで採用されているエレメント支持体として設置される各種サポートと一体化して装着してもよい。特に超音波発振プローブを用いる場合はハウジングに液密に嵌合、螺合する取り付け自在な方式が好ましい。
【0006】
多孔質膜を折り畳む際には、膜面同志が直接接触して有効面積を損なうことの無いようにネット状のスペーサーなどとともに折り畳み両側面部を超音波、高周波、その他の熱シール法により融着する常法が適用し得る。多孔質膜の材質としてはポリエチレンやポリプロピレンの様なポリオレフィン、あるいはこれらのハロゲンやアルコキシ置換のポリオレフィン、芳香族のポリカーボネート、ポリエーテル、ポリエーテルサルホンやポリシリコーンなど従来用いられてきた各種のプラスチック、エラストマーが使用場面に応じて選択適用することが好ましい。これに対応して充填物やスペーサーあるいはハウジングについても適宜選択し適用し得るが必ずしも多孔質膜と同一材質を選択することを意味するものではない。
以上記述した種々な構成単位は当然ながら、物理的にも、機械的にも勿論化学的にも使用条件を考慮して決定されることは当然である。
【0007】
【作用】
プリーツ状に折り畳まれ内部の中空部に充填物を備えた筒状の多孔質膜エレメントは液密、気密にハウジングに取り付けることにより気化し易い不純物を含む液体を該筒内を適切な流量で供給することにより、又同時に該筒の外側が液本体より低圧に保持されることにより、該液体中の気化成分が除去され、より純度の高い液体を得られるところとなる。
【0008】
【実施例】
図1は本発明の実施例による脱気装置を示す斜視図であり、下から順に、上端周縁部に外筒締め付け用ネジ2を切った気密ハウジング外筒1と、その内底部に形成された液体入口の凹所内周に形成したネジに気密に結合されるネジ部を下端に有するインレットキャップ3と、下端縁がインレットキャップ3の周縁部に嵌合する格子状又は網状のエレメント外側支持体4と、支持体4の内部に挿入された、多孔質膜をプリーツ状に折りたたみ且つ両縁部を封着して円筒状としたフィルタエレメント5と、フィルタエレメント5の内部に形成される開口部に装着されて流れに対して擾乱を与える充填物6と、支持体4の上端縁に嵌合してこれを支持すると共に上端部にネジを切ったアウトレットキャップ7と、ハウジング外筒の上端縁のネジに気密にねじ込まれるネジを有するハウジング外筒上蓋8と、減圧装置への接続口9と、外筒上蓋8の上端に設けられアウトレットキャップ7のネジに気密に結合されるネジを内周部に有する凹所を且つこの凹所に連絡する液体出口10とよりなる。フィルタエレメント5の下端縁と上端縁はそれぞれインレット及びアウトレットキャップ内に融着される。
上記の脱気装置において、脱気すべき液体は、気密ハウジング外筒1の下端の液体入口より導入され、円筒状フィルタエレメント5の内側に形成された開口部に流れ、更に上昇して流体出口10に流出する。液体に含まれるガスはフィルタエレメント5の多孔膜を透過してフィルタエレメント5の外周とハウジング外筒1との間に流出し、上方へ流れて減圧装置への接続口9に出る。
充填物6としては上記の任意の手段が使用できる。図2は本発明の好ましい充填物6の例を示し、可動部分のないスタティックミキサーの形状を有することができる。図において、充填物6は、長方形の平板を軸線の周りに180度捩って形成した羽板12に、同一の構造で羽板12に対して90度回転した羽板14を端部13で互いに一体結合し、以下順次必要な長さになるまで同様に結合したものよりなる。この充填物は円筒状のフィルターエレメント5の内面に直接接触するように挿入しても良いし、適当な網状又は格子状の内筒をフィルターエレメント5の内面に添わせ、その中に装着しても良い。
【0009】
実施例1
厚さ55μm、辺の長さがそれぞれ226mm、4000mmの長方形で公称平均孔径0.1μm、開口率75%のポリ四フッ化エチレン製多孔質膜の長い辺を11mmの間隔でプリーツ状に折り畳みその両側面部を融着し円筒状となした。ここにプリーツ状円筒の内径及び外径はそれぞれほぼ42mm、64mmであった。該プリーツ状円筒内部に充填物として円筒内径とほぼ同じ外径42mmを有する長さ226mmの円柱状のポリプロピレン製充填体を配置し、該円筒周辺部は多孔を有するポリプロピレン製支持体で取り巻き筒の両端部をポリプロピレン製の中央に流路を有するインレットキャップおよびアウトレットキャップにそれぞれ5mm程溶融し、埋め込み、脱気エレメントを構成し充填物と多孔質膜で構成された流路の出入口であるキャップの開口部を提供する突出部にOリングを設けこれを介してハウジングに液密、気密に装着された脱気装置を構成した。なおハウジングには脱気ラインに接続される気体接続口を液体出口側に1個設置した。この脱気装置に対して1000ml 当り酸素8.7mgを含有する21℃の水を供給速度を変えて供給した。この間、脱気装置の気体接続口は減圧装置に接続して圧力40mmHgと100mmHgの2条件を検討対象とした。比較のために前記円柱状のポリプロピレン製充填体を取り付けない脱気装置でも同様の脱ガス試験を行った。脱気装置の出入口における圧力損失は殆んど無かった。結果を表1に示した。
【0010】
【表1】

Figure 0003595604
【0011】
実施例2
厚さ55μm、辺の長さがそれぞれ56mm、3000mmの長方形で公称平均孔径0.1μm、開口率75%のポリ四フッ化エチレン製多孔質膜の長い辺を11mmの間隔でプリーツ状に折り畳みその両側面部を融着し円筒状となした。ここにプリーツ状円筒の内径及び外径はそれぞれほぼ28mm、50mmであった。該円筒内部に充填物として円筒内径とほぼ同じ外径を有する長さ56mmの円柱状のポリプロピレン製棒状体を配置し、該円筒周辺部は多孔を有するポリプロピレン製支持体で取り巻き筒の両端部をポリプロピレン製インレットキャップおよびアウトレットキャップにそれぞれ5mm程溶融埋め込み脱気エレメントを構成し充填物と多孔質膜で構成された流路の出入口であるキャップの開口部を提供する突出部にOリングを設けこれを介してハウジングに液密、気密に装着された脱気装置を構成した。なおハウジングには脱気ラインに接続される気体接続口を液体出口側に1個設置した。この脱気装置に対して1000ml 当り酸素8.7mgを含有する21℃の水を供給速度を変えて供給した。この間、脱気装置の気体接続口は減圧装置に接続して圧力40mmHgと100mmHgの2条件を検討対象とした。比較のために前記円柱状のポリプロピレン製棒状体を取り付けない脱気装置でも同様の脱ガス試験を行った。脱気装置の出入口における圧力損失は殆んど無かった。結果を表2に示した。
【0012】
【表2】
Figure 0003595604
【0013】
【発明の効果】
実施例からも明かなように本願発明の構成を備えた脱気装置は中空糸膜を用いた脱気装置と比較して製造が容易なだけでなく、液体を供給するために特別高い圧力を必要とせず、該脱気装置を減圧装置に接続することにより容易に、広いプリーツ状の多孔質膜面から液体中の気化成分を効率良く除去し得る効果を有することが明らかとなった。
【図面の簡単な説明】
【図1】本発明の脱気装置の組み立てを示す斜視図である。
【図2】充填物として使用されるスタティックミキサーを示す図である。
【符号の説明】
1 ハウジング外筒
2 外筒締め付け用ネジ
3 インレットキャップ
4 エレメント外側支持体
5 フィルタエレメント
6 充填物
7 アウトレットキャップ
8 ハウジング外筒上蓋
9 減圧装置への接続口
10 液体出口[0001]
[Industrial applications]
The present invention uses a degassing apparatus and a degassing apparatus for removing and separating gases such as oxygen, carbon dioxide, low molecular weight hydrocarbons and halogenated hydrocarbons, and easily vaporized organic and inorganic substances present in a liquid. Degassing method.
That is, the present invention is a pleat-shaped folded both side edges in a liquid-tight manner, for example, a porous membrane degassing element having a hollow portion having a hollow shape, and a filler mounted in the hollow portion , It is characterized in that necessary parts are appropriately connected in a liquid-tight and air-tight manner and stored in a housing.
[0002]
[Prior art]
Methods for removing / separating low-molecular-weight hydrocarbons, halogenated hydrocarbons, etc., which are easily vaporized, such as oxygen and carbon dioxide present in liquids, are degassing at room temperature and under heating, bubbling, and ultrasonic waves. There is no shortage of degassing methods using water, chemical methods such as oxygen removal using hydrazine, and degassing methods using hollow fibers or flat porous membranes. I've been. Among them, a deaerator using a porous membrane has a feature that it can be easily attached to a liquid transport line, and has become quite popular. That is, in the past, in a deaerator using a porous membrane, one side defined by the deaeration membrane, that is, the gaseous phase side has a lower pressure than the liquid side, as proposed in Japanese Patent Publication No. 55-121806. This is a technology in which a liquid is brought into contact with the other side to move the gas present in the liquid to one side through a degassing membrane, and the shape and cross-sectional area of the hole are selected after selecting the material of the membrane. Is selected so that the balance between the surface tension or interfacial tension of the liquid and the force corresponding to the differential pressure between the liquid pressure and the low pressure state in the system formed of these three phases is maintained, that is, the condition range in which the liquid does not pass through the holes. The device can be operated to allow only gas to pass therethrough. In particular, hollow fiber membranes capable of securing a large surface area per unit volume are often used as suitable for such an apparatus, but the pressure loss of the liquid flowing through the hollow fibers is lower than that of a flat membrane. It is undeniable that there is a disadvantage that the discharge pressure of the pump must be increased.
[0003]
[Problems to be solved by the invention]
In view of the current state of the degassing apparatus described above, various studies have been made on the development of a degassing apparatus that can be easily attached to a liquid transport line and that suppresses the pressure loss of liquid that is observed when a hollow fiber membrane is adopted. . As a proposal similar to this concept, Japanese Patent Laid-Open Publication No. Hei 3-278805 discloses a bag-shaped deaeration film having a spacer therein and a turbulence promoting material, which are wound around a center shaft. A spiral degassing membrane module is shown in which the interior of the pneumatic membrane communicates with the interior of the center shaft. Further, Japanese Patent Laid-Open Publication No. 5-131122 proposes a spiral type gas permeable membrane element in which a similar envelope-shaped hydrophobic gas permeable membrane is wound around a porous central tube together with a net-shaped flow path material. In any case, it was undeniable that the elaborate structure made the production and processing troublesome, and the aim was to solve the problems under a simpler manufacturing method.
[0004]
In this regard, an apparatus has been devised in which a filter using the same porous flat membrane is inspired and processed into a pleated shape to obtain a large membrane surface area per unit volume and thus a large degassing membrane area. That is, as described in, for example, JP-A-63-59305, a porous film is bent into a sandwich or a pleated shape to have a central opening (hereinafter, a cylindrical shape will be representatively described), and the ends are liquid. The element, which is divided into a large-diameter side low-pressure part and a small-diameter side liquid-passing part that are tightly coupled, is liquid-tight and air-tight in a cylindrical container provided with a liquid-passing port for accommodating them and a connection port to the low-pressure system. A degassing device coupled to has been proposed.
By the way, when the pleats of a porous membrane having a constant fold width are made into a cylindrical element, the inner diameter of the cylinder has a constant pitch (folds and folds, or in other words, adjacent distances between folds on the circumference). Assuming a configuration having a configuration, in the case of an element having a constant axial length, the membrane area per volume can be increased as the radius of the cylinder increases. However, when the diameter of the cylindrical element is large, the diameter of the liquid flow path flowing through the inside of the cylinder becomes large, so that it is difficult for the liquid to come into contact with the membrane surface, and as a result, the existing gas flows out of the apparatus outlet without being degassed. It was found that the air efficiency was low.
On the other hand, when the diameter of the cylindrical element is small, the distance between the membrane surface and the liquid becomes small and the contact is improved, but the membrane area per volume is large and it is difficult to adopt it because it is a solution that is difficult to adopt. Did not get.
[0005]
[Means for Solving the Problems]
Under the above-mentioned background, instead of the hollow fiber membrane having a large membrane area per unit volume but a large pressure loss, a flat membrane having a small pressure loss is used as a porous membrane while maintaining a large membrane area per unit volume. The pleat was made into a cylindrical element, for example, a cylindrical element, and it was studied to improve the deaeration efficiency even when the inner diameter of the element was relatively large.
As a result of various studies, the above problems were solved by installing a filler in the hollow part inside the element to keep the distance between the liquid body flow and the membrane small and to renew the interface composed of the membrane surface and the liquid. I found that I could do it. Here, it is preferable that the packing material avoids the occurrence of piston flow, disturbs the flow inside the cylindrical element of the porous membrane pleat, constantly updates the liquid film contact surface, and reduces the distance between the film and the liquid body offshore I found something. As described above, the installation location is in the liquid flow path, in other words, the hollow portion . If the structure of the packing is to be described in detail, it is composed of a perforated plate typified by stacking sieve trays used for distillation at appropriate intervals, and a static mixer that is arranged in the piping line and splits and mixes the liquid (Figure 2), an ultrasonic oscillation probe which promotes degassing is preferable, and even a simple structure such as a cylinder or a prism is considered to reduce the distance between liquid films and increase the linear velocity of the liquid. The effect was recognized. As long as the liquid flow path can be secured, the filler may be integrated with the cap, or may be integrated with the housing. Further, an element support employed in the element of the pleated filter may be provided inside the element. It may be mounted integrally with various supports installed as. In particular, when an ultrasonic oscillation probe is used, a freely attachable system in which the housing is liquid-tightly fitted and screwed into the housing is preferable.
[0006]
When folding the porous membrane, both sides are folded together with a net-shaped spacer etc. by ultrasonic, high frequency, or other heat sealing methods so that the membrane surfaces do not directly contact and damage the effective area Conventional methods can be applied. Examples of the material of the porous membrane include polyolefins such as polyethylene and polypropylene, or polyolefins of these halogens or alkoxy substitutions, aromatic polycarbonates, polyethers, various plastics conventionally used such as polyether sulfone and polysilicone, It is preferable that the elastomer is selectively applied according to the use scene. Correspondingly, a filler, a spacer, or a housing can be appropriately selected and applied, but this does not necessarily mean that the same material as the porous membrane is selected.
Naturally, the various constituent units described above are determined physically, mechanically, and of course chemically considering the use conditions.
[0007]
[Action]
A cylindrical porous membrane element that is folded in a pleated shape and has a filling in the hollow portion inside supplies liquid containing impurities that are easily vaporized by being attached to the housing in a liquid-tight and air-tight manner at an appropriate flow rate in the cylinder. By doing so, and simultaneously keeping the outside of the cylinder at a lower pressure than the liquid body, the vaporized components in the liquid are removed, and a liquid with higher purity can be obtained.
[0008]
【Example】
FIG. 1 is a perspective view showing a degassing device according to an embodiment of the present invention. The degassing device is formed in an airtight housing outer cylinder 1 in which an outer cylinder tightening screw 2 is cut at an upper peripheral edge and an inner bottom thereof in order from the bottom. An inlet cap 3 having a threaded portion at the lower end thereof which is hermetically coupled to a screw formed on the inner periphery of the concave portion of the liquid inlet, and a lattice-like or net-like element outer support 4 whose lower end edge is fitted to the periphery of the inlet cap 3 And a filter element 5 inserted into the support 4 and folded into a cylindrical shape by folding the porous membrane into a pleated shape and sealing both edges, and an opening formed inside the filter element 5. A filler 6 which is mounted to disturb the flow, an outlet cap 7 which fits on and supports the upper edge of the support 4 and is threaded at the upper end, and a cap 6 at the upper edge of the housing outer cylinder. I care about screws A housing outer cylinder upper lid 8 having a screw that is screwed into the housing, a connection port 9 to the decompression device, and a recess provided at an upper end of the outer cylinder upper lid 8 and having a screw that is airtightly coupled to a screw of the outlet cap 7 on an inner peripheral portion. And a liquid outlet 10 communicating with this recess. The lower and upper edges of the filter element 5 are fused into the inlet and outlet cap, respectively.
In the above degassing device, the liquid to be degassed is introduced from the liquid inlet at the lower end of the airtight housing outer cylinder 1, flows into the opening formed inside the cylindrical filter element 5, and further rises to the fluid outlet. Flow out to 10. The gas contained in the liquid permeates through the porous membrane of the filter element 5, flows between the outer periphery of the filter element 5 and the housing outer cylinder 1, flows upward, and exits at the connection port 9 to the pressure reducing device.
As the filler 6, any of the above-mentioned means can be used. FIG. 2 shows an example of a preferred filling 6 according to the invention, which can have the shape of a static mixer without moving parts. In the figure, a filler 6 is formed by twisting a rectangular flat plate by 180 degrees around an axis, and a wing plate 14 having the same structure and rotated by 90 degrees with respect to the wing plate 12 at an end portion 13. These are integrally connected to each other, and then connected in the same manner until the required length is reached. The filler may be inserted so as to directly contact the inner surface of the cylindrical filter element 5, or a suitable mesh or lattice-shaped inner cylinder may be attached to the inner surface of the filter element 5 and mounted therein. Is also good.
[0009]
Example 1
The long side of a polytetrafluoroethylene porous membrane having a thickness of 55 μm, sides of 226 mm and 4000 mm, a nominal average pore diameter of 0.1 μm, and an opening ratio of 75% is pleated at intervals of 11 mm. Both sides were fused to form a cylinder. Here, the inner and outer diameters of the pleated cylinder were approximately 42 mm and 64 mm, respectively. A cylindrical polypropylene filler having a length of 226 mm having an outer diameter of about 42 mm substantially the same as the inner diameter of the cylinder is disposed inside the pleated cylinder as a filler, and the periphery of the cylinder is surrounded by a polypropylene support having a porosity and a winding cylinder. Both ends are melted by about 5 mm in an inlet cap and an outlet cap each having a flow path in the center made of polypropylene, and embedded and formed into a deaeration element. The cap is an inlet / outlet of a flow path composed of a filler and a porous membrane. An O-ring was provided on the protruding portion providing the opening, and a degassing device that was attached to the housing in a liquid-tight and air-tight manner through the O-ring was formed. The housing was provided with one gas connection port connected to the deaeration line on the liquid outlet side. Water at 21 ° C. containing 8.7 mg of oxygen per 1000 ml was supplied to the deaerator at a varied supply rate. During this time, the gas connection port of the deaerator was connected to a pressure reducing device, and two conditions of a pressure of 40 mmHg and 100 mmHg were examined. For comparison, a similar degassing test was performed with a deaerator without the columnar polypropylene packing. There was almost no pressure loss at the inlet and outlet of the deaerator. The results are shown in Table 1.
[0010]
[Table 1]
Figure 0003595604
[0011]
Example 2
The long sides of a polytetrafluoroethylene porous membrane having a thickness of 55 μm and sides of 56 mm and 3000 mm, a nominal average pore diameter of 0.1 μm, and an opening ratio of 75% are pleated at intervals of 11 mm. Both sides were fused to form a cylinder. Here, the inner and outer diameters of the pleated cylinder were approximately 28 mm and 50 mm, respectively. A cylindrical polypropylene rod having a length of 56 mm having an outer diameter substantially the same as the inner diameter of the cylinder is disposed as a filler inside the cylinder, and the periphery of the cylinder is a porous polypropylene support at both ends of the winding cylinder. An O-ring is provided on a projection which provides an opening of a cap which is an inlet / outlet of a flow path composed of a filler and a porous membrane by forming a degassing element which is melt-embedded about 5 mm in each of an inlet cap and an outlet cap made of polypropylene. To form a degassing device that is liquid-tightly and air-tightly mounted to the housing. The housing was provided with one gas connection port connected to the deaeration line on the liquid outlet side. Water at 21 ° C. containing 8.7 mg of oxygen per 1000 ml was supplied to the deaerator at a varied supply rate. During this time, the gas connection port of the deaerator was connected to a pressure reducing device, and two conditions of a pressure of 40 mmHg and 100 mmHg were examined. For comparison, a similar degassing test was performed on a deaerator without the cylindrical polypropylene rod. There was almost no pressure loss at the inlet and outlet of the deaerator. The results are shown in Table 2.
[0012]
[Table 2]
Figure 0003595604
[0013]
【The invention's effect】
As is clear from the embodiment, the deaerator equipped with the configuration of the present invention is not only easier to manufacture than a deaerator using a hollow fiber membrane, but also requires an extra high pressure to supply a liquid. It was found that, by connecting the deaerator to a decompression device, it was not necessary to easily remove the vaporized components in the liquid from the wide pleated porous membrane surface.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the assembly of a deaerator according to the present invention.
FIG. 2 shows a static mixer used as a filling.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Housing outer cylinder 2 External cylinder fastening screw 3 Inlet cap 4 Element outer support 5 Filter element 6 Filling material 7 Outlet cap 8 Housing outer cylinder upper lid 9 Connection port to pressure reducing device 10 Liquid outlet

Claims (3)

多孔質膜で区画された一方の側に液体を接触させて他方の側を該液体より低圧に保持することにより液体中に含有されている気化成分を該多孔質膜を介して除去する装置において、多孔質膜をプリーツ状に折り曲げ両側縁部を液密に結合した、中空部を有してなる脱気エレメントと、該脱気エレメントの両端部にそれぞれ液密に結合し且つ前記中空部に連通する開口部を有するキャップと、前記中空部に流す液体に撹乱を与えるため前記中空部内に装着されている充填物と、前記脱気エレメント及び前記キャップを液密に収納し且つ低圧系への接続路を有しているハウジングと、を有していることを特徴とする液体中に含有されている気化成分を除去する脱気装置。In an apparatus for removing a vaporized component contained in a liquid through the porous membrane by bringing a liquid into contact with one side partitioned by the porous membrane and maintaining the other side at a lower pressure than the liquid. A deaeration element having a hollow portion , in which the porous membrane is folded in a pleated shape and both side edges are liquid- tightly connected, and both ends of the deaeration element are liquid- tightly connected to both ends of the deaeration element and the hollow portion is A cap having an opening communicating therewith , a filler mounted in the hollow portion to give a disturbance to the liquid flowing in the hollow portion, and a liquid-tight housing for the degassing element and the cap, and to a low-pressure system. And a housing having a connection path of (a), a degassing device for removing vaporized components contained in the liquid. 充填物がスタティックミキサーである請求項1記載の脱気装置。The degassing device according to claim 1, wherein the filler is a static mixer. 充填物が超音波発振素子である請求項1記載の脱気装置。The degassing device according to claim 1, wherein the filling is an ultrasonic oscillation element.
JP10783195A 1995-04-10 1995-04-10 Degassing device Expired - Fee Related JP3595604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10783195A JP3595604B2 (en) 1995-04-10 1995-04-10 Degassing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10783195A JP3595604B2 (en) 1995-04-10 1995-04-10 Degassing device

Publications (2)

Publication Number Publication Date
JPH08281008A JPH08281008A (en) 1996-10-29
JP3595604B2 true JP3595604B2 (en) 2004-12-02

Family

ID=14469149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10783195A Expired - Fee Related JP3595604B2 (en) 1995-04-10 1995-04-10 Degassing device

Country Status (1)

Country Link
JP (1) JP3595604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180002189A (en) * 2016-06-29 2018-01-08 앵스트롬스 주식회사 The hollow fiber membrane filters for gas-liquid contact and degassed

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1113859B1 (en) 1998-09-09 2007-01-03 Pall Corporation Methods for treating fluids
JP4676273B2 (en) * 2005-08-01 2011-04-27 株式会社アルバック Printing device
CN110152497B (en) * 2019-04-04 2022-01-04 杭州柏医健康科技有限公司 Permeable membrane preparation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180002189A (en) * 2016-06-29 2018-01-08 앵스트롬스 주식회사 The hollow fiber membrane filters for gas-liquid contact and degassed

Also Published As

Publication number Publication date
JPH08281008A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
GB2134812A (en) Liquid filter
US6168648B1 (en) Spiral wound type membrane module, spiral wound type membrane element and running method thereof
EP1113859B1 (en) Methods for treating fluids
US6623631B1 (en) Filter assembly for vacuum filtration
US4000072A (en) Artificial kidney apparatus
JPH1080602A (en) Device for removing gas from liquid
US20070131604A1 (en) Filter unit with deaerating mechanism
JP3595604B2 (en) Degassing device
JP2006524133A (en) Pleated structure for providing a gas transfer thin film
JP5581645B2 (en) Water purification cartridge and water purifier
JP3972528B2 (en) Fluid separation membrane module and separation method
JP7290208B2 (en) Hollow fiber membrane module
CN209828546U (en) Capsule filtering device
JP2002370006A (en) Liquid treatment apparatus and treatment method using the same
US20210129055A1 (en) Filter with improved fluid flow
GB2257375A (en) Apparatus for purifying water
KR200186206Y1 (en) Fiber carbon filter
JP3875288B2 (en) Cartridge filtration device
JPH01270909A (en) Defoaming deaerating device
JPS61234905A (en) Filter
JPH07153733A (en) Bubble removing device and its using method
JP2000042375A (en) Separation membrane module, module connector and separation membrane module connected body
JPH0215524Y2 (en)
RU11094U1 (en) DEVICE FOR FILTRATION OF LIQUID AND GAS MEDIA

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040514

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees