JP3595034B2 - Triple mode piezoelectric filter and frequency adjustment method thereof - Google Patents

Triple mode piezoelectric filter and frequency adjustment method thereof Download PDF

Info

Publication number
JP3595034B2
JP3595034B2 JP18988495A JP18988495A JP3595034B2 JP 3595034 B2 JP3595034 B2 JP 3595034B2 JP 18988495 A JP18988495 A JP 18988495A JP 18988495 A JP18988495 A JP 18988495A JP 3595034 B2 JP3595034 B2 JP 3595034B2
Authority
JP
Japan
Prior art keywords
frequency
electrodes
electrode
filter
mcf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18988495A
Other languages
Japanese (ja)
Other versions
JPH0918266A (en
Inventor
俊信 櫻井
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP18988495A priority Critical patent/JP3595034B2/en
Publication of JPH0918266A publication Critical patent/JPH0918266A/en
Application granted granted Critical
Publication of JP3595034B2 publication Critical patent/JP3595034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
本発明は多重モード圧電フィルタとその周波数調整の調整方法の改良に関し、特に三重モードフィルタの帯域幅と帯域内リップルを所望の特性に合わせ得る周波数調整方法に関する。
【0002】
【従来技術】
従来から圧電板を挟んで両面に二対の電極を近接配置することによって該電極間の音響結合により二波の周波数を励起し、該2波の周波数間の2倍を通過域とする二重モードモノリシッククリスタルフィルタ(以下MCFと呼称する)については良く知られている。図を用いてMCFの原理を説明する。図4(a)、(b)はMCFの一例を示す電極構造図であって、(a)は一方の面、(b)は他方の面の電極構造を示す。図4(a)に示す様に圧電板1上に金(Au)、銀(Ag)、アルミニュウム(Al)等を蒸着などにより2つの電極2、3を形成すると共にそれぞれは基板1の側方に入出力用電極6、7を延在させ、また他方面には同図(b)に示すように前記(a)の2つの電極に対応して2つ電極2’、3’を形成すると共に両者を近接配置して形成すると、2つの振動が強く励起される。このうち周波数が低く振動変位の対称な振動を対称モード(周波数f1)、周波数が高く非対称な振動を反対称モード(周波数f2)と呼んでいる。図4(c)は、入出力端子6、7と図4(b)に示すように裏側の電極2’、3’をリード配線で接続した共通端子5とからみた電気的等価回路図であり、同図に示す如くラダー回路で表され、適当に終端すればフィルタが構成される。
【0003】
フィルタの中心周波数は圧電板1の厚みと電極寸法を一定とすれば電極2、2’、3、3’の質量付加で決まり、帯域幅を決める周波数差df=f2−f1は図4(d)、(e)に示すように電極の周波数低下量及び電極間隙gによって決定される。ここで周波数低下量とは、圧電基板の周波数と電極物質を該基板に付加することにより周波数が偏移した時の周波数との差を言う。即ち電極の周波数低下量が大きくなるか、または電極間隙が広くなると二つのモードの結合が小さくなり周波数差dfは狭くなる。一方、電極の間隙の部分に質量を付加すると二つモードの結合は大きくなり、周波数差dfを広くすることが出来る。この二重モード共振子でフィルタを構成するとdfの約2倍がフィルタの帯域幅となり、これは2次のフィルタに相当する。要求仕様に基づいて周波数配列が算出され、インピーダンスZ0が設定される。該終端インピーダンスZ0は帯域幅と等価回路のインダクタンスの積で決まるので帯域幅と終端インピーダンスから、モーショナルインダクタンスL1が算出される。インダクタンスL1、靜電容量C0は基板の厚みと電極面積で決定される。これで二重モード共振子に必要なパラメータは全部揃う。後は二重モード共振子を図4(d)の方法によるか上記した電極間に質量を付加する方法を用いて、算出された周波数の配列に一致するように各電極の周波数低下量によって調整を行う。
【0004】
一方、従来から2次のフィルタ(2ポールMCFと呼称する)を数個縦続接続した4、6、8、10次(ポール)のフィルタが製品化されている。一枚の圧電板上に三電極対以上を配置した高次MCFについての研究開発も古くから行われている。図5(a)、(b)に示す例では圧電板として回転Y板のうち周波数温度特性の良い35゜回転厚み滑り振動(AT板)を用いる場合を説明する。水晶板1上に電極2ー2’、3ー3’、4ー4’を金属例えば金(Au)、銀(Ag)、アルミニュウム(Al)等を電極材料とし蒸着などの方法で形成する。電極の間隙g1、g2は等しく形成されるのが一般的であり、各電極の面積も等しくとりインダクタンスを同一にする設計が多い。各電極の形状はフィルタのインピーダンス、フィルタのスプリアス抑制及び要求されるフィルタ寸法より決めるのが一般的である。
【0005】
図5に示す様に三対の電極を近接配置して電気的に励振すると、共振状態では電極間で波動の結合を惹起し3つの共振周波数が強く生起される。エネルギとじ込め理論によると振動変位は電極部分では余弦状になり電極の無い部分では指数関数的に減衰することが知られている。従って3ポールMCFの場合も、電極間隙或いは周波数低下量によって音響結合を制御することができ、g1、g2を広くとると結合は弱く、即ち周波数間隔は狭くなり、また電極の周波数低下量を大きくすると結合は小さく、即ち周波数間隔はせまくなる。また水晶のような異方性の圧電材料では切断方位によって弾性定数が異なるのため結合係数即ち周波数間隔が結晶軸と電極配置により異なる。AT板の場合、Z’軸に沿って電極を配置した構成が結合係数は小さくなり、X軸に沿って電極を並べた構成が結合係数が最大になる。
【0006】
図5(a)をA面、同(b)をB面と呼び、A面の各電極2、3、4のリード配線は各々外部ハーメチック端子に導電性接着剤などで固着する。B面の電極2’、3’、4’は図5(b)の様にリード配線5’によって共通にし、端子数を減らすこともできる。或いは電極を各々独立させて外部端子に接続しても良いが接続の仕方によって位相関係が異なるだけであり、振幅特性より位相特性を重視する使い方でないかぎり短絡するケースが一般的である。B面電極をリード線部で短絡した構成では、蒸着等の方法で周波数を低下させて調整する場合、電極間短絡などの不良発生が無く実用性が高い。リード配線5’をA面の電極3のリード配線5に導電性接着剤で接続すると3ポールMCFは外部3端子で構成することが出来る。
【0007】
図5(c)は横断面の模式図を表し、圧電基板を挟んだ電極対とその記号を示す。3ポールMCF共振子を電気的に励振すると波動のエネルギは電極下にとじ込められ、電極の無い周辺部では振動変位は指数関数的に減衰し、その結果3つのモードが強勢に共振する。この3つのモードのうち振動変位が対称で周波数(f1)が低いモードをS−0、振動変位が反対称モードで周波数(f2)が二番目のモードをA−0、及び変位が対称で周波数(f3)が一番高いモードをS−1と呼んでいる。これらの振動が図5(d)に示すような変位分布を持つことはX線トポグラフィその他の手法で詳しく研究されている。また端子6、7を入出力端子とし5、5’を接続した4端子はその共振近傍では図5(e)の等価回路で表されることも良く知られている。該回路は適当な終端をすればフィルタが構成出来ることは自明である。
【0008】
小型多電極MCFは、無線機の中間周波フィルタとして開発され、一部実用に供された。
しかしながら上記多電極MCFにおいては、一枚の大きな圧電基板が未だ高価であったこと、多電極MCFの周波数調整方法が煩雑で時間が掛かりすぎこと、調整法が難しいため歩留まりが悪かった、等の問題があった。これらのため高価になり、多電極MCFは一般無線機分野では使用されなくなった。従って一枚の圧電板を挟んで両側に三電極対以上を配置した高次MCFの周波数調整技術は未だ研究されないままになっている。例えば3ポールMCFを例に取るとf1とf2の周波数間隔は2ポールMCFの周波数調整方法と同様な方法で周波数調整ができるが、この時本来偏移させたくないモードの周波数f3までシフトする。これは3つの共振周波数が音響結合の結果、励起される波動であるためどれか1つのモードを独立して扱うことは不可能である。励起される三波の周波数が設計された周波数に合っていないと、フィルタ特性は帯域内でリップルを生じ、通過帯域が対称にならない。この様に三つの周波数f1,f2、f3すべてを所望の周波数に調整し合致させる事は極めて困難であり、経済性を重視した一般無線機用中間周波フィルタには普及しなかった。
【0009】
本発明は従来の高次MCFの問題点である各モードの周波数調整法を解決するためになされたものであり3ポールMCF共振子の周波数を容易に且つ経済的に調整することが可能な周波数調整法と、微調整によりリップルの少ない対称な通過帯域を有する三重モード圧電フィルタを提供することを目的とする。
【0010】
【発明の概要】
上記目的を達成するため本発明においては、圧電板を挟んで両面にに三対の電極を並べて構成した3ポールMCFの三波の共振周波数を低い周波数からf1、f2、f3とした時、三電極のうち中央の電極の質量を調整し周波数差(f3ーf1)をほぼ一定に保持したまま周波数差(f3−f2)を調整するか、或いは三電極の両端の電極の質量を調整し(f3ーf1)をほぼ一定に保持したまま周波数差(f2ーf1)を調整して3ポールMCF共振子を製造する。
【0011】
【発明の実施例】
以下図示した実施例に基づいて本発明を詳細に説明する。なお、以下に示す実施例において用いる3ポールMCFのA面の電極構成は図5(a)と同様な構成を想定するが、本発明の説明にとって重要なB面の電極構成についてのみ図1(a)に示す。即ち同図に示す様に圧電板1の両面に3対の電極2ー2’、3ー3’、4ー4’を形成する。電極物質としては例えば金(Au)、銀(Ag)、アルミニューム(Al)等或いはそれらに銅を混合したものを用い蒸着またはスパッタなどの手法で形成る。電極2、3及び4は最終的に構成される3ポールMCF共振子の端子間の位相関係を除けば共通リード5に接続しても、フィルタの振幅特性に変化が無いことは前述した通りである。勿論、各電極のリード線を独立の外部端子に接続し位相特性に重点をおくフィルタも構成出来るが、ここではB面の各電極のリード線を共通部に集めた最も単純な場合を説明する。
【0012】
図1(a)に斜線で図示したように相並んだ3電極の両端の電極の質量を蒸着などの手法で質量を付加し周波数を低下させると、同図(b)に示す周波数配列が同図(c)に示す様に偏移する。このグラフは端子6、7を入出力端子、端子5をアース端子とした4端子網の両端を該フィルタのインピーダンスより十分に低い抵抗(例えば50オーム)で終端し、前記入力端子6−5間に信号発生器(SG)をつないで周波数を変化させた時、出力端子7−5間に現れる信号のレベルを記録したものである。図1(b)を基準として同図(c)を見ると、周波数f1’と周波数f3’の周波数移動量は大略同じで周波数差(f3’−f1’)はほぼ一定であるが、周波数f2’の変化量だけが大きくなり、周波数差(f2’−f1’)は減少する。このことは両端の電極の質量を変化させたとき、最も周波数変化が大きい振動変位は反対称モードA−0(周波数f2)であることを示している。即ち振動体の振動部分に同一質量を付加する際、その位置が振動変位の最大の部分である場合に周波数変化量が最大になる。また、逆に両端の電極の質量を削取ると(f3’−f1’)はほぼ一定の状態で周波数差(f2’−f1’)は増大する。
【0013】
次に、図2(a)に斜線で図示したように近接して並んだ3電極のうち、中央の電極に蒸着等の手法で質量を付加し周波数を変化させると、変化量の大きいモードは対称モードS−0(周波数f1)であり、次が対称モードS−1(周波数f3)、感度が鈍いモードは反対称モードA−0(f2)であることが実験的に確認された。従って3ポールMCFの3電極の中央の電極に質量を付加し周波数を低下させると、反対称モードA−0の周波数変動量が小さい為、周波数差(f3’ーf1’)をほぼ一定に保持したまま周波数差(f3’ーf2’)を減少させることが出来る。逆に中央の電極質量を削り取り周波数を高めると周波数差(f3’−f2’)を増大させることができる。
【0014】
なお、3ポールMCFの3電極のいずれの電極の質量を変化させた場合でも程度の差はあれ周波数全体に影響するため、各々の周波数配列を崩さず全体の周波数を低下する方法が必要であるが、これは3電極全体に蒸着などの方法を用いて質量を付加すれば3つの周波数は並行移動するので、その手法を用いればよい。上記した本発明の2通りの周波数調整法と全体の周波数を並行移動させる手法を用いれば、設計した3ポールMCFの周波数配列に、実際のフィルタの3つの周波数を合わせ込むことができる。
【0015】
図3は3ポールMCFの周波数配列と通過域特性を示す図である。設計に基づいて製造したところ図3(a)の周波数配列となった。ここで中心周波数58.1125MHz、通過帯域幅16kHz(3dB)、電極の面積はスプリアスを考慮し1.2平方mmとし、帯域幅と周波数低下量より電極間隙g1、g2を計算で求めた。このままでは通過域特性は図3(b)となり帯域内にリップルを生じ帯域も対称でなくなる。そこで図3(c)に示す様に3ポールMCFの周波数配列を計算値の周波数配列に一致させると、そのフィルタの通過域特性は図3(d)に示すようにリップルも設計通りに、且つ帯域幅も対称な特性のフィルタが得られる。これからも分かるように、3ポールMCFの帯域内リップルを極小に、且つ帯域幅を中心周波数に対して対称にするには3つの周波数配列を計算より算出された値に合致するように調整することが極めて重要であることはこれらのグラフからも明瞭である。
【0016】
以上、本発明は水晶AT板を用いた3ポールMCFの周波数調整法を説明したが、本発明はこれのみに限定されるされるものではなく、他の圧電材料を用いた3ポールMCFにも適用出来ることは勿論である。例えばLiTaO3、LiNbO3、圧電セラミック等でもよい。周波数調整に関しても、質量を調整する電極としてB面で説明してきたがA面の電極の質量を調整しても本発明の効果は全く同様である。質量調整手法として蒸着法を例に挙げたがスパッタ法でも或いは電極を薄く削り取る電子ビーム手法でよい。圧電板の形状を円形板を例に挙げたが矩形板でもよく、また圧電板上に形成する電極も必ずしも矩形である必要は無く楕円形であっても本発明の効果は何等影響されるものでは無い。
【0017】
【発明の効果】
以上のように本発明によれば3ポールMCFの3つの周波数を精細に制御し、なかでも反対称モードA−0の周波数f2を自在に制御することにより所望の周波数配列に合わせ込み良好なフィルタ特性を有する3重モード圧電フィルタを得ることができ、2ポールMCFより一つ次数の高いフィルタをほぼ同じ形状で且つ経済的に製造することができ、極めてその効果は大きい。
【図面の簡単な説明】
【図1】(a)、(b)及び(c)は本発明の実施例示す平面図及び周波数偏移図。
【図2】(a)、(b)及び(c)は本発明の他の実施例を示す平面図と周波数偏移図。
【図3】(a)、(b)、(c)及び(d)は本発明を施した周波数配列とそのフィルタ特性。
【図4】(a)、(b)、(c)、(d)、及び(e)は2ポールMCFを説明する電極模式図、回路図、周波数低下量及び電極間隙と周波数間隔dfとの関係図。
【図5】3ポールMCFの原理を表す電極模式図、断面図、振動変位および電気的等価回路。
【符号の説明】
1・・・圧電基板
2、2’、3、3’、4、4’・・・電極
5、5’、6、7・・・リード電極
df・・・共振周波数f2,f1の差
f1,f2,f3・・・共振周波数
f1’,f2’,f3’・・・調整後の共振周波数
g,g1,g2・・・電極間間隙
S−0、S−1・・・対称モード
A−0・・・反対称モード
[0001]
The present invention relates to an improved method of adjusting the frequency adjustment of the multimode piezoelectric filter and its, in particular to a frequency adjustment method may fit the bandwidth and band ripple triple mode filter to desired characteristics.
[0002]
[Prior art]
Conventionally, two pairs of electrodes are disposed close to each other on both sides of a piezoelectric plate to excite two frequencies by acoustic coupling between the electrodes, and a double band having twice the frequency between the two frequencies as a pass band. Mode monolithic crystal filters (hereinafter referred to as MCFs) are well known. The principle of the MCF will be described with reference to the drawings. 4A and 4B are electrode structure diagrams showing an example of an MCF, wherein FIG. 4A shows an electrode structure on one surface and FIG. 4B shows an electrode structure on the other surface. As shown in FIG. 4A, two electrodes 2 and 3 are formed on a piezoelectric plate 1 by depositing gold (Au), silver (Ag), aluminum (Al), or the like by vapor deposition or the like. The input / output electrodes 6 and 7 are extended, and two electrodes 2 'and 3' are formed on the other surface corresponding to the two electrodes (a) as shown in FIG. In addition, when both are formed close to each other, two vibrations are strongly excited. Of these, vibration having a low frequency and symmetrical vibration displacement is called a symmetric mode (frequency f1), and vibration asymmetrical at a high frequency is called an antisymmetric mode (frequency f2). FIG. 4C is an electrical equivalent circuit diagram viewed from the input / output terminals 6 and 7 and the common terminal 5 in which the back electrodes 2 ′ and 3 ′ are connected by lead wiring as shown in FIG. 4B. As shown in the figure, a ladder circuit is formed, and if properly terminated, a filter is formed.
[0003]
The center frequency of the filter is determined by the addition of the mass of the electrodes 2, 2 ', 3 and 3' if the thickness of the piezoelectric plate 1 and the electrode dimensions are constant, and the frequency difference df = f2-f1 which determines the bandwidth is shown in FIG. ) And (e), it is determined by the frequency reduction amount of the electrode and the electrode gap g. Here, the amount of frequency decrease refers to a difference between the frequency of the piezoelectric substrate and the frequency when the frequency is shifted by adding an electrode material to the substrate. That is, when the amount of decrease in the frequency of the electrode increases or the electrode gap increases, the coupling between the two modes decreases, and the frequency difference df decreases. On the other hand, if a mass is added to the gap between the electrodes, the coupling between the two modes increases, and the frequency difference df can be widened. When a filter is constituted by this double mode resonator, about twice df becomes the filter bandwidth, which corresponds to a second-order filter. The frequency arrangement is calculated based on the required specifications, and the impedance Z0 is set. Since the terminal impedance Z0 is determined by the product of the bandwidth and the inductance of the equivalent circuit, the motional inductance L1 is calculated from the bandwidth and the terminal impedance. The inductance L1 and the capacitance C0 are determined by the thickness of the substrate and the electrode area. With this, all the parameters required for the dual mode resonator are prepared. After that, the dual mode resonator is adjusted by the frequency drop amount of each electrode so as to match the calculated frequency arrangement by using the method of FIG. 4D or the above-described method of adding mass between the electrodes. I do.
[0004]
On the other hand, 4, 6, 8, and 10th-order (pole) filters in which several second-order filters (referred to as two-pole MCFs) are connected in cascade have been commercialized. Research and development on high-order MCFs in which three or more electrode pairs are arranged on one piezoelectric plate have been performed for a long time. In the example shown in FIGS. 5A and 5B, a case will be described in which a 35 ° rotation thickness-slip vibration (AT plate) having good frequency temperature characteristics among the rotation Y plates is used as the piezoelectric plate. The electrodes 2-2 ', 3-3' and 4-4 'are formed on the quartz plate 1 by a method such as vapor deposition using a metal such as gold (Au), silver (Ag), aluminum (Al) or the like as an electrode material. Generally, the gaps g1 and g2 between the electrodes are formed to be equal, and there are many designs in which the area of each electrode is made equal and the inductance is the same. Generally, the shape of each electrode is determined by the impedance of the filter, suppression of spuriousness of the filter, and required filter dimensions.
[0005]
When three pairs of electrodes are arranged close to each other and electrically excited as shown in FIG. 5, in a resonance state, wave coupling is induced between the electrodes, and three resonance frequencies are strongly generated. According to the energy confinement theory, it is known that the vibration displacement becomes cosine-shaped in the electrode portion and exponentially attenuates in the portion without the electrode. Therefore, also in the case of the three-pole MCF, the acoustic coupling can be controlled by the electrode gap or the amount of frequency reduction. When g1 and g2 are widened, the coupling is weak, that is, the frequency interval becomes narrow, and the frequency reduction of the electrode becomes large. The coupling is then small, ie the frequency spacing is small. Further, in an anisotropic piezoelectric material such as quartz, the elastic constant varies depending on the cutting orientation, so that the coupling coefficient, that is, the frequency interval varies depending on the crystal axis and the electrode arrangement. In the case of the AT plate, the configuration in which the electrodes are arranged along the Z 'axis has a small coupling coefficient, and the configuration in which the electrodes are arranged along the X axis has the maximum coupling coefficient.
[0006]
FIG. 5A is referred to as an A surface, and FIG. 5B is referred to as a B surface, and the lead wiring of each of the electrodes 2, 3, and 4 on the A surface is fixed to an external hermetic terminal with a conductive adhesive or the like. The electrodes 2 ', 3', and 4 'on the B side can be shared by the lead wiring 5' as shown in FIG. 5B, and the number of terminals can be reduced. Alternatively, the electrodes may be connected to external terminals independently of each other, but the phase relationship differs only depending on the connection method, and a short circuit is generally used unless the phase characteristics are more important than the amplitude characteristics. In the configuration in which the B-side electrode is short-circuited by the lead wire portion, when adjusting by lowering the frequency by a method such as vapor deposition, there is no occurrence of a defect such as a short-circuit between the electrodes, and the practicability is high. When the lead wire 5 'is connected to the lead wire 5 of the electrode 3 on the A side with a conductive adhesive, the three-pole MCF can be constituted by three external terminals.
[0007]
FIG. 5C shows a schematic diagram of a cross section, and shows an electrode pair sandwiching the piezoelectric substrate and its symbol. When the three-pole MCF resonator is electrically excited, the energy of the wave is trapped under the electrode, and the vibration displacement attenuates exponentially in the periphery without the electrode, and as a result, the three modes resonate vigorously. Of these three modes, S-0 is a mode in which the vibration displacement is symmetric and the frequency (f1) is low, A-0 is a mode in which the vibration displacement is an antisymmetric mode and the frequency (f2) is the second, and a frequency is a symmetric displacement and the frequency is (f2). The mode with the highest (f3) is called S-1. The fact that these vibrations have a displacement distribution as shown in FIG. 5D has been studied in detail by X-ray topography and other techniques. It is also well known that four terminals connecting terminals 5 and 5 'with terminals 6 and 7 as input / output terminals are represented by an equivalent circuit of FIG. It is self-evident that the filter can be constructed by appropriately terminating the circuit.
[0008]
The small multi-electrode MCF was developed as an intermediate frequency filter of a wireless device, and was partially put to practical use.
However, in the above-mentioned multi-electrode MCF, one large piezoelectric substrate was still expensive, the method of adjusting the frequency of the multi-electrode MCF was complicated and took too much time, and the yield was poor because the adjustment method was difficult. There was a problem. For these reasons, it became expensive and the multi-electrode MCF was not used in the general radio field. Accordingly, a technique for adjusting the frequency of a high-order MCF in which three or more electrode pairs are arranged on both sides of a single piezoelectric plate has not been studied yet. For example, taking a three-pole MCF as an example, the frequency interval between f1 and f2 can be adjusted by a method similar to the frequency adjustment method of the two-pole MCF, but at this time, the frequency is shifted to a frequency f3 of a mode which is not originally desired to be shifted. This result three resonance frequencies of the acoustic coupling, it is impossible to deal independently any one mode for a wave to be excited. If the frequency of the excited three waves does not match the designed frequency, the filter characteristics will cause ripples in the band and the pass band will not be symmetric. As described above, it is extremely difficult to adjust and match all three frequencies f1, f2, and f3 to desired frequencies, and it has not been widely used in intermediate frequency filters for general wireless devices that emphasize economic efficiency.
[0009]
The present invention has been made to solve the frequency adjustment method of each mode, which is a problem of the conventional high-order MCF, and is a frequency capable of easily and economically adjusting the frequency of a three-pole MCF resonator. An object of the present invention is to provide a triple mode piezoelectric filter having a symmetrical pass band with little ripple by an adjustment method and fine adjustment .
[0010]
Summary of the Invention
In order to achieve the above object, according to the present invention, when the three-wave resonance frequency of a three-pole MCF having three pairs of electrodes arranged on both sides of a piezoelectric plate is set to f1, f2, and f3 from a low frequency, Of the center electrode and adjust the frequency difference (f3-f2) while keeping the frequency difference (f3-f1) substantially constant, or adjust the mass of the electrodes at both ends of the three electrodes (f3 −f1) is kept almost constant, and the frequency difference (f2−f1) is adjusted to manufacture a three-pole MCF resonator.
[0011]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. The electrode configuration on the surface A of the three-pole MCF used in the following examples is assumed to be the same as that shown in FIG. 5A, but only the electrode configuration on the surface B which is important for the description of the present invention is shown in FIG. a). That is, three pairs of electrodes 2-2 ', 3-3', and 4-4 'are formed on both surfaces of the piezoelectric plate 1 as shown in FIG. As the electrode material, for example, gold (Au), silver (Ag), aluminum (Al), or a mixture thereof with copper is used, and is formed by a method such as vapor deposition or sputtering. As described above, the electrodes 2, 3, and 4 have no change in the amplitude characteristic of the filter even when connected to the common lead 5 except for the phase relationship between the terminals of the finally formed 3-pole MCF resonator. is there. Of course, it is possible to construct a filter in which the lead wires of each electrode are connected to independent external terminals and focus on the phase characteristics. However, here, the simplest case in which the lead wires of each electrode on the B side are collected in a common part will be described. .
[0012]
When the mass of the electrodes at both ends of the three electrodes arranged side by side as shown by hatching in FIG. 1A is added to the mass by a method such as vapor deposition to lower the frequency, the frequency arrangement shown in FIG. It shifts as shown in FIG. In this graph, both ends of a four-terminal network having terminals 6 and 7 as input / output terminals and terminal 5 as a ground terminal are terminated with a resistance (for example, 50 ohms) sufficiently lower than the impedance of the filter. When the frequency is changed by connecting a signal generator (SG) to the output terminal, the signal level appearing between the output terminals 7 and 5 is recorded. Referring to FIG. 1C with reference to FIG. 1B, the frequency shift amount between the frequency f1 ′ and the frequency f3 ′ is substantially the same, and the frequency difference (f3′−f1 ′) is substantially constant, but the frequency f2 Only the amount of change in 'increases, and the frequency difference (f2'-f1 ') decreases. This indicates that when the mass of the electrodes at both ends is changed, the vibration displacement having the largest frequency change is the antisymmetric mode A-0 (frequency f2). That is, when the same mass is added to the vibrating portion of the vibrating body, the frequency change amount becomes maximum when the position is the maximum portion of the vibration displacement. Conversely, when the mass of the electrodes at both ends is reduced, the frequency difference (f2'-f1 ') increases while (f3'-f1') remains almost constant.
[0013]
Next, when the frequency is changed by adding mass to the center electrode among the three electrodes arranged close to each other as shown by diagonal lines in FIG. It has been experimentally confirmed that the symmetric mode is S-0 (frequency f1), the next is the symmetric mode S-1 (frequency f3), and the mode with low sensitivity is the antisymmetric mode A-0 (f2). Therefore, when the mass is added to the center electrode of the three electrodes of the three-pole MCF to reduce the frequency, the frequency variation of the antisymmetric mode A-0 is small, so that the frequency difference (f3′−f1 ′) is kept almost constant. The frequency difference (f3'-f2 ') can be reduced while keeping the same. Conversely, if the center electrode mass is removed to increase the frequency, the frequency difference (f3'-f2 ') can be increased.
[0014]
It should be noted that even if the mass of any of the three electrodes of the three-pole MCF is changed, it affects the entire frequency to some extent, so a method of lowering the entire frequency without disturbing the frequency arrangement is necessary. However, if the mass is added to the entire three electrodes using a method such as vapor deposition, the three frequencies move in parallel, so that method may be used. By using the above-described two frequency adjustment methods of the present invention and the method of moving the entire frequency in parallel, it is possible to match the three frequencies of the actual filter to the frequency arrangement of the designed three-pole MCF.
[0015]
FIG. 3 is a diagram showing a frequency arrangement and passband characteristics of a three-pole MCF. When manufactured based on the design, the frequency arrangement shown in FIG. Here, the center frequency was 58.125 MHz, the pass band width was 16 kHz (3 dB), the area of the electrode was 1.2 square mm in consideration of spurious, and the electrode gaps g1 and g2 were calculated from the bandwidth and the amount of frequency drop. In this state, the passband characteristic becomes as shown in FIG. 3 (b), ripples occur in the band, and the band is not symmetric. Therefore, when the frequency arrangement of the three-pole MCF is made to match the frequency arrangement of the calculated values as shown in FIG. 3C, the passband characteristics of the filter are as shown in FIG. A filter having a characteristic whose bandwidth is also symmetric is obtained. As can be seen, in order to minimize the in-band ripple of the 3-pole MCF and to make the bandwidth symmetrical with respect to the center frequency, adjust the three frequency arrays to match the values calculated by the calculation. Is very important from these graphs.
[0016]
As described above, the present invention has described the method of adjusting the frequency of a three-pole MCF using a quartz AT plate. However, the present invention is not limited to this, and the present invention is also applicable to a three-pole MCF using another piezoelectric material. Of course, it can be applied. For example, LiTaO3, LiNbO3, piezoelectric ceramic, or the like may be used. As for the frequency adjustment, the electrode for adjusting the mass has been described on the surface B, but the effect of the present invention is exactly the same even if the mass of the electrode on the surface A is adjusted. Although the vapor deposition method has been described as an example of the mass adjustment method, a sputtering method or an electron beam method for thinly shaving an electrode may be used. Although the shape of the piezoelectric plate is exemplified by a circular plate, a rectangular plate may be used, and the electrode formed on the piezoelectric plate is not necessarily required to be rectangular, and the effect of the present invention is affected even if it is elliptical. Not.
[0017]
【The invention's effect】
As described above, according to the present invention, it is possible to finely control the three frequencies of the three-pole MCF, and particularly to freely control the frequency f2 of the anti-symmetric mode A-0, thereby adjusting the frequency f2 to a desired frequency arrangement. A triple mode piezoelectric filter having characteristics can be obtained, and a filter having one order higher than that of a two-pole MCF can be economically manufactured in almost the same shape, and the effect is extremely large.
[Brief description of the drawings]
1 (a), 1 (b) and 1 (c) are a plan view and a frequency shift chart showing an embodiment of the present invention.
2 (a), 2 (b) and 2 (c) are a plan view and a frequency shift chart showing another embodiment of the present invention.
3 (a), (b), (c) and (d) are frequency arrangements according to the present invention and filter characteristics thereof.
FIGS. 4 (a), (b), (c), (d), and (e) are schematic diagrams of electrodes, circuit diagrams, frequency reduction amounts, and the relationship between electrode gaps and frequency intervals df for explaining a two-pole MCF. Relationship diagram.
FIG. 5 is a schematic diagram of an electrode, a sectional view, a vibration displacement, and an electric equivalent circuit showing the principle of a three-pole MCF.
[Explanation of symbols]
1 piezoelectric substrate 2, 2 ', 3, 3', 4, 4 '... electrodes 5, 5', 6, 7 ... lead electrode df ... resonance frequency f2, difference f1, f1 f2, f3 ... resonance frequencies f1 ', f2', f3 '... adjusted resonance frequencies g, g1, g2 ... gaps between electrodes S-0, S-1 ... symmetry mode A-0 ... Antisymmetric modes

Claims (1)

圧電板を挟んで両面に三対の電極を並べて形成した三重モード圧電フィルタにおいて、該電極により励起される三波の共振周波数を低い順にf1、f2、f3とするとき、前記電極のうち両端の2組の電極の質量を調整することによって周波数差(f3−f1)をほぼ一定に保持したまま周波数差(f2−f1)を任意に調整することを特徴とする三重モード圧電共振子の周波数調整方法。In a triple mode piezoelectric filter formed by arranging three pairs of electrodes on both sides of a piezoelectric plate, when the resonance frequencies of three waves excited by the electrodes are set to f1, f2, and f3 in ascending order, the two ends of the electrodes A frequency adjustment method for a triple mode piezoelectric resonator, characterized in that the frequency difference (f2-f1) is arbitrarily adjusted while the frequency difference (f3-f1) is kept substantially constant by adjusting the mass of the electrodes of the set. .
JP18988495A 1995-07-03 1995-07-03 Triple mode piezoelectric filter and frequency adjustment method thereof Expired - Lifetime JP3595034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18988495A JP3595034B2 (en) 1995-07-03 1995-07-03 Triple mode piezoelectric filter and frequency adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18988495A JP3595034B2 (en) 1995-07-03 1995-07-03 Triple mode piezoelectric filter and frequency adjustment method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004189697A Division JP3912394B2 (en) 2004-06-28 2004-06-28 Frequency adjustment method for triple mode piezoelectric filter

Publications (2)

Publication Number Publication Date
JPH0918266A JPH0918266A (en) 1997-01-17
JP3595034B2 true JP3595034B2 (en) 2004-12-02

Family

ID=16248797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18988495A Expired - Lifetime JP3595034B2 (en) 1995-07-03 1995-07-03 Triple mode piezoelectric filter and frequency adjustment method thereof

Country Status (1)

Country Link
JP (1) JP3595034B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307447B1 (en) * 1999-11-01 2001-10-23 Agere Systems Guardian Corp. Tuning mechanical resonators for electrical filter
JP4701504B2 (en) * 2001-01-22 2011-06-15 エプソントヨコム株式会社 Manufacturing method of triple mode piezoelectric filter
DE10162580A1 (en) * 2001-12-19 2003-07-17 Infineon Technologies Ag Piezoelectric resonant circuit, method for its production and filter arrangement
JP7215201B2 (en) * 2019-02-08 2023-01-31 株式会社大真空 Frequency adjustment method and frequency adjustment device for piezoelectric vibration filter

Also Published As

Publication number Publication date
JPH0918266A (en) 1997-01-17

Similar Documents

Publication Publication Date Title
EP1196990B1 (en) Resonator structure and a filter comprising such a resonator structure
EP2628246B1 (en) Wide-band acoustically coupled thin-film baw filter
KR100312001B1 (en) Surface acoustic wave device
US7327205B2 (en) Demultiplexer and surface acoustic wave filter
US8164399B2 (en) Thin film piezoelectric vibrator, thin film piezoelectric bulk acoustic wave resonator, and radio-frequency filter using such resonator
CN112673568B (en) Load resonator for adjusting frequency response of acoustic wave resonator
JP3301399B2 (en) Surface acoustic wave device
JP3229336B2 (en) Acoustic piezoelectric crystals with micromachined surfaces
JP2004523179A (en) Transducer structure operated by sound waves
KR20020029927A (en) A bulk acoustic wave device
US20010008387A1 (en) Surface acoustic wave device, surface acoustic wave filter, and manufacturing method for the surface acoustic wave device
JP3001350B2 (en) Surface acoustic wave filter
US7245060B2 (en) Piezoelectric resonator, method for manufacturing the same, piezoelectric filter, and duplexer
US6335667B1 (en) Multi-longitudinal mode coupled saw filter
JP3839492B2 (en) Thin film piezoelectric element
CN117155332B (en) Transverse excitation bulk acoustic wave resonator and filter
JPH1093388A (en) Differential input and/or differential output parallel coupling surface acoustic wave filter and its method
JP3595034B2 (en) Triple mode piezoelectric filter and frequency adjustment method thereof
JPH11191720A (en) Surface acoustic wave device and surface accosting wave filter
CN115037263A (en) Transverse-excitation film bulk acoustic resonator and filter
JP2002232264A (en) Surface acoustic wave filter
JP3912394B2 (en) Frequency adjustment method for triple mode piezoelectric filter
JPH09186542A (en) Surface acoustic wave resonator filter
JP3366477B2 (en) Vertical composite quad mode SAW filter
JP3425394B2 (en) Surface acoustic wave resonator and surface acoustic wave filter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

EXPY Cancellation because of completion of term