【0001】
【発明の属する技術分野】
本発明は、河川,水路,ダム,湖沼,海域等の水域の浄化を行なう浄化装置に関し、特に濾材表面に付着する微生物等の生物膜による浄化作用により水域の浄化を行なう汚水浄化装置に関する。
【0002】
【従来の技術】
従来、図8に示すように川や水路の底や河川敷または堤防裏等に、接触濾材としての多数の礫101aを充填した礫間部101と沈殿部102とを交互に配設した浄化槽100を設置し、浄化対象水(原水)が浄化槽100を通過する間に、接触濾材の表面に付着する微生物等よりなる生物膜の浄化作用で原水の浄化を行なう汚水浄化装置が知られている。
【0003】
なお沈殿部でも、水中の汚濁物質の物理的浄化作用(沈殿作用)が行なわれる。浄化槽100の上流側および下流側にそれぞれ止水板103を設置して、浄化槽100の水位の維持を行なっている。
符号104は上流側の水位、符号105は下流側の水位をそれぞれ示している。
【0004】
また図9に示すように、礫,木炭,各種の合成樹脂材を接触濾材とした浄化槽113の複数個を、川や水路の底110に水流に沿って設置するとともに、各浄化槽113の相互間にブロワー室115から送られる圧縮空気を噴出する曝気管112を設け、原水が接触濾材で浄化される際に浄化生物により消費される水中酸素を、曝気管112を介して水中に供給し、水中酸素量を補充できるようにした汚水浄化装置も知られている。
【0005】
【発明が解決しようとする課題】
一般に、汚濁水は上流側ほど濃度が濃く、つまり微生物の生育に寄与する栄養物質も上流側ほど濃度が濃いため、生物膜も上流側ほど厚くなる。
このため、上述の従来の各汚水浄化装置では、長期的には上流側で目詰まりを起こしやすくなという問題点がある。
【0006】
上述の従来の河川や水路に設置される各汚水浄化装置では、汚濁水が上流側から下流側に流れてくる過程で浄化され、しかも濾材は原水に対して一過性であるので、上流側では汚濁濃度が高く下流側では汚濁濃度が薄い状態で汚水の浄化が行なわれる。したがって、濾材への汚濁負荷が不均一となって、濾材の単位量あたりの浄化性能が低くなるという問題点もある。
【0007】
また図9に示した汚水浄化装置のように浄化槽相互間に曝気管を設置しても、わずかに長さ方向に流れを起こすことができるものの、長さの長い河川用浄化設備にはほとんど効果はない。
【0008】
本発明は、上述のような問題点を解決しようとするもので、濾材負荷を平準化することにより濾材の生物膜の過度の付着を防いで目詰まりを抑制して、浄化機能の向上をはかろうとするものである。
【0009】
【課題を解決するための手段】
本発明の汚水浄化装置は、接触濾材の生物膜を利用した汚水浄化装置において、上記接触濾材を収容可能で水深の2倍以上の水路長さを有する浄化槽をそなえ、同浄化槽の一方の端部に形成された原水流入部における原水の濃度を低下させるべく同原水流入部へ上記浄化槽の他方の端部に形成された処理水排出部から濃度の薄い処理水の一部を移送ポンプおよび移送管を介して返送する水平流発生装置と、上記浄化槽の内部に多数の微細気泡を発生させる気泡発生装置とが設けられており、上記水平流発生装置により上記原水流入部へ戻された上記処理水を用いて上記浄化槽の洗浄を行う際に、同浄化槽内に沈殿した汚泥を上記処理水排出部側へ排出すべく、上記水平流発生装置に、上記原水流入部から上記処理水排出部へ向かう方向に水流を発生させる手段が設けられていることを特徴としている。
【0010】
本発明では、浄化槽内に設けられた気泡発生装置で発生した多数の微細気泡により、浄化槽内に酸素の供給が行なわれ、生物膜による浄化作用を活性化する作用が行なわれる。
【0011】
さらに、微細気泡により浄化槽内に鉛直方向(断面方向)の旋回流が発生し、これにより濾材への原水の接触回数が増加して浄化効果が増加する。
【0012】
また、水平流発生装置で濃度の薄い処理水(の一部)を濃度の濃い原水流入部へ返送して水平方向旋回流を発生することにより、上流側(原水流入部側)の原水汚濁濃度を適度に低くでき、上流側での目詰まりを減少させることができる。
【0013】
さらにまた、気泡発生装置による断面方向の旋回流の作用と、水平流発生装置による水平方向旋回流の作用との相乗作用により、通常の循環式濾過槽の場合と同様の効果を奏することができる。
【0014】
また、浄化槽の洗浄時に、水平流発生装置で下流側に向かう水流を発生させ、浄化槽内に沈殿した汚泥を下流側に排出することができる。
【0015】
【発明の実施の形態】
以下、図面により本発明の一実施形態としての汚水浄化装置について説明すると、図1はその一部切断斜視図、図2はその河川敷に設置した場合の図1のB−B矢視断面図、図3,図4は図1のA−A矢視断面図、図5(a),(b),(c)はその接触濾材体の斜視図、図6,図7はその水平流発生装置の他の例の模式図である。
【0016】
この実施形態の汚水浄化装置は、図2に示すように河川敷16に設置される。
すなわち、汚水浄化装置10の主体部としての浄化槽9が、その上端部を河川17の水面17aよりも上方に位置するように、河川敷16を掘り込んで設置されている。
【0017】
浄化槽9は、図1に示すようにコンクリートやFRP等により壁面および底面を形成されるとともに、内部に複数の接触濾材体1が浄化槽9内の原水の流れ方向(図1の矢印Y方向)に関して直列に設置されている。
各接触濾材体1の下面と浄化槽9の内底面との間にスペーサ30が介装されていて、内底部付近の水の流動性を向上できるようになっている。
【0018】
浄化槽9の長手方向の両端部に、底部に深底の汚泥溜め8を有する沈澱槽7が設けられており、一方の沈殿槽7(この沈澱槽7に補助符号「A」を付し、上流側沈澱槽7Aという)に、原水を水槽9内に導入するための流入管20が開口して原水流入部10Aを構成している。
【0019】
他方の沈澱槽7(この沈澱槽7に補助符号「B」を付し下流側沈澱槽7Bという)に移送ポンプ(遠心式ポンプ)21が設けられるとともに、上部に処理済み水(処理水)を浄化槽9からオーバーフロー式に排出するための吐出部19が形成されて処理水排出部10Bを構成している。
【0020】
移送ポンプ21の吐出側に、処理水の一部を浄化槽9の上流側すなわち原水流入部10Aに返送する移送管5が連結されている。移送ポンプ21と移送管5とで水平流発生装置3を構成している。
【0021】
さらに、浄化槽9の側壁と平行に散気管6が配設されており、散気管6に空気圧縮機13が空気管14を介して接続され、散気管6に形成された多数の吐出孔から微細気泡15を吐出できるようになっている(図4参照)。
符号18は圧縮空気の供給量を調整する調整弁を示している。
【0022】
水平流発生装置として、図6に示すように移送管5の一端部に圧縮空気を噴射するジェットノズル11を取り付け、ジェットノズル11に空気圧縮機33から空気管34を介して加圧空気を供給するようにしたエゼクタ式のものを用いることもできる。図6の符号32は加圧空気量の調整弁を示している。この調整弁32を常時絞っておき、定期的な洗浄作業時に開放し空気量を増加することにより生物膜を剥離させることができる。
【0023】
図7に示した水平流発生装置の変形例では、ジェットノズルとしてリング状吐出部37をそなえたものが用いられている。
水平流発生装置3の駆動源として、上述のとおり通常の遠心式の移送ポンプ21のほか、圧縮空気や加圧水を噴出するジェットノズルをそなえたエゼクタ式のものを用いてもよい。
【0024】
そしてこの水平流発生装置3により、処理水の一部を原水流入部10Aに返送して水平方向旋回流を発生させ、濃度の薄い処理水(の一部)を濃度の濃い原水流入部に戻して原水濃度を適度に低くできる。
【0025】
またこの水平流発生装置3には、浄化槽9の洗浄時に、弁やポンププロペラ等を制御して、水平流発生装置3で発生する水流の方向を、原水流入部 10 Aにおいて、原水流入部10A側から処理水排出部10B側に向かう方向に変更させることができる機構がそなえられていて、浄化槽9の洗浄時に浄化槽9内に沈澱した汚泥を下流側(処理水排出部側)に排出できるようになっている。
このほか、逆流用のエゼクタ装置を水平流発生装置3の移送管5に設置しておき、浄化槽9内に沈殿した汚泥を下流側へ排出するための逆方向の水平流を発生させるようにしてもよい。
【0026】
図5(a)は接触濾材体1の一例を示すもので、接触濾材体1は鋼製または合成樹脂製の直方体形の支持枠2と、この支持枠2の内部空所に固定的に配設された多毛ロープ状の接触濾材28とで構成されている。なお多毛ロープ状の接触濾材28の両端部を支持枠2に結着することで、多毛ロープ状の接触濾材28を簡単に支持枠2に固定することができる。
【0027】
図5(b)は接触濾材体1の他の例を示すもので、この接触濾材体1は、鋼または合成樹脂で直方体形の支持枠2を形成し且つその周面および底面に金網状の通水性のよい壁面29を取り付け、内部に礫石や多孔質,セラミック材や板状もしくは空隙が多く通水性の良好なプラスチック製固形材や木炭などの濾材31を詰めて構成されている。
【0028】
図5(c)は接触濾材体1の支持枠2に断面整流板24(詳細は後述)を取り付けた例を示している。
接触濾材体1と浄化槽9の壁面との間のスペースを原水が通り抜けるのを防ぐために、図1,3に示すごとく邪魔板23が設けられている。この邪魔板23は多孔板やネット等により構成され、浄化槽9の壁面あるいは接触濾材体1のいずれかに取り付けられる(この実施形態では接触濾材体1に取り付けられている)。
【0029】
さらに、散気管6で発生した微細気泡15に伴われる上昇水流を水平流に変向させるために、図2および図5(c)に示すプラスチック製や金属板製の断面整流板24が、散気管6の上部位置に設けられている。図2に示した例では断面整流板24が浄化槽9の内壁面に取り付けられている。また図5(c)に示すように接触濾材体1に取り付けてもよい。
【0030】
また、接触濾材体1群の流入側および排出側にそれぞれ多孔板やネット等により構成される整流板25が取り付けられている(図1,3,4参照)。
さらに、図3に示すように取り外し式の水槽蓋27で浄化槽9の上部を覆い、ゴミの侵入を防ぐとともに、太陽光を遮って水槽内部での藻類の発生を防止できるようになっている。
図1において、符号26は整流板25の支持枠を示している。
【0031】
上述の構成において、有機物を含んだ原水が流入管20から浄化槽9の原水流入部10Aに流入する。そして沈澱槽7Aで原水中の懸濁性物質を分離した原水が、接触濾材体1に流入する。なお沈澱槽7Aで分離された懸濁性物質(汚泥等)は汚泥溜め8に集められる。沈澱槽7Bにおいても同様の作用が行なわれる。
【0032】
接触濾材体1には水の流れやすい濾材が用いられているため、原水は接触濾材体1をスムーズに流れて浄化される。
【0033】
そして、処理水排出部10Bに流出した処理水は吐出部19から排出されるとともに、その一部が、水平流発生装置3により原水流入部10Aに返送される。このようにして、浄化槽9の下流部(処理水排出部10B)と上流部(原水流入部10A)との間で水平方向の循環する流れを起こし、つまり濾過層を通過し汚濁物質濃度の低くなった下流側の処理水を汚濁物質濃度の高い上流側に返送することにより、上流部で局所的に汚濁物質濃度の高い状態を緩和し、上流側の接触濾材体1での局所的な生物膜の肥大化や目詰まりを回避できる。この結果、浄化槽9の全域で濃度の平準化された汚濁水の処理ができるので、浄化槽9全体に生物膜が均等に付着し、全体の浄化効果が高くなる。
【0034】
また、水平方向の循環流れと散気管6による上昇水流との相乗作用により、上記の作用を一層向上させることができる。
つまり、浄化槽9の壁面と接触濾材体1との間のスペースに、散気管6から多数の微細気泡15を吐出させて水中酸素量を増加するとともに、浄化槽9内の鉛直方向(断面方向)の緩やかな水流により浄化槽9内の水の滞留を防止できる。
【0035】
浄化槽9の下部には接触濾材体1から剥離した汚泥等が堆積しやすいが、散気管6による浄化槽9内の鉛直方向の水の流動により、汚泥の堆積を防ぐことができる。また接触濾材体1をスペーサ30を介して浄化槽9に設置して浄化槽9の底部付近の水を流動しやすくしたため、接触濾材体1から剥離した汚泥等の堆積を防ぐことができ、濾材の汚濁負荷を均一化できる。
【0036】
【発明の効果】
以上詳述したように、本発明の汚水浄化装置によれば次のような効果が得られる。
(1) 浄化槽内に設けられた気泡発生装置で発生した多数の微細気泡により、浄化槽内に酸素の供給が行なわれ、生物膜による浄化作用を活性化する作用が行なわれる。さらに、微細気泡により浄化槽内に鉛直方向(断面方向)の旋回流が発生し、これにより濾材への原水の接触回数が増加して浄化効果が増加する。
(2) 水平流発生装置で濃度の薄い処理水(の一部)を濃度の濃い原水流入部へ返送して水平方向旋回流を発生することにより、上流側(原水流入部側)の原水汚濁濃度を適度に低くでき、上流側での目詰まりを減少させることができる。
(3) 気泡発生装置による断面方向の旋回流の作用と、水平流発生装置による水平方向旋回流の作用との相乗作用により、通常の循環式濾過槽の場合と同様の効果を奏することができる。
(4) 浄化槽の洗浄時に、上記水平流発生装置で原水流入部へ戻した濃度の薄い処理水を用いて、原水流入部から下流側に向かう水流を発生させ、浄化槽内に沈殿した汚泥を効率よく下流側に排出することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態としての汚水浄化装置を一部切断して示す斜視図。
【図2】図1のB−B矢視断面図で河川敷に設置した場合を示す断面図。
【図3】水槽蓋で覆った場合を示す図1のA−A矢視断面図。
【図4】空気管等の配置を示す図1のA−A矢視断面図。
【図5】(a) 同接触濾材体の一例を示す斜視図。
(b) 同接触濾材体の他の例を示す斜視図。
(c) 同接触濾材体に断面整流板を取り付けた例を示す斜視図。
【図6】同水平流発生装置の他の例を示す模式図。
【図7】図6の装置の変形例を示す模式図。
【図8】従来の河川敷に浄化槽を設置して構成した汚水浄化装置を示す模式図。
【図9】同水路の底に浄化槽を設置した汚水浄化装置を示す模式図。
【符号の説明】
1 接触濾材体
2 支持枠
3 水平流発生装置
5 移送管
6 散気管
7 沈澱槽
7A 上流側沈澱槽
7B 下流側沈澱槽
8 汚泥溜め
9 浄化槽
10 汚水浄化装置
10A 原水流入部
10B 処理水排出部
11 ジェットノズル
13 空気圧縮機
14 空気管
15 微細気泡
16 河川敷
17 リング状吐出部
18 調整弁
19 吐出部
20 流入管
21 移送ポンプ
22 移送管
23 邪魔板
24 断面整流板
25 整流板
26 整流板支持枠
27 水槽蓋
28 多毛ロープ状接触濾材
29 通水性のよい壁面
30 スペーサ
31 濾材
32 調整弁
33 空気圧縮機
34 空気管
37 リング状吐出部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a purification apparatus for purifying water bodies such as rivers, waterways, dams, lakes and marshes, and sea areas, and more particularly to a sewage purification apparatus for purifying water bodies by a purification action of a biological film of microorganisms and the like adhering to the surface of a filter medium.
[0002]
[Prior art]
Conventionally, as shown in FIG. 8, a septic tank 100 in which inter-gravel portions 101 filled with a large number of gravels 101a as contact filter media and sedimentation portions 102 are alternately arranged on the bottom of a river or a waterway, a riverbed, or the back of a dike as shown in FIG. A sewage purification apparatus is known which is installed and purifies raw water by the action of purifying a biofilm made of microorganisms and the like adhering to the surface of the contact filter medium while the water to be purified (raw water) passes through the purification tank 100.
[0003]
The sedimentation section also performs a physical purification action (precipitation action) of pollutants in water. Water stoppage plates 103 are installed on the upstream and downstream sides of the septic tank 100, respectively, to maintain the water level of the septic tank 100.
Reference numeral 104 indicates an upstream water level, and reference numeral 105 indicates a downstream water level.
[0004]
As shown in FIG. 9, a plurality of septic tanks 113 using gravel, charcoal, and various types of synthetic resin as contact filter media are installed along the water flow at the bottom 110 of a river or a waterway, and a space between the septic tanks 113 is provided. An aeration tube 112 for ejecting compressed air sent from the blower chamber 115 is provided, and underwater oxygen consumed by purified organisms when raw water is purified by the contact filter medium is supplied into the water through the aeration tube 112, and There is also known a sewage purification apparatus capable of supplementing the amount of oxygen.
[0005]
[Problems to be solved by the invention]
Generally, the concentration of polluted water is higher on the upstream side, that is, the concentration of nutrients contributing to the growth of microorganisms is higher on the upstream side, so that the biofilm becomes thicker on the upstream side.
For this reason, in each of the above-mentioned conventional sewage purification devices, there is a problem that clogging is likely to occur on the upstream side in the long term.
[0006]
In each of the above-mentioned conventional sewage purification devices installed in rivers and waterways, the polluted water is purified in the process of flowing from the upstream side to the downstream side, and the filter medium is transient with respect to the raw water. The purification of sewage is carried out in a state where the pollution concentration is high and the pollution concentration is low on the downstream side. Therefore, there is also a problem that the pollution load on the filter medium becomes uneven, and the purification performance per unit amount of the filter medium decreases.
[0007]
Even if an aeration tube is installed between septic tanks as in the sewage purifying apparatus shown in Fig. 9, the flow can be slightly generated in the length direction, but it is almost effective for the long-term river purification equipment. There is no.
[0008]
The present invention is intended to solve the above-described problems, and by preventing the excessive attachment of the biofilm of the filter medium by leveling the filter medium load, suppressing the clogging, and improving the purification function. It is something to try.
[0009]
[Means for Solving the Problems]
The sewage purifying apparatus of the present invention is a sewage purifying apparatus using a biofilm of a contact filter medium, comprising a septic tank capable of accommodating the contact filter medium and having a channel length twice or more the depth of the water, and one end of the purifier tank. A transfer pump and a transfer pipe for transferring a part of the low-concentration treated water from a treated water discharge portion formed at the other end of the septic tank to the raw water inflow portion so as to reduce the concentration of the raw water at the raw water inflow portion formed at And a bubble generator for generating a large number of microbubbles inside the septic tank . The treated water returned to the raw water inflow section by the horizontal flow generator is provided. when performing the cleaning of the septic tank with the sludge precipitated in the septic tank so as to discharge into the treated water discharge side, in the horizontal flow generating device, directed from the water inlet into the treated water discharge portion water flow in the direction Is characterized by means for generating is provided.
[0010]
In the present invention, oxygen is supplied into the septic tank by a large number of microbubbles generated by the bubble generator provided in the septic tank, and the action of activating the purification action by the biofilm is performed.
[0011]
Furthermore, a swirling flow in the vertical direction (cross-sectional direction) is generated in the septic tank by the fine bubbles, whereby the number of times of contact of the raw water with the filter medium is increased, and the purifying effect is increased.
[0012]
In addition, the horizontal flow generator returns (part of) the low concentration treated water to the dense raw water inflow section to generate a horizontal swirling flow, so that the raw water pollution concentration on the upstream side (raw water inflow section side) is generated. Can be reduced appropriately, and clogging on the upstream side can be reduced.
[0013]
Furthermore, by the synergistic effect of the action of the swirling flow in the cross section direction by the bubble generator and the action of the horizontal swirling flow by the horizontal flow generator, the same effect as in the case of the ordinary circulation type filtration tank can be obtained. .
[0014]
Further, at the time of cleaning the septic tank, the horizontal flow generator can generate a water flow directed downstream, and the sludge settled in the septic tank can be discharged downstream.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a sewage purification apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway perspective view, FIG. 2 is a cross-sectional view taken along the line BB of FIG. 3 and 4 are cross-sectional views taken along the line AA of FIG. 1, FIGS. 5 (a), 5 (b) and 5 (c) are perspective views of the contact filter medium, and FIGS. It is a schematic diagram of another example of.
[0016]
The sewage purification apparatus of this embodiment is installed on a riverbed 16 as shown in FIG.
That is, the septic tank 9 as the main part of the sewage purification device 10 is installed by digging the riverbed 16 so that the upper end thereof is located above the water surface 17 a of the river 17.
[0017]
The septic tank 9 has a wall surface and a bottom surface made of concrete, FRP, or the like as shown in FIG. 1, and has a plurality of contact filter media 1 therein with respect to the flow direction of raw water in the septic tank 9 (the direction of arrow Y in FIG. 1). They are installed in series.
A spacer 30 is interposed between the lower surface of each contact filter medium 1 and the inner bottom surface of the purification tank 9, so that the fluidity of water near the inner bottom can be improved.
[0018]
At both ends of the septic tank 9 in the longitudinal direction, a sedimentation tank 7 having a deep bottom sludge reservoir 8 at the bottom is provided. One of the sedimentation tanks 7 (this sedimentation tank 7 is provided with an auxiliary symbol “A”, An inlet pipe 20 for introducing raw water into the water tank 9 is opened in the side settling tank 7A) to constitute a raw water inflow section 10A.
[0019]
A transfer pump (centrifugal pump) 21 is provided in the other sedimentation tank 7 (this sedimentation tank 7 is denoted by an auxiliary symbol "B" and is referred to as a downstream sedimentation tank 7B), and treated water (treated water) is provided in the upper part. A discharge section 19 for discharging from the septic tank 9 in an overflow manner is formed to constitute a treated water discharge section 10B.
[0020]
A transfer pipe 5 for returning a part of the treated water to the upstream side of the purification tank 9, that is, to the raw water inflow portion 10A is connected to the discharge side of the transfer pump 21. The transfer pump 21 and the transfer pipe 5 constitute the horizontal flow generator 3.
[0021]
Further, an air diffuser 6 is disposed in parallel with the side wall of the septic tank 9, and an air compressor 13 is connected to the air diffuser 6 via an air pipe 14, and fine air is discharged from a number of discharge holes formed in the air diffuser 6. The air bubbles 15 can be discharged (see FIG. 4).
Reference numeral 18 indicates an adjusting valve for adjusting the supply amount of compressed air.
[0022]
As shown in FIG. 6, a jet nozzle 11 for jetting compressed air is attached to one end of the transfer pipe 5 as a horizontal flow generator, and pressurized air is supplied to the jet nozzle 11 from an air compressor 33 via an air pipe 34. Ejector-type ones can also be used. Reference numeral 32 in FIG. 6 indicates a regulating valve for the amount of pressurized air. The regulating valve 32 is always squeezed, and is opened at the time of a periodic cleaning operation to increase the amount of air, so that the biofilm can be separated.
[0023]
In a modification of the horizontal flow generator shown in FIG. 7, a jet nozzle having a ring-shaped discharge portion 37 is used.
As a drive source of the horizontal flow generator 3, an ejector type having a jet nozzle for jetting compressed air or pressurized water may be used in addition to the ordinary centrifugal transfer pump 21 as described above.
[0024]
The horizontal flow generator 3 returns a part of the treated water to the raw water inflow portion 10A to generate a horizontal swirling flow, and returns (part of) the low concentration treated water to the dense raw water inflow portion. The raw water concentration can be reduced appropriately.
[0025]
Moreover The horizontal flow generating device 3, during the cleaning of the tank 9, by controlling the valves and pump propeller, etc., the direction of the water flow generated by the horizontal flow generating device 3, the water inlet 10 A, water inlet 10A A mechanism capable of changing the direction from the side toward the treated water discharge section 10B is provided so that the sludge settled in the septic tank 9 when the septic tank 9 is washed can be discharged to the downstream side (treated water discharge section side). It has become.
In addition, an ejector for backflow is installed in the transfer pipe 5 of the horizontal flow generator 3 so as to generate a horizontal flow in the reverse direction for discharging sludge settled in the septic tank 9 to the downstream side. Is also good.
[0026]
FIG. 5A shows an example of the contact filter medium 1. The contact filter medium 1 is fixedly disposed in a rectangular parallelepiped support frame 2 made of steel or synthetic resin, and in an internal space of the support frame 2. And a contact filter medium 28 in the form of a polyhedral rope. By binding both ends of the contact filter medium 28 in the form of a polyhedral rope to the support frame 2, the contact filter medium 28 in the form of a polyhedral rope can be easily fixed to the support frame 2.
[0027]
FIG. 5 (b) shows another example of the contact filter medium 1. This contact filter medium 1 has a rectangular parallelepiped support frame 2 made of steel or synthetic resin, and has a wire mesh on its peripheral surface and bottom surface. A wall surface 29 having good water permeability is mounted, and a filter material 31 such as a conglomerate, a porous material, a ceramic material, a plate-shaped or a plastic material having a large number of voids and a good water permeability, or charcoal is packed therein.
[0028]
FIG. 5C shows an example in which a straightening plate 24 (described later in detail) is attached to the support frame 2 of the contact filter medium 1.
In order to prevent raw water from passing through the space between the contact filter medium 1 and the wall surface of the septic tank 9, a baffle plate 23 is provided as shown in FIGS. The baffle plate 23 is formed of a perforated plate, a net, or the like, and is attached to either the wall surface of the purification tank 9 or the contact filter medium 1 (in this embodiment, attached to the contact filter medium 1).
[0029]
Further, in order to divert the rising water flow accompanying the fine bubbles 15 generated in the air diffuser 6 into a horizontal flow, a cross-sectional rectifying plate 24 made of plastic or metal plate shown in FIGS. It is provided at an upper position of the trachea 6. In the example shown in FIG. 2, the cross-sectional current plate 24 is attached to the inner wall surface of the septic tank 9. Further, as shown in FIG. 5 (c), it may be attached to the contact filter medium 1.
[0030]
In addition, a flow straightening plate 25 composed of a perforated plate, a net, or the like is attached to each of the inflow side and the discharge side of the group of contact filter media (see FIGS. 1, 3, and 4).
Further, as shown in FIG. 3, the upper part of the septic tank 9 is covered with a removable water tank lid 27 to prevent intrusion of dust and to prevent sunlight from being generated, thereby preventing the generation of algae inside the water tank.
In FIG. 1, reference numeral 26 denotes a support frame of the current plate 25.
[0031]
In the above configuration, raw water containing organic matter flows into the raw water inflow portion 10A of the septic tank 9 from the inflow pipe 20. The raw water from which the suspended substances in the raw water have been separated in the precipitation tank 7A flows into the contact filter medium 1. The suspended substances (sludge etc.) separated in the sedimentation tank 7A are collected in a sludge reservoir 8. The same operation is performed in the precipitation tank 7B.
[0032]
Since the contact filter medium 1 is made of a filter medium that easily flows, raw water flows through the contact filter medium 1 and is purified.
[0033]
The treated water flowing out to the treated water discharge section 10B is discharged from the discharge section 19, and a part of the treated water is returned to the raw water inflow section 10A by the horizontal flow generator 3. In this way, a horizontal circulating flow is caused between the downstream part (the treated water discharge part 10B) and the upstream part (the raw water inflow part 10A) of the septic tank 9, that is, it passes through the filtration layer and has a low pollutant concentration. By returning the treated water on the downstream side to the upstream side where the concentration of the pollutant is high, the state where the concentration of the pollutant is high locally is alleviated in the upstream portion, and the local organism in the contact filter medium 1 on the upstream side is relieved. Enlargement and clogging of the membrane can be avoided. As a result, polluted water whose concentration is equalized can be treated in the entire area of the septic tank 9, so that the biofilm is evenly attached to the entire septic tank 9 and the overall purification effect is enhanced.
[0034]
Further, the synergistic action of the horizontal circulating flow and the rising water flow by the air diffuser 6 can further improve the above-described operation.
In other words, a large number of microbubbles 15 are discharged from the air diffuser 6 into the space between the wall surface of the septic tank 9 and the contact filter medium 1 to increase the amount of oxygen in the water, and the vertical (cross-sectional direction) inside the septic tank 9 is increased. The stagnation of water in the septic tank 9 can be prevented by the gentle water flow.
[0035]
Sludge and the like separated from the contact filter medium 1 easily accumulate in the lower part of the septic tank 9, but the sludge accumulation can be prevented by the flow of water in the vertical direction in the septic tank 9 by the air diffuser 6. Further, since the contact filter medium 1 is installed in the septic tank 9 via the spacer 30 to facilitate the flow of water near the bottom of the septic tank 9, the accumulation of sludge and the like separated from the contact filter medium 1 can be prevented, and the filter medium is contaminated. The load can be equalized.
[0036]
【The invention's effect】
As described above, according to the sewage purification apparatus of the present invention, the following effects can be obtained.
(1) Oxygen is supplied into the septic tank by a large number of microbubbles generated by a bubble generator provided in the septic tank, and the action of activating the purifying action by the biofilm is performed. Furthermore, a swirling flow in the vertical direction (cross-sectional direction) is generated in the septic tank by the fine bubbles, whereby the number of times of contact of the raw water with the filter medium is increased, and the purifying effect is increased.
(2) Raw water pollution on the upstream side (raw water inflow part side) by returning (part of) the treated water with low concentration to the raw water inflow part with high concentration by the horizontal flow generator and generating a horizontal swirling flow The concentration can be appropriately reduced, and clogging on the upstream side can be reduced.
(3) The synergistic effect of the action of the swirling flow in the cross-sectional direction by the bubble generator and the action of the horizontal swirling flow by the horizontal flow generator can provide the same effect as that of a normal circulation type filtration tank. .
(4) when the septic tank cleaning, with a thin treated water concentrations was returned to the raw water inlet in the horizontal flow generator to generate a flow of water toward the downstream side from the water inlet, efficiency precipitated sludge in the septic tank Can be discharged well downstream.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a cut-away part of a sewage purification apparatus as one embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along the line BB of FIG. 1 and shows a case where it is installed on a riverbed.
FIG. 3 is a cross-sectional view taken along the line AA of FIG.
FIG. 4 is a cross-sectional view taken along the line AA of FIG. 1 showing an arrangement of air tubes and the like.
FIG. 5A is a perspective view showing an example of the contact filter medium.
(b) A perspective view showing another example of the contact filter medium.
(c) A perspective view showing an example in which a cross-sectional current plate is attached to the contact filter medium.
FIG. 6 is a schematic view showing another example of the horizontal flow generator.
FIG. 7 is a schematic view showing a modified example of the device of FIG.
FIG. 8 is a schematic diagram showing a conventional sewage purification apparatus configured by installing a septic tank on a riverbed.
FIG. 9 is a schematic view showing a sewage purification apparatus having a septic tank installed at the bottom of the waterway.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Contact filter medium 2 Support frame 3 Horizontal flow generator 5 Transfer pipe 6 Diffusion pipe 7 Settling tank 7A Upstream settling tank 7B Downstream settling tank 8 Sludge reservoir 9 Purification tank
10 Sewage purification equipment
10A Raw water inlet
10B Treated water discharge section
11 Jet nozzle
13 Air compressor
14 Air tube
15 Microbubbles
16 Riverbed
17 Ring discharge section
18 Regulator valve
19 Discharge section
20 Inflow pipe
21 Transfer pump
22 Transfer tube
23 Baffle
24 Cross section current plate
25 Rectifier plate
26 Rectifier plate support frame
27 Aquarium lid
28 Multifilament rope-shaped contact filter media
29 Walls with good water permeability
30 Spacer
31 Filter media
32 Regulator valve
33 air compressor
34 air tube
37 Ring discharge section