JP3593948B2 - Method for producing tooth-shaped forged product having tooth-shaped surface in cylindrical part - Google Patents

Method for producing tooth-shaped forged product having tooth-shaped surface in cylindrical part Download PDF

Info

Publication number
JP3593948B2
JP3593948B2 JP2000119235A JP2000119235A JP3593948B2 JP 3593948 B2 JP3593948 B2 JP 3593948B2 JP 2000119235 A JP2000119235 A JP 2000119235A JP 2000119235 A JP2000119235 A JP 2000119235A JP 3593948 B2 JP3593948 B2 JP 3593948B2
Authority
JP
Japan
Prior art keywords
tooth
cylindrical portion
shaped
forged product
tooth profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000119235A
Other languages
Japanese (ja)
Other versions
JP2001300682A (en
Inventor
二三雄 釜崎
巌 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2000119235A priority Critical patent/JP3593948B2/en
Publication of JP2001300682A publication Critical patent/JP2001300682A/en
Application granted granted Critical
Publication of JP3593948B2 publication Critical patent/JP3593948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
本発明は,筒状部に歯形面を有する歯形鍛造品を一体的に製造する方法に関する。
【0002】
【従来技術】
例えば自動車部品として,図10に示すごとく,パーキングギア部材91とドリブンギア部材92とを同軸上に配置したカウンタードリブンギア9が使用されている。
従来,この部品を製造するに当たっては,図9(a)(b)に示すごとく,まず熱間鍛造にてパーキングギア部材91とドリブンギア部材92をそれぞれ別々に作製する。
【0003】
次いで,図9(c)(d)に示すごとく,パーキングギア部材91の外周部面に凹凸形状を有する歯形面915を機械加工により形成する。また,ドリブンギア部材92の軸穴部924の内周面を機械加工する。
次いで,図9(e)に示すごとく,ドリブンギア部材92とパーキングギア部材91とを圧入嵌合させると共に溶接して一体化する。
その後,図10に示すごとく,仕上げの機械加工を行って,パーキングギア部材91とドリブンギア部材92とを一体的に有するカウンタードリブンギア9が得られる。
【0004】
このように,上記カウンタードリブンギア9の場合には,円筒状のパーキングギア部材91に予め歯形形状を機械加工により形成し,その後一体化すべきドリブンギア部材92と接合する製造方法が採用されている。
このような製造方法は,カウンタードリブンギアに限らず,ベース部に立設した筒状部を有しその内周面あるいは外周面に歯形形状を有する部品を製造する場合に適用される。
【0005】
【解決しようとする課題】
しかしながら,上記従来の製造方法には次の問題がある。
即ち,上記製造方法では,上記筒状部への歯形面の形成を機械加工により行う必要があり,工程が複雑である。またそのため,コスト高となる。また,筒状部とベース部との接合を圧入,溶接等により行うため,その接合部分の強化を行う必要がある。そのため,軽量化が困難である。
【0006】
この対策として,上記ベース部と筒状部とを一体的に鍛造により製造する方法が考えられる。この場合,熱間鍛造だけでは上記歯形面の形状を精度よく仕上げることが困難であるので,熱間鍛造後に冷間鍛造を行うことが必要となる。しかし,従来においては,冷間鍛造を行っても上記歯形面の形状を精度よく仕上げることは困難であり,欠肉や座屈といった不良が発生する。また,冷間鍛造時の形状精度を向上させるために高い加工度を加えようとすると,冷間鍛造用の金型が荷重に耐えきれずに破損してしまう場合もあった。それ故,従来においては,上記筒状部に鍛造によって歯形面を精度よく形成することは不可能であった。
【0007】
本発明は,かかる従来の問題点に鑑みてなされたもので,筒状部への歯形面の形成を,鍛造により精度よく行うことができる,筒状部に歯形面を有する歯形鍛造品の製造方法を提供しようとするものである。
【0008】
【課題の解決手段】
請求項1の発明は,ベース部から立設された筒状部を有すると共にその外周面又は内周面に凹凸形状を有する歯形面を設けてなる歯形鍛造品を製造する方法であって,
素材を熱間鍛造することにより,上記ベース部と上記筒状部を形成すると共に,該筒状部の外周面又は内周面に凹凸形状を有する歯形面を設け,かつ,該歯形面の凸部の裏側面には,上記凸部の突出方向に向けて窪んだ窪部を設け,
その後,上記窪部を拘束しない状態で上記筒状部に冷間鍛造を加えることを特徴とする筒状部に歯形面を有する歯形鍛造品の製造方法にある。
【0009】
本発明において最も注目すべきことは,上記熱間鍛造時において,上記窪部を有する筒状部を設け,その後,上記窪部を拘束しない状態で上記筒状部に冷間鍛造を加えることである。
上記歯形面の凸部の形状としては,矩形状,台形状,三角形状,その他,公知の種々の形状を適用できる。また,上記窪部の形状としても,種々の形状を適用できる。
【0010】
次に,本発明の作用につき説明する。
本発明においては,まず,上記素材を熱間鍛造して上記ベース部と筒状部とを一体的に設けると共に,該筒状部に上記歯形面を設ける。このとき,上記のごとく,該歯形面の凸部の裏側面には,上記凸部の突出方向に向けて窪んだ窪部を設ける。この窪部の形成により,その後の冷間鍛造において非常に精度の高い加工をを行うことができる。
【0011】
即ち,上記冷間鍛造においては,熱間鍛造によって形成した上記歯形面の窪部を拘束しない状態で加工する。より具体的には,冷間鍛造に用いる金型の歯形面の裏面に対するキャビティは,上記窪部に当接しないように設計しておく。これにより,上記歯形面を冷間鍛造する際に,過剰の荷重が付与された場合においても,それが上記窪部において開放される。そのため,従来のような金型の破損を心配することなく,上記歯形面に十分に高い荷重を加えることができる。それ故,上記歯形面の凸部及び凹部は,高い荷重によってキャビティ形状に沿った所望の形状に成形され,荷重の過剰分は上記窪部を増肉させる現象によって開放される。
【0012】
従って,この製造方法を用いれば,歯形面を有する筒状部とベース部との一体成形を容易に行うことができ,しかも,歯形面の形状を非常に高い精度で形成することができる。そのため,従来行っていた歯形面形成のための機械加工は不要となり工程合理化及びコストダウンを図ることができる。
【0013】
次に,請求項2の発明のように,上記窪部は断面形状が円弧状であることが好ましい。この場合には,窪部の表面を円弧状の滑らかな形状とすることにより,鍛造による形成を容易にすることができると共に,応力集中等を回避することができる。
【0014】
また,請求項3の発明のように,上記冷間鍛造においては,上記筒状部に対するキャビティの軸方向の深さをD,冷間鍛造前の上記筒状部の高さをHとしたとき,D<Hであり,かつ,(H−D)/H≧0.1であることが好ましい。D<Hとすることにより上記筒状部に軸方向の荷重を容易に付与することができる。そして,上式(H−D)/Hを0.1以上となるように加工度を高めた場合には,特に歯形面の形状精度を向上させることができ,この場合においても上記窪部を設けた場合の効果を有効に発揮して金型を破損することなくスムーズな成形を行うことができる。
【0015】
また,請求項4の発明のように,上記筒状部の軸方向の高さをA,上記筒状部の先端における上記凹部の厚みをBとした場合,B/A≦0.3の関係が成り立つ場合において,特に有効である。即ち,上記B/A>0.3の場合には,冷間鍛造時の座屈や欠肉現象が起こりにくいが,B/A≦0.3の場合には,これらの不良が発生しやすい傾向にある。この場合においても,上記窪部を設けることによって,冷間鍛造時の上記不具合を容易に回避することができる。
【0016】
また,請求項5の発明のように,上記歯形鍛造品は,円盤状の上記ベース部と,該ベース部の中央部分に配設され内面に軸穴を設けた軸穴部と,該軸穴部とリング状の溝を介して配設された上記筒状部としてのパーキングギア部とを一体的に有し,かつ,該パーキングギア部の外周面に凹凸形状を有する歯形面を設けてなるカウンタードリブンギア用鍛造品とすることができる。この場合には,軽量で,低コストのカウンタードリブンギア用鍛造品を製造することができる。
【0017】
【発明の実施の形態】
実施形態例1
本発明の実施形態例にかかる筒状部に歯形面を有する歯形鍛造品の製造方法につき,図1〜図4を用いて説明する。
図1に示すごとく,本例において製造する歯形鍛造品1は,円盤状のベース部10と,該ベース部10の中央部分に配設され内面に軸穴110を設けた軸穴部11と,該軸穴部11とリング状溝12を介して配設された筒状部2としてのパーキングギア部とを一体的に有する。そしてパーキングギア部2の外周面に凹凸形状を有する歯形面20を設けてなるカウンタードリブンギア用鍛造品である。また,本例における筒状部2は,後述する図4(a)に示すごとく,軸方向の高さをA,筒状部2の先端における凹部の厚みをBとした場合,B/A≦0.3の関係にあり,比較的欠肉等の欠陥が生じやすいものである。
【0018】
このカウンタードリブンギア用鍛造品を製造するに当たっては,まず,図1(a)に示すごとく,素材に複数回の熱間鍛造を施すことにより,熱鍛中間材101を作製する。即ち,熱間鍛造により,上記ベース部10と筒状部(パーキングギア部)2を形成すると共に,筒状部2の外周面に凹凸形状を有する歯形面20を設ける。このとき,歯形面20の凸部21の裏側面25には,上記凸部21の突出方向に向けて窪んだ窪部3を設ける。
【0019】
次に,図1(b)に示すごとく,冷間鍛造を施して,カウンタードリブンギア用鍛造品1を得る。
この冷間鍛造工程においては,上記窪部を拘束しない状態で上記筒状部に冷間鍛造を施す。具体的には,図2に示すごとく,冷間鍛造用の金型7として,外周側面71は上記歯形面20に対応してこれを成形する形状を有し,一方,内周側面72はスムーズな円周形状を有するものを用いる。なお,本例では,筒状部2に対するキャビティの軸方向の深さをD(図示略),冷間鍛造前の上記筒状部2の高さをH(図1(a))としたとき,D<Hであり,かつ,(H−D)/H=0.1となるように金型7を設計した。
【0020】
このような金型7を用いることにより,筒状部2の歯形面20は金型7の外周側面71に密着し,一方,筒状部2の裏側面25と金型71の内周側面72とは,上記窪部3との間に空間75を有した状態で冷間鍛造がなされる。その結果図1(b)に示すごとく,上記カウンタードリブンギア用鍛造品1が得られる。
【0021】
その後,図3に示すごとく,このカウンタードリブンギア用鍛造品1は,軸穴110およびベース部10の外周面に機械加工が加えられ,製品のカウンタードリブンギア100とされる。
【0022】
次に,本例の作用効果につき説明する。
本例においては,上記のごとく,熱間鍛造により,上記ベース部10と筒状部2とを一体的に設けると共に,筒状部2に歯形面20を設ける。このとき,上記のごとく,歯形面20の凸部21の裏側面25には,凸部21の突出方向に向けて窪んだ窪部3を設ける。そして,上記冷間鍛造工程においては,熱間鍛造によって形成した歯形面20の窪部3を拘束しない状態で加工する。
【0023】
具体的には,図2に示すごとく,上述した金型7を用いて冷間鍛造を行う。これにより,筒状部2における歯形面20は凸部21,凹部22共に金型7の外周側面71に拘束される一方,裏側面25においては窪部3と金型7の内周側面72との間に間隙を維持した状態で冷間鍛造がなされる。
【0024】
そのため,歯形面20を冷間鍛造する際に,過剰の荷重が付与された場合においても,それが窪部3において開放される。そのため,従来のような金型の破損を心配することなく,上記(H−D)/H=0.1となるような加工を加えることができ,歯形面20に十分に高い荷重を加えることができる。
それ故,上記歯形面20の凸部21及び凹部22は,高い荷重によって欠肉等を起こすことなくキャビティ形状に沿った所望の形状に成形され,荷重の過剰分は上記窪部を増肉させる現象によって開放される。
【0025】
従って,この製造方法を用いれば,歯形面20を有する筒状部2とベース部10との一体成形を容易に行うことができ,しかも,歯形面20の形状を非常に高い精度で形成することができる。そのため,従来行っていた歯形面形成のための機械加工は不要となり工程合理化及びカウンタードリブンギア用鍛造品1のコストダウンを図ることができる。
【0026】
さらに,本例のカウンタードリブンギア用鍛造品1を用いれば,従来の2部品を接合して作製する場合よりも,大幅に軽量化が可能である。図4(a)に,本例のカウンタードリブンギア用鍛造品1を用いて作製したカウンタードリブンギア100の断面形状を示す。一方,図4(b)には,従来例に示したカウンタードリブンギア9の断面形状を示す。
【0027】
両図の比較から明らかなように,本例のカウンタードリブンギア100は,接合部の補強を考慮する必要がないので,軸穴部11とパーキングギア部2との間のリング状の溝12の部分を,従来と比べて大きくすることができ,これにより大幅な軽量化を図ることができる。
【0028】
実施形態例2
本例は,実施形態例1と同様の製造方法を,カウンタードリブンギア用鍛造品以外の歯形鍛造品に適用した例である。
本例の歯形鍛造品1は,図5に示すごとく,中央に貫通穴51を有する円盤状のベース部10から立設された筒状部2を有すると共にその外周面に凹凸形状を有する歯形面20を設けてなる歯形鍛造品である。そして,歯形面の凸21部の裏側面25には,上記凸部21の突出方向に向けて窪んだ窪部3を設けてある。
【0029】
本例の歯形鍛造品1を製造するにあたっても,実施形態例1と同様に,上記窪部3を熱間鍛造工程において形成し,その後の冷間鍛造工程において窪部3を拘束しない状態で筒状部2に冷間鍛造を加える。これにより,実施形態例1と同様に非常に優れた作用効果を得ることができる。
【0030】
実施形態例3
本例も,実施形態例1と同様の製造方法を,カウンタードリブンギア用鍛造品以外の歯形鍛造品に適用した例である。
本例の歯形鍛造品1は,図6に示すごとく,実施形態例2の場合とベース部10における中央部分52の形状を変えた点が異なる歯形鍛造品である。そして,本例においても,歯形面の凸21部の裏側面25には,上記凸部21の突出方向に向けて窪んだ窪部3を設けてある。
【0031】
この場合にも,実施形態例1と同様に,上記窪部3を熱間鍛造工程において形成し,その後の冷間鍛造工程において窪部3を拘束しない状態で筒状部2に冷間鍛造を加える。これにより,実施形態例1と同様に非常に優れた作用効果を得ることができる。
【0032】
実施形態例4
本例も,実施形態例1と同様の製造方法を,カウンタードリブンギア用鍛造品以外の歯形鍛造品に適用した例である。
本例の歯形鍛造品1は,図7に示すごとく,中央に貫通穴51を有する円盤状のベース部10から立設された筒状部2を有すると共にその外周面に凹凸形状を有する歯形面20を設けてなり,さらにベース部10の上下に円筒状の軸部17,18を一体的に配設した歯形鍛造品である。そして,歯形面の凸21部の裏側面25には,上記凸部21の突出方向に向けて窪んだ窪部3を設けてある。
【0033】
本例の歯形鍛造品1を製造するにあたっても,実施形態例1と同様に,上記窪部3を熱間鍛造工程において形成し,その後の冷間鍛造工程において窪部3を拘束しない状態で筒状部2に冷間鍛造を加える。これにより,実施形態例1と同様に非常に優れた作用効果を得ることができる。
【0034】
実施形態例5
本例は,実施形態例1と同様の製造方法を,カウンタードリブンギア用鍛造品以外の歯形鍛造品に適用した例である。
本例の歯形鍛造品1は,図8に示すごとく,中央に貫通穴51を有する円盤状のベース部10から立設された筒状部2を有すると共にその内周面に凹凸形状を有する歯形面20を設けてなる歯形鍛造品である。そして,歯形面の凸21部の裏側面(外側面)25には,上記凸部21の突出方向に向けて窪んだ窪部3を設けてある。即ち,本例の歯形鍛造品1は,実施形態例1〜4と異なり,歯形面2を筒状部2の内面に設け,窪部3を外面に設けた。
【0035】
本例の歯形鍛造品1を製造するにあたっても,実施形態例1と同様に,上記窪部3を熱間鍛造工程において形成し,その後の冷間鍛造工程において窪部3を拘束しない状態で筒状部2に冷間鍛造を加える。このとき,金型形状は,実施形態例1における金型7の内外の状態を逆にしたような形状のものを用いる。これにより,実施形態例1と同様に非常に優れた作用効果を得ることができる。
【0036】
【発明の効果】
上述のごとく,本発明によれば,筒状部への歯形面の形成を,鍛造により精度よく行うことができる,筒状部に歯形面を有する歯形鍛造品の製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態例1における,(a)熱間鍛造後,(b)冷間鍛造後の,歯形鍛造品を示す斜視図。
【図2】実施形態例1における,冷間鍛造時の金型と筒状部との関係を示す説明図。
【図3】実施形態例1における,カウンタードリブンギアを示す斜視図。
【図4】実施形態例1における,(a)本例のカウンタードリブンギア,(b)従来例のカウンタードリブンギア,の断面図。
【図5】実施形態例2における,歯形鍛造品を示す斜視図。
【図6】実施形態例3における,歯形鍛造品を示す斜視図。
【図7】実施形態例4における,歯形鍛造品を示す斜視図。
【図8】実施形態例5における,歯形鍛造品を示す一部切り欠き断面斜視図。
【図9】従来例における,カウンタードリブンギアの製造工程を示す説明図。
【図10】従来例における,カウンタードリブンギアの斜視図。
【符号の説明】
1...歯形鍛造品(カウンタードリブンギア用鍛造品),
10...ベース部,
11...軸穴部,
12...リング状溝,
2...筒状部,
20...歯形面,
21...凸部,
22...凹部,
25...裏側面,
3...窪部,
[0001]
【Technical field】
The present invention relates to a method for integrally manufacturing a tooth-shaped forging having a tooth-shaped surface in a cylindrical portion.
[0002]
[Prior art]
For example, as shown in FIG. 10, a counter driven gear 9 in which a parking gear member 91 and a driven gear member 92 are coaxially arranged is used as an automobile part.
Conventionally, in manufacturing this part, first, as shown in FIGS. 9A and 9B, a parking gear member 91 and a driven gear member 92 are separately manufactured by hot forging.
[0003]
Next, as shown in FIGS. 9C and 9D, a tooth profile surface 915 having an uneven shape is formed on the outer peripheral surface of the parking gear member 91 by machining. Also, the inner peripheral surface of the shaft hole 924 of the driven gear member 92 is machined.
Next, as shown in FIG. 9E, the driven gear member 92 and the parking gear member 91 are press-fitted and welded to be integrated.
Thereafter, as shown in FIG. 10, finishing machining is performed to obtain the counter driven gear 9 having the parking gear member 91 and the driven gear member 92 integrally.
[0004]
As described above, in the case of the counter driven gear 9, a manufacturing method is adopted in which the tooth shape is formed in advance on the cylindrical parking gear member 91 by machining, and then the gear is joined to the driven gear member 92 to be integrated. .
Such a manufacturing method is not limited to the counter driven gear, but is applied to the case of manufacturing a part having a cylindrical part erected on a base part and having a tooth shape on an inner peripheral surface or an outer peripheral surface thereof.
[0005]
[Problem to be solved]
However, the conventional manufacturing method has the following problems.
That is, in the manufacturing method, it is necessary to form the tooth surface on the cylindrical portion by machining, and the process is complicated. Therefore, the cost increases. Further, since the joining between the cylindrical portion and the base portion is performed by press-fitting, welding, or the like, it is necessary to strengthen the joining portion. Therefore, it is difficult to reduce the weight.
[0006]
As a countermeasure, a method of integrally manufacturing the base portion and the cylindrical portion by forging can be considered. In this case, since it is difficult to finish the shape of the tooth profile with high accuracy only by hot forging, it is necessary to perform cold forging after hot forging. However, conventionally, even if cold forging is performed, it is difficult to accurately finish the shape of the tooth profile surface, and defects such as underfill and buckling occur. In addition, when a high working ratio is applied to improve the shape accuracy at the time of cold forging, the die for cold forging may not be able to withstand the load and may be damaged. Therefore, conventionally, it has not been possible to accurately form a tooth profile on the cylindrical portion by forging.
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is capable of forming a tooth profile on a cylindrical portion with high accuracy by forging. It seeks to provide a way.
[0008]
[Means for solving the problem]
The invention according to claim 1 is a method for manufacturing a tooth profile forging having a cylindrical portion erected from a base portion and having a tooth profile surface having an uneven shape on an outer peripheral surface or an inner peripheral surface thereof,
The base portion and the cylindrical portion are formed by hot forging the material, and the outer peripheral surface or the inner peripheral surface of the cylindrical portion is provided with a toothed surface having irregularities, and the convexity of the toothed surface is provided. On the back side of the part, a concave part is provided that is depressed in the projecting direction of the convex part.
Thereafter, cold forging is applied to the cylindrical portion without restraining the concave portion. The method for manufacturing a tooth-shaped forged product having a tooth-shaped surface in the cylindrical portion is provided.
[0009]
The most remarkable point in the present invention is that, at the time of the hot forging, a cylindrical portion having the concave portion is provided, and then the cylindrical portion is subjected to cold forging without restraining the concave portion. is there.
As the shape of the convex portion of the tooth profile, various known shapes such as a rectangular shape, a trapezoidal shape, a triangular shape, and the like can be applied. Various shapes can be applied to the shape of the recess.
[0010]
Next, the operation of the present invention will be described.
In the present invention, first, the base material and the cylindrical portion are integrally provided by hot forging the material, and the tooth surface is provided on the cylindrical portion. At this time, as described above, on the rear side surface of the convex portion of the tooth profile surface, a concave portion that is concave toward the projecting direction of the convex portion is provided. Due to the formation of the depressions, extremely high-precision processing can be performed in the subsequent cold forging.
[0011]
That is, in the cold forging, the processing is performed in such a manner that the concave portion of the tooth profile surface formed by the hot forging is not restrained. More specifically, the cavity with respect to the back surface of the tooth profile of the mold used for cold forging is designed so as not to come into contact with the recess. Thus, even when an excessive load is applied during cold forging of the tooth profile surface, it is released in the recess. Therefore, a sufficiently high load can be applied to the tooth profile surface without worrying about breakage of the mold as in the related art. Therefore, the convex and concave portions of the tooth profile are formed into a desired shape along the cavity shape by a high load, and the excess load is released by the phenomenon of increasing the thickness of the concave portion.
[0012]
Therefore, if this manufacturing method is used, the cylindrical portion having the tooth surface and the base portion can be easily formed integrally, and the shape of the tooth surface can be formed with extremely high precision. For this reason, the conventional machining for forming the tooth profile is unnecessary, and the process can be streamlined and the cost can be reduced.
[0013]
Next, as in the second aspect of the present invention, it is preferable that the concave portion has an arc-shaped cross section. In this case, by forming the surface of the concave portion into an arc-shaped smooth shape, the formation by forging can be facilitated, and stress concentration and the like can be avoided.
[0014]
In the cold forging, the depth of the cavity relative to the cylindrical portion in the axial direction is D, and the height of the cylindrical portion before cold forging is H. , D <H, and (HD) /H≧0.1. By setting D <H, a load in the axial direction can be easily applied to the cylindrical portion. When the degree of processing is increased so that the above equation (HD) / H is 0.1 or more, the accuracy of the shape of the tooth profile can be particularly improved. The effect in the case where it is provided is effectively exhibited, and smooth molding can be performed without damaging the mold.
[0015]
When the height of the cylindrical portion in the axial direction is A and the thickness of the concave portion at the tip of the cylindrical portion is B, the relationship of B / A ≦ 0.3 is satisfied. This is particularly effective when is satisfied. That is, when B / A> 0.3, buckling and underfill phenomenon during cold forging hardly occur, but when B / A ≦ 0.3, these defects are likely to occur. There is a tendency. Also in this case, by providing the concave portion, the above-described problem at the time of cold forging can be easily avoided.
[0016]
According to a fifth aspect of the present invention, there is provided the tooth-shaped forged product, wherein the disk-shaped base portion, a shaft hole portion provided at a central portion of the base portion and having a shaft hole formed on an inner surface thereof, and And a parking gear portion as the cylindrical portion provided through a ring-shaped groove. The parking gear portion has a toothed surface having an uneven shape on the outer peripheral surface thereof. It can be a forged product for a counter driven gear. In this case, a lightweight, low-cost forged product for a counter driven gear can be manufactured.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1
A method of manufacturing a tooth-shaped forged product having a tooth-shaped surface in a cylindrical portion according to an embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a tooth-shaped forged product 1 manufactured in the present embodiment includes a disc-shaped base portion 10, a shaft hole portion 11 provided at a central portion of the base portion 10 and having a shaft hole 110 provided on an inner surface thereof, The shaft hole portion 11 and a parking gear portion as a cylindrical portion 2 provided via a ring-shaped groove 12 are integrally provided. A forged product for a counter driven gear in which the outer peripheral surface of the parking gear portion 2 is provided with a toothed surface 20 having an uneven shape. Further, as shown in FIG. 4 (a) to be described later, when the height in the axial direction is A and the thickness of the concave portion at the tip of the cylindrical portion 2 is B, as shown in FIG. There is a relationship of 0.3, and defects such as underfill are relatively likely to occur.
[0018]
In manufacturing this counter-driven gear forged product, first, as shown in FIG. 1A, a hot forging intermediate material 101 is produced by subjecting a material to hot forging a plurality of times. That is, the base portion 10 and the cylindrical portion (parking gear portion) 2 are formed by hot forging, and the tooth surface 20 having an uneven shape is provided on the outer peripheral surface of the cylindrical portion 2. At this time, on the back side surface 25 of the convex portion 21 of the tooth profile surface 20, a concave portion 3 concaved in the direction in which the convex portion 21 protrudes is provided.
[0019]
Next, as shown in FIG. 1B, cold forging is performed to obtain a forged product 1 for a counter driven gear.
In the cold forging step, the cylindrical portion is subjected to cold forging without restraining the concave portion. Specifically, as shown in FIG. 2, as a mold 7 for cold forging, an outer peripheral side surface 71 has a shape corresponding to the above-mentioned tooth profile surface 20, while an inner peripheral side surface 72 has a smooth shape. Those having an appropriate circumferential shape are used. In this example, when the axial depth of the cavity with respect to the cylindrical portion 2 is D (not shown), and the height of the cylindrical portion 2 before cold forging is H (FIG. 1A). , D <H, and the mold 7 was designed such that (HD) /H=0.1.
[0020]
By using such a mold 7, the toothed surface 20 of the cylindrical portion 2 is in close contact with the outer peripheral side surface 71 of the mold 7, while the back side surface 25 of the cylindrical portion 2 and the inner peripheral side surface 72 of the mold 71. Means that cold forging is performed in a state where a space 75 is provided between the hollow portion 3 and the hollow portion 3. As a result, as shown in FIG. 1B, the forged product 1 for the counter driven gear is obtained.
[0021]
Thereafter, as shown in FIG. 3, in the forged product 1 for a counter driven gear, the shaft hole 110 and the outer peripheral surface of the base portion 10 are subjected to machining to form a counter driven gear 100 of the product.
[0022]
Next, the operation and effect of this embodiment will be described.
In this example, as described above, the base portion 10 and the cylindrical portion 2 are integrally provided by hot forging, and the tooth surface 20 is provided on the cylindrical portion 2. At this time, as described above, the concave portion 3 that is concave toward the projecting direction of the convex portion 21 is provided on the rear side surface 25 of the convex portion 21 of the tooth profile surface 20. And in the said cold forging process, it processes in the state which does not restrict the recessed part 3 of the tooth profile surface 20 formed by the hot forging.
[0023]
Specifically, as shown in FIG. 2, cold forging is performed using the above-described mold 7. As a result, the tooth surface 20 of the cylindrical portion 2 is constrained by the outer peripheral side surface 71 of the mold 7 together with the convex portion 21 and the concave portion 22, while the concave portion 3 and the inner peripheral side surface 72 of the mold 7 Cold forging is performed while maintaining a gap between the two.
[0024]
Therefore, even when an excessive load is applied when the tooth profile surface 20 is cold forged, it is released in the concave portion 3. Therefore, it is possible to apply the above-mentioned processing to satisfy (HD) /H=0.1 without worrying about the damage of the mold, and to apply a sufficiently high load to the tooth profile surface 20. Can be.
Therefore, the convex portion 21 and the concave portion 22 of the tooth profile surface 20 are formed into a desired shape along the cavity shape without causing underfill or the like due to a high load, and the excess load increases the thickness of the concave portion. It is released by the phenomenon.
[0025]
Therefore, if this manufacturing method is used, the cylindrical part 2 having the tooth surface 20 and the base part 10 can be easily formed integrally, and the shape of the tooth surface 20 can be formed with extremely high precision. Can be. This eliminates the need for conventional machining for forming the tooth profile, thereby streamlining the process and reducing the cost of the counter-driven gear forging 1.
[0026]
Furthermore, the use of the counter-driven gear forged product 1 of the present example can significantly reduce the weight compared to the case where the conventional two parts are manufactured by joining. FIG. 4A shows a cross-sectional shape of a counter-driven gear 100 manufactured using the counter-driven gear forging 1 of the present example. On the other hand, FIG. 4B shows a cross-sectional shape of the counter driven gear 9 shown in the conventional example.
[0027]
As is apparent from the comparison between the two figures, the counter driven gear 100 of the present embodiment does not need to consider the reinforcement of the joint, so that the ring-shaped groove 12 between the shaft hole 11 and the parking gear 2 is not required. The portion can be made larger than in the prior art, thereby achieving a significant reduction in weight.
[0028]
Embodiment 2
This example is an example in which the same manufacturing method as that of the first embodiment is applied to a tooth profile forged product other than the counter-driven gear forged product.
As shown in FIG. 5, the tooth profile forged product 1 of this embodiment has a cylindrical portion 2 erected from a disk-shaped base portion 10 having a through hole 51 at the center and a tooth profile surface having an uneven shape on its outer peripheral surface. 20 is a tooth profile forged product. On the back side surface 25 of the convex portion 21 of the tooth profile surface, a concave portion 3 that is concave toward the projecting direction of the convex portion 21 is provided.
[0029]
In manufacturing the tooth profile forged product 1 of the present example, similarly to the first embodiment, the above-mentioned concave portion 3 is formed in a hot forging process, and the cylindrical portion is formed in a state where the concave portion 3 is not restrained in a subsequent cold forging process. Cold forging is applied to the shape 2. As a result, as in the case of the first embodiment, very excellent operational effects can be obtained.
[0030]
Embodiment 3
This example is also an example in which the same manufacturing method as that of the first embodiment is applied to a tooth-shaped forged product other than the counter-driven gear forged product.
As shown in FIG. 6, the tooth profile forged product 1 of this example is a tooth profile forged product that differs from the case of the second embodiment in that the shape of the central portion 52 of the base portion 10 is changed. Also in this example, a concave portion 3 that is concave toward the projecting direction of the convex portion 21 is provided on the rear side surface 25 of the convex portion 21 of the tooth profile.
[0031]
Also in this case, similarly to the first embodiment, the concave portion 3 is formed in a hot forging process, and in the subsequent cold forging process, cold forging is performed on the cylindrical portion 2 without restraining the concave portion 3. Add. As a result, as in the case of the first embodiment, very excellent operational effects can be obtained.
[0032]
Embodiment 4
This example is also an example in which the same manufacturing method as that of the first embodiment is applied to a tooth-shaped forged product other than the counter-driven gear forged product.
As shown in FIG. 7, the tooth profile forged product 1 of this example has a cylindrical portion 2 erected from a disk-shaped base portion 10 having a through hole 51 at the center and a tooth profile surface having an uneven shape on its outer peripheral surface. 20 is a tooth-shaped forged product in which cylindrical shaft portions 17 and 18 are integrally disposed above and below the base portion 10. On the back side surface 25 of the convex portion 21 of the tooth profile surface, a concave portion 3 that is concave toward the projecting direction of the convex portion 21 is provided.
[0033]
In manufacturing the tooth profile forged product 1 of the present example, similarly to the first embodiment, the above-mentioned concave portion 3 is formed in a hot forging process, and the cylindrical portion is formed in a state where the concave portion 3 is not restrained in a subsequent cold forging process. Cold forging is applied to the shape 2. As a result, as in the case of the first embodiment, very excellent operational effects can be obtained.
[0034]
Embodiment 5
This example is an example in which the same manufacturing method as that of the first embodiment is applied to a tooth profile forged product other than the counter-driven gear forged product.
As shown in FIG. 8, the tooth profile forged product 1 of this example has a cylindrical portion 2 erected from a disk-shaped base portion 10 having a through hole 51 at the center and a concave / convex shape on its inner peripheral surface. This is a tooth-shaped forged product provided with a surface 20. On the back side surface (outer surface) 25 of the convex portion 21 of the tooth profile surface, a concave portion 3 that is concave toward the projecting direction of the convex portion 21 is provided. That is, unlike the first to fourth embodiments, the tooth-shaped forged product 1 of this example has the tooth-shaped surface 2 provided on the inner surface of the cylindrical portion 2 and the concave portion 3 provided on the outer surface.
[0035]
In manufacturing the tooth profile forged product 1 of the present example, similarly to the first embodiment, the above-mentioned concave portion 3 is formed in a hot forging process, and the cylindrical portion is formed in a state where the concave portion 3 is not restrained in a subsequent cold forging process. Cold forging is applied to the shape 2. At this time, the shape of the mold is such that the inside and outside states of the mold 7 in the first embodiment are reversed. As a result, as in the case of the first embodiment, very excellent operational effects can be obtained.
[0036]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for manufacturing a tooth-shaped forged product having a tooth-shaped surface in a cylindrical portion, which can accurately form a tooth-shaped surface in a cylindrical portion by forging. .
[Brief description of the drawings]
FIG. 1 is a perspective view showing a tooth forged product after (a) hot forging and (b) cold forging according to the first embodiment.
FIG. 2 is an explanatory diagram showing a relationship between a mold and a cylindrical portion during cold forging in the first embodiment.
FIG. 3 is a perspective view showing a counter driven gear according to the first embodiment.
FIG. 4 is a cross-sectional view of (a) a counter driven gear of the present example and (b) a counter driven gear of a conventional example in the first embodiment.
FIG. 5 is a perspective view showing a tooth-shaped forged product in a second embodiment.
FIG. 6 is a perspective view showing a tooth-shaped forged product according to a third embodiment.
FIG. 7 is a perspective view showing a tooth-shaped forged product according to a fourth embodiment.
FIG. 8 is a partially cutaway perspective view showing a tooth-shaped forged product in a fifth embodiment.
FIG. 9 is an explanatory view showing a counter-driven gear manufacturing process in a conventional example.
FIG. 10 is a perspective view of a counter driven gear in a conventional example.
[Explanation of symbols]
1. . . Tooth profile forged products (forged products for counter driven gear),
10. . . Base,
11. . . Shaft hole,
12. . . Ring-shaped groove,
2. . . Tubular part,
20. . . Tooth profile,
21. . . Convex part,
22. . . Recess,
25. . . Back side,
3. . . Hollow,

Claims (5)

ベース部から立設された筒状部を有すると共にその外周面又は内周面に凹凸形状を有する歯形面を設けてなる歯形鍛造品を製造する方法であって,
素材を熱間鍛造することにより,上記ベース部と上記筒状部を形成すると共に,該筒状部の外周面又は内周面に凹凸形状を有する歯形面を設け,かつ,該歯形面の凸部の裏側面には,上記凸部の突出方向に向けて窪んだ窪部を設け,
その後,上記窪部を拘束しない状態で上記筒状部に冷間鍛造を加えることを特徴とする筒状部に歯形面を有する歯形鍛造品の製造方法。
A method for manufacturing a tooth-shaped forging having a cylindrical portion erected from a base portion and having a tooth profile surface having an uneven shape on an outer peripheral surface or an inner peripheral surface thereof,
The base portion and the cylindrical portion are formed by hot forging the material, and the outer peripheral surface or the inner peripheral surface of the cylindrical portion is provided with a toothed surface having irregularities, and the convexity of the toothed surface is provided. On the back side of the part, a concave part is provided that is depressed in the projecting direction of the convex part.
Thereafter, cold forging is performed on the cylindrical portion without restraining the concave portion. A method for manufacturing a tooth profile forged product having a tooth profile on the cylindrical portion.
請求項1において,上記窪部は断面形状が円弧状であることを特徴とする筒状部に歯形面を有する歯形鍛造品の製造方法。2. The method according to claim 1, wherein the recess has an arc-shaped cross section. 請求項1又は2において,上記冷間鍛造においては,上記筒状部に対するキャビティの軸方向の深さをD,冷間鍛造前の上記筒状部の高さをHとしたとき,D<Hであり,かつ,(H−D)/H≧0.1であることを特徴とする筒状部に歯形面を有する歯形鍛造品の製造方法。3. The cold forging according to claim 1, wherein in the cold forging, D is an axial depth of the cavity with respect to the cylindrical portion, and H is a height of the cylindrical portion before cold forging. And (HD) /H≧0.1, the method for producing a tooth-shaped forged product having a tooth-shaped surface in a cylindrical portion. 請求項1〜3のいずれか1項において,上記筒状部の軸方向の高さをA,上記筒状部の先端における上記凹部の厚みをBとした場合,B/A≦0.3の関係が成り立つことを特徴とする筒状部に歯形面を有する歯形鍛造品の製造方法。In any one of claims 1 to 3, when the axial height of the cylindrical portion is A and the thickness of the concave portion at the tip of the cylindrical portion is B, B / A ≦ 0.3. A method for producing a tooth-shaped forged product having a tooth-shaped surface in a cylindrical portion, wherein a relationship is established. 請求項1〜4のいずれか1項において,上記歯形鍛造品は,円盤状の上記ベース部と,該ベース部の中央部分に配設され内面に軸穴を設けた軸穴部と,該軸穴部とリング状の溝を介して配設された上記筒状部としてのパーキングギア部とを一体的に有し,かつ,該パーキングギア部の外周面に凹凸形状を有する歯形面を設けてなるカウンタードリブンギア用鍛造品であることを特徴とする筒状部に歯形面を有する歯形鍛造品の製造方法。5. The toothed forged product according to claim 1, wherein the tooth-shaped forged product has a disk-shaped base portion, a shaft hole portion provided at a central portion of the base portion and having a shaft hole formed on an inner surface thereof, and A parking gear portion as the cylindrical portion provided integrally with the hole portion and the cylindrical portion provided through the ring-shaped groove, and a tooth profile surface having an uneven shape is provided on an outer peripheral surface of the parking gear portion. A method for producing a tooth-shaped forged product having a tooth-shaped surface in a cylindrical portion, characterized by being a forged product for a counter driven gear.
JP2000119235A 2000-04-20 2000-04-20 Method for producing tooth-shaped forged product having tooth-shaped surface in cylindrical part Expired - Lifetime JP3593948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000119235A JP3593948B2 (en) 2000-04-20 2000-04-20 Method for producing tooth-shaped forged product having tooth-shaped surface in cylindrical part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000119235A JP3593948B2 (en) 2000-04-20 2000-04-20 Method for producing tooth-shaped forged product having tooth-shaped surface in cylindrical part

Publications (2)

Publication Number Publication Date
JP2001300682A JP2001300682A (en) 2001-10-30
JP3593948B2 true JP3593948B2 (en) 2004-11-24

Family

ID=18630254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000119235A Expired - Lifetime JP3593948B2 (en) 2000-04-20 2000-04-20 Method for producing tooth-shaped forged product having tooth-shaped surface in cylindrical part

Country Status (1)

Country Link
JP (1) JP3593948B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117728A (en) * 2013-12-17 2015-06-25 日産自動車株式会社 Multistage gear, forging die of multistage gear, and manufacturing method of multistage gear

Also Published As

Publication number Publication date
JP2001300682A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
JP4397631B2 (en) Press-fit joint structure and joint parts
US20090317181A1 (en) Assembly member and method of manufacturing assembly member
JPH0520182B2 (en)
JPS61116116A (en) Crankshaft
KR101522651B1 (en) hub overdriver clutch and manufacturing method thereof
KR100634917B1 (en) Deformed element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulic-bulged product
JP5352965B2 (en) Rack manufacturing method
JPS6330655A (en) Manufacture of camshaft
JP3593948B2 (en) Method for producing tooth-shaped forged product having tooth-shaped surface in cylindrical part
JP2652823B2 (en) Manufacturing method of gear shaft
JPS60222622A (en) Outer wheel of universal joint having cross grooves
JP4352243B2 (en) Mold for molding hollow parts and manufacturing method
JP3674756B2 (en) Cold forging method for disc parts with shafts
JP3236181U (en) Friction welding hollow shaft
JP4234224B2 (en) Groove machining method and manufacturing method for automobile steering main shaft
JPH01120429A (en) Forged dog-clutch
JP3826655B2 (en) Hollow rack shaft, rack tooth molding method thereof and mold therefor
JPS58215237A (en) Manufacture of crank shaft
JPH11226662A (en) Manufacture of constant velocity joint parts
JP2884958B2 (en) Method of manufacturing shaft having inner and outer splines
JP4203222B2 (en) Die for forging and manufacturing method thereof
JPS5927736A (en) Manufacture of gear shift fork
JP2001088504A (en) Two-piece aluminum alloy wheel for automobile and manufacturing method thereof
JPH0399731A (en) Method for calking and joining shaft and thin-wall tube
JPH10230416A (en) Load supporting shape member and manufacture for the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3593948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term