JP5352965B2 - Rack manufacturing method - Google Patents

Rack manufacturing method Download PDF

Info

Publication number
JP5352965B2
JP5352965B2 JP2007132561A JP2007132561A JP5352965B2 JP 5352965 B2 JP5352965 B2 JP 5352965B2 JP 2007132561 A JP2007132561 A JP 2007132561A JP 2007132561 A JP2007132561 A JP 2007132561A JP 5352965 B2 JP5352965 B2 JP 5352965B2
Authority
JP
Japan
Prior art keywords
rack
axial direction
radius
curvature
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007132561A
Other languages
Japanese (ja)
Other versions
JP2008138864A (en
JP2008138864A5 (en
Inventor
一登 小林
勇貴 水嶋
浩太郎 廣田
啓 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007132561A priority Critical patent/JP5352965B2/en
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to CN2007800449663A priority patent/CN101547759B/en
Priority to EP07830874.9A priority patent/EP2082818A4/en
Priority to PCT/JP2007/071140 priority patent/WO2008053896A1/en
Priority to US12/447,785 priority patent/US20100162843A1/en
Publication of JP2008138864A publication Critical patent/JP2008138864A/en
Publication of JP2008138864A5 publication Critical patent/JP2008138864A5/ja
Priority to US13/415,120 priority patent/US20120186085A1/en
Application granted granted Critical
Publication of JP5352965B2 publication Critical patent/JP5352965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Forging (AREA)

Abstract

A light-weight structure capable of sufficiently ensuring any of the width size, strength and rigidity of a rack tooth (10), and a production method thereof. A rack tooth (10) is formed by plastic working on one side surface in the radial direction of a part in the axial direction of a sectionally circular rod unit (9). The radius of curvature of the section shape of a portion deviated in the circumferential direction from a rack-tooth (10) forming portion is set to be larger than the radius of curvature of the section shape of an outer circumferential surface of the remaining part in the axial direction of the rod unit (9). For this purpose, as shown by (A)->(B), the part in the axial direction and the remaining part in the circumferential direction are formed into a partially cylindrical surface portion (17) having a radius of curvature larger than that of the outer circumferential surface of a material (13) while a portion in the axial direction of the material (13) and a portion in the circumferential direction are being crushed, thereby defining an intermediate material (20).Then, as shown by (C)->(D), the above rack tooth (10) is formed at a portion in the axial direction ofthe intermediate material (20) and a portion in the circumferential direction. Finally, as shown by (E)->(F), it is subjected to sizing to complete a rack (8).

Description

この発明は、例えば自動車用操舵装置を構成するステアリングギヤに組み込み、軸方向の変位に伴ってタイロッドを押し引きするラックの製造方法の改良に関する。具体的には、十分な剛性及び強度を有するラックを、低コストで得られる製造方法を実現する事を目的としている。   The present invention relates to an improvement in a manufacturing method of a rack that is incorporated in a steering gear that constitutes, for example, an automobile steering device and pushes and pulls a tie rod with an axial displacement. Specifically, an object is to realize a manufacturing method capable of obtaining a rack having sufficient rigidity and strength at low cost.

例えば図30に示す様な自動車の操舵輪(フォークリフト等の特殊車両を除き、一般的には前輪)に舵角を付与する為の操舵装置では、ステアリングホイール1の操作に伴って回転するステアリングシャフト2の動きを、自在継手3、3及び中間シャフト4を介して、ステアリングギヤ5の入力軸6に伝達する。このステアリングギヤ5は、この入力軸6により回転駆動されるピニオンと、このピニオンと噛合したラックとを備える。上記入力軸6と共にこのピニオンが回転すると、このラックが軸方向に変位し、その両端部に結合した1対のタイロッド7、7を押し引きし、上記操舵輪に所望の舵角を付与する。   For example, in a steering device for giving a steering angle to a steering wheel of an automobile as shown in FIG. 30 (generally a front wheel except a special vehicle such as a forklift), a steering shaft that rotates as the steering wheel 1 is operated. 2 movement is transmitted to the input shaft 6 of the steering gear 5 through the universal joints 3 and 3 and the intermediate shaft 4. The steering gear 5 includes a pinion that is rotationally driven by the input shaft 6 and a rack that meshes with the pinion. When the pinion rotates together with the input shaft 6, the rack is displaced in the axial direction, and a pair of tie rods 7, 7 coupled to both ends thereof are pushed and pulled to give a desired steering angle to the steered wheels.

上述の様なステアリングギヤ用のラックを、素材に削り加工を施してラック歯を形成する、切削加工により造ると、製造コストが嵩む割合に、このラック歯の強度及び剛性を確保しにくい。これに対して、素材を塑性変形させてラック歯を加工すれば、このラック歯の加工に要する時間を短縮して、製造コストを低減でき、しかも、得られるラック歯の金属組織が緻密になる為、このラック歯の強度及び剛性を確保し易い。この様に、ラック歯を塑性変形により加工したラック及びその製造方法に関する発明として従来から、特許文献1〜4に記載された発明が知られている。   If a rack for a steering gear as described above is made by cutting a material to form rack teeth, it is difficult to ensure the strength and rigidity of the rack teeth at a rate that increases the manufacturing cost. On the other hand, if the rack teeth are processed by plastic deformation of the material, the time required for processing the rack teeth can be shortened, the manufacturing cost can be reduced, and the resulting metal structure of the rack teeth becomes dense. Therefore, it is easy to ensure the strength and rigidity of the rack teeth. As described above, the inventions described in Patent Documents 1 to 4 are conventionally known as inventions related to a rack in which rack teeth are processed by plastic deformation and a manufacturing method thereof.

このうちの特許文献1、2には、円杆状の素材を、1対の金型同士の間で強く挟持し、この素材の一部外周面に、このうちの一方の金型に設けた凹凸形状を転写して、ラック歯とする、ラックの製造方法に関する発明が記載されている。ラック歯を形成する事に伴って生じた(ラック歯のうちの凹部となるべき部分から押し出された)余肉は、上記両金型同士の間で、ラックの本体部分から側方に、バリ状に突出させ、後から除去する。   Of these, in Patent Documents 1 and 2, a circular bowl-shaped material is strongly sandwiched between a pair of molds, and a part of the outer peripheral surface of the material is provided in one of the molds. An invention relating to a method for manufacturing a rack is described in which a concavo-convex shape is transferred to form a rack tooth. The surplus generated by forming the rack teeth (extruded from the portion of the rack teeth that should become the concave portion) is burrs between the molds and from the rack body to the side. Protruding into the shape and removed later.

この様な特許文献1、2に記載された従来技術の場合、余肉をラックの本体部分から側方に突出させる為、このラックを押圧する1対の金型に生じる応力が高くなり、これら両金型の寿命確保が難しい。しかも、上記本体部分から側方にバリ状に突出した余肉を除去する工程が必要になり、製造コストが嵩む事が避けられない。更には、上述の様に上記両金型に大きな応力が加わる様な加工でありながら、上記一方の金型に設けた凹凸形状を上記素材に確実に転写する為に、この転写を含む塑性加工を、熱間鍛造又は温間鍛造により行なう必要がある。熱間鍛造にしろ、温間鍛造にしろ、加工時に金型が温度上昇に基づいて熱膨張するが、この熱膨張量を正確に規制する事は難しい為、得られるラック歯の精度を十分に確保する事が難しい。   In the case of such conventional techniques described in Patent Documents 1 and 2, since the surplus portion protrudes sideways from the main body portion of the rack, the stress generated in the pair of molds that press the rack increases. It is difficult to ensure the life of both molds. In addition, a process for removing the surplus protrusion protruding from the main body part to the side is necessary, and it is inevitable that the manufacturing cost increases. Furthermore, in order to reliably transfer the concave and convex shape provided on the one mold to the material, the plastic working including the transfer is performed so that a large stress is applied to both the molds as described above. Must be performed by hot forging or warm forging. Regardless of whether hot forging or warm forging, the mold will thermally expand due to the temperature rise during processing, but it is difficult to accurately control the amount of thermal expansion, so the accuracy of the rack teeth obtained is sufficient. It is difficult to secure.

上述の様な不都合を解決する為に上記特許文献3には、円杆状の素材のうちで、ラック歯を形成すべき部分の背面側に凹部を形成しておき、ラック歯を形成する事に伴って生じた余肉をこの凹部に逃がす、ラックの製造方法に関する発明が記載されている。
この様な特許文献3に記載された従来技術の場合、上記特許文献1、2に記載された従来技術を実施する場合に生じる不都合がない代わりに、上記凹部の加工が必要になり、やはり製造作業が面倒で、製造コストが嵩む事が避けられない。特に、上記凹部は、スエージング加工、旋盤加工等で加工する為、凹部の加工から、次に行なうラックの加工作業に円滑に移行する事(連続でその後の加工をする事)が難しい。この事は、やはり製造コストを高くする原因となる。更には、ラック歯を形成した部分から軸方向に外れた、あまり強度を必要としない部分の外径が、強度を必要とする、このラック歯を形成する為に必要とされる素材の直径のままになる為、ラック全体としての重量が徒に嵩み易い。
In order to solve the inconveniences as described above, in Patent Document 3, a concave portion is formed on the back side of a portion where a rack tooth is to be formed in a circular material, so that the rack tooth is formed. An invention relating to a method for manufacturing a rack is disclosed, in which surplus material generated along with this is released to the recess.
In the case of the prior art described in Patent Document 3 as described above, there is no inconvenience that arises when the prior art described in Patent Documents 1 and 2 is carried out, but instead, the processing of the recesses is necessary, which is also manufactured. It is inevitable that the work is cumbersome and the manufacturing cost increases. In particular, since the concave portion is processed by swaging, lathe processing, or the like, it is difficult to smoothly shift from the concave portion processing to the next rack processing operation (continuous subsequent processing). This also causes a high manufacturing cost. Furthermore, the outer diameter of the portion that does not require much strength and that is axially deviated from the portion where the rack teeth are formed is the diameter of the material required to form the rack teeth that requires strength. As a result, the weight of the entire rack is easily increased.

更に、特許文献4には、中空円管状の素材を幅方向に押し広げ、この押し広げた部分にラック歯を形成する、ラックの製造方法に関する発明が記載されている。
この様な特許文献4に記載された従来技術の場合には、ラック歯の幅寸法を大きくすべく、上記中空円管状の素材を幅方向に押し広げる分だけ、このラック歯の歯底部分の肉厚が小さく(薄く)なり易い。この為、ラックのうちで、このラック歯が形成された部分の強度を十分に確保する事が難しい。
Further, Patent Document 4 describes an invention relating to a method for manufacturing a rack in which a hollow circular material is expanded in the width direction and rack teeth are formed in the expanded portion.
In the case of the conventional technique described in Patent Document 4 as described above, in order to increase the width dimension of the rack tooth, the amount of the bottom portion of the rack tooth is increased by the amount of the hollow circular tubular material that is expanded in the width direction. The wall thickness tends to be small (thin). For this reason, it is difficult to sufficiently secure the strength of the portion of the rack where the rack teeth are formed.

特開平10−58081号公報JP-A-10-58081 特開2001−79639号公報Japanese Patent Laid-Open No. 2001-79639 特許第3442298号公報Japanese Patent No. 3442298 特開2006−103644号公報JP 2006-103644 A

本発明は、上述の様な事情に鑑みて、ラック歯の幅寸法、強度、剛性を、何れも十分に確保でき、しかも軽量な構造のラックを、低コストで得られる製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is to realize a manufacturing method that can sufficiently secure the width dimension, strength, and rigidity of the rack teeth and can obtain a rack having a lightweight structure at low cost. Invented.

本発明の対象となるラックは、金属材製で、少なくとも軸方向の一部が中実材である断面円形のロッド部と、このロッド部の軸方向一部で中実材である部分の径方向片側面に塑性加工により形成されたラック歯とを備える。
特に、本発明の対象となるラックは、上記軸方向一部で中実材である部分の外周面のうち、このラック歯を形成した部分から周方向に外れた部分の断面形状の曲率半径が、上記ロッド部の軸方向残部の外周面の断面形状の曲率半径よりも大きい。
The rack which is the object of the present invention is made of a metal material, and at least a part of the axial direction is a solid rod having a circular cross section, and the diameter of the part of the rod part which is a solid material in the axial direction. Rack teeth formed by plastic working on one side of the direction.
In particular, the rack that is the subject of the present invention has a radius of curvature of the cross-sectional shape of the portion of the outer peripheral surface of the portion that is a solid material in the axial direction that is deviated in the circumferential direction from the portion where the rack teeth are formed. The radius of curvature of the cross-sectional shape of the outer circumferential surface of the remaining axial portion of the rod portion is larger.

又、本発明のラックの製造方法は何れも、上述した様な構成を有するラックを造るのに、上記ロッド部となるべき円杆状の素材の軸方向の一部に、この軸方向の一部で且つ円周方向の一部を押し潰しつつ、この軸方向の一部で且つ円周方向の残部に、上記素材の外周面の曲率半径よりも大きな曲率半径を有する部分円筒面を形成する第一の塑性加工を施して、中間素材とする。そして、この中間素材のうちの上記軸方向一部で上記円周方向の一部に上記ラック歯を、第二の塑性加工により形成する。   Further, in any of the rack manufacturing methods of the present invention, in order to manufacture a rack having the above-described configuration, a part of the axial direction of the circular-shaped material to be the rod portion is provided. A partial cylindrical surface having a radius of curvature larger than the radius of curvature of the outer peripheral surface of the material is formed in a part of the axial direction and the remaining part of the circumferential direction while crushing a part of the circumferential direction. The first plastic working is performed to obtain an intermediate material. Then, the rack teeth are formed by a second plastic working in a part of the axial direction and a part of the circumferential direction of the intermediate material.

特に請求項1に記載したラックの製造方法の場合には、上述した様な構成を有するラックを造る為、上記第一の塑性加工を、上記素材の軸方向一部を径方向に押し潰す事により、この軸方向一部の外周面のうちでラック歯を形成すべき部分を平面部とし、この平面部から外れた残り部分を、断面形状の曲率半径が上記素材の外周面の断面形状の曲率半径よりも大きい部分円筒面とする据え込み加工としている。
又、上記第二の塑性加工を、内面同士の間隔が上記平面部の幅方向に関する上記中間素材の外径よりも小さいダイスの保持孔により、この中間素材の軸方向一部で上記平面部から外れた残り部分を支承しつつ、形成すべきラック歯に見合う凹凸形状を有する歯成形用パンチを上記平面部に押圧し上記中間素材を上記保持孔に押し込む事により、この中間素材の幅方向両端部分の金属材料を上記平面部に移動させつつこの平面部にラック歯を形成するプレス加工としている。
In particular, in the case of the rack manufacturing method according to claim 1 , in order to manufacture the rack having the above-described configuration, the first plastic working is performed by crushing a part of the material in the axial direction in the radial direction. Thus, a portion of the outer peripheral surface in the axial direction where the rack teeth are to be formed is a flat portion, and the remaining portion outside the flat portion is the cross-sectional radius of curvature of the outer peripheral surface of the material. The upsetting process is a partial cylindrical surface larger than the radius of curvature.
In addition, the second plastic working may be performed from a portion of the intermediate material in the axial direction by a holding hole of a die whose inner surface is smaller than the outer diameter of the intermediate material in the width direction of the flat portion. While supporting the disengaged remaining portion, both ends of the intermediate material in the width direction are pressed by pressing the tooth forming punch having an uneven shape corresponding to the rack tooth to be formed against the flat portion and pushing the intermediate material into the holding hole. The metal material of the portion is moved to the flat portion, and press working is performed to form rack teeth on the flat portion.

又、請求項2に記載したラックの製造方法の場合には、上述した様な構成を有するラックを造る為、上記第二の塑性加工を、複数段階に分けて行ない、得るべきラック歯の圧力角よりも小さな圧力角に見合う形状の歯成形用パンチにより素ラック歯を形成した後、少なくともこの素ラック歯の幅方向両端部の歯元部乃至歯先部の端縁部の断面形状の曲率半径を大きくする塑性加工を行なう。その後、得るべきラック歯の圧力角に見合う形状の歯仕上用パンチをこの素ラック歯に押し付けて、この素ラック歯をラック歯に加工する。 In the case of the rack manufacturing method according to claim 2 , in order to manufacture the rack having the above-described configuration, the second plastic working is performed in a plurality of stages, and the rack tooth pressure to be obtained is obtained. After forming a bare rack tooth with a tooth forming punch having a shape corresponding to a pressure angle smaller than the corner, the curvature of the cross-sectional shape of at least the tooth base part or the edge part of the tooth tip part of the width direction ends of the bare rack tooth Perform plastic working to increase the radius. Thereafter, a tooth finishing punch having a shape corresponding to the pressure angle of the rack tooth to be obtained is pressed against the raw rack tooth, and the raw rack tooth is processed into a rack tooth.

更に、請求項3に記載したラックの製造方法の場合には、上述した様な構成を有するラックを造る為、上記第二の塑性加工により、上記中間素材のうちの上記軸方向一部で上記円周方向の一部に上記ラック歯を形成すると共に、このラック歯の両側部分に1対の逃げ平坦面部を形成した後、このラック歯の精度を向上させる為のサイジングを行ない、このサイジングに伴って移動する金属材料を上記両逃げ平坦面部に止めて、部分円筒面を延長した仮想円筒面よりも余肉が径方向外方に突出する事を防止している。 Furthermore, in the case of the method for manufacturing a rack according to claim 3 , in order to manufacture a rack having the above-described configuration, the second plastic working causes the axial material portion of the intermediate material to partially The rack teeth are formed in a part of the circumferential direction, and a pair of relief flat surface portions are formed on both sides of the rack teeth, and then sizing is performed to improve the accuracy of the rack teeth. The metal material which moves with this is stopped at the both escape flat surface portions to prevent the surplus wall from projecting radially outward from the virtual cylindrical surface obtained by extending the partial cylindrical surface.

又、上述の様な請求項1、3に記載した発明を実施する場合には、請求項2に記載した発明と同様に、例えば、上記第二の塑性加工を複数段階に分けて行なう。そして、先ず、得るべきラック歯の圧力角よりも小さな圧力角に見合う形状の歯成形用パンチにより、素ラック歯を形成する。その後、得るべきラック歯の圧力角に見合う形状の歯仕上用パンチをこの素ラック歯に押し付ける。 Further, when carrying out the invention described in claims 1 and 3 as described above, for example, the second plastic working is performed in a plurality of stages as in the invention described in claim 2 . First, the raw rack teeth are formed by a tooth forming punch having a shape corresponding to a pressure angle smaller than the pressure angle of the rack teeth to be obtained. Thereafter, a tooth finishing punch having a shape corresponding to the pressure angle of the rack tooth to be obtained is pressed against the raw rack tooth.

又、請求項2に記載した発明を実施する場合に好ましくは、塑性加工により素ラック歯の幅方向両端部の歯元部乃至歯先部の端縁部の断面形状の曲率半径を、完成後のラック歯の幅方向両端部の歯元部乃至歯先部の端縁部の断面形状の曲率半径よりも大きくしておく。 Further, when the invention described in claim 2 is carried out, it is preferable that the radius of curvature of the cross-sectional shape of the tooth base part or the edge part of the tooth tip part of the width direction end part of the raw rack tooth is formed by plastic working after completion. It is made larger than the curvature radius of the cross-sectional shape of the edge part of the tooth | gear base part of a rack tooth in the width direction both ends.

又、請求項2に記載した発明の様に、素ラック歯の幅方向両端部の歯元部乃至歯先部の端縁部の断面形状の曲率半径を大きくする塑性加工を行なう場合に好ましくは、例えば、上記第二の塑性加工の前段階(この第二の塑性加工のうちの初期段階乃至前半部の意味。第二の塑性加工に先立って行なう加工の意味ではない。)で、上記素ラック歯を形成すると共に、この素ラック歯の両側部分に1対の逃げ平坦面部を形成する。その後、これら両逃げ平坦面部を1対の金型同士の間部分に位置させた状態で、上記素ラック歯の基部の断面形状の曲率半径を大きくする塑性加工を行なう。そして、この塑性加工に伴って移動する金属材料を上記両逃げ平坦面部に止めて、部分円筒面を延長した仮想円筒面よりも余肉が径方向外方に突出する事を防止する。 Further, as in the invention described in claim 2, it is preferable to perform plastic working to increase the curvature radius of the cross-sectional shape of the root part or the edge part of the tooth tip part at both ends in the width direction of the raw rack tooth. For example, in the previous stage of the second plastic working (meaning from the initial stage to the first half of the second plastic working. It does not mean the work performed prior to the second plastic working). A rack tooth is formed, and a pair of relief flat surface portions are formed on both side portions of the raw rack tooth. Thereafter, plastic working is performed to increase the radius of curvature of the cross-sectional shape of the base portion of the base rack tooth in a state in which both the flat relief surface portions are positioned between the pair of molds. And the metal material which moves with this plastic working is stopped at the both escape flat surface portions, and the surplus wall is prevented from projecting radially outward from the virtual cylindrical surface obtained by extending the partial cylindrical surface.

又、上述の様な請求項1〜2に記載した発明を実施する場合にも、請求項3に記載した発明と同様、例えば、上記第二の塑性加工の後、上記ラック歯の形状を整えるサイジングを施す。
更に、この場合には、例えば、上記第二の塑性加工によりラック歯を形成すると共にこのラック歯の両側部分に1対の逃げ平坦面部を形成する。その後、このラック歯の精度を向上させる為のサイジングを行ない、このサイジングに伴って移動する金属材料を上記両逃げ平坦面部に止めて、部分円筒面を延長した仮想円筒面よりも余肉が径方向外方に突出する事を防止する。上記両逃げ平坦面部は、例えば、互いに平行とする。
Further, when the invention described in claims 1 and 2 as described above is carried out, the shape of the rack teeth is adjusted after the second plastic working, for example, as in the invention described in claim 3. Apply sizing.
Further, in this case, for example, rack teeth are formed by the second plastic working, and a pair of relief flat surface portions are formed on both side portions of the rack teeth. After that, sizing is performed to improve the accuracy of the rack teeth, and the metal material that moves along with the sizing is stopped on the two escape flat surface portions, so that the surplus diameter is larger than the virtual cylindrical surface that extends the partial cylindrical surface. Protruding outward in the direction is prevented. The two relief flat surface portions are parallel to each other, for example.

又、本発明を実施する場合に、例えば、前記第一の塑性加工前に、素材をダイスに通過させる事により、この素材の外径を軸方向一部を除いて縮める、扱き加工を施す。そして、軸方向一部の外径が軸方向残部の外径よりも大きな予備中間素材とし、この予備中間素材に上記第一の塑性加工を施す。
或いは、前記第一の塑性加工後、上記第二の塑性加工前に、中間素材をダイスに通過させる事により、この中間素材の外径を軸方向一部を除いて縮める、扱き加工を施す。そして、軸方向一部の外径が軸方向残部の外径よりも大きな第二の中間素材とし、この第二の中間素材に第二の塑性加工を施す。
In carrying out the present invention, for example, before the first plastic working, the material is passed through a die so as to reduce the outer diameter of the material except for a part in the axial direction. Then, a preliminary intermediate material in which the outer diameter of a part in the axial direction is larger than the outer diameter of the remaining axial direction, and the first plastic working is performed on the preliminary intermediate material.
Alternatively, after the first plastic working and before the second plastic working, the intermediate material is passed through a die so as to reduce the outer diameter of the intermediate material except for a part in the axial direction. Then, a second intermediate material having a larger outer diameter in the axial direction than that of the remaining axial direction is used, and the second plastic material is subjected to the second plastic working.

上述の様に構成する、本発明のラックの製造方法によれば、ラック歯の幅寸法、強度、剛性を、何れも十分に確保でき、しかもこのラック歯を形成した部分以外の外径が必要以上に大きくならずに軽量なラックを、低コストで得られる。
先ず、ラック歯の幅寸法を確保する事は、ロッド部の軸方向の一部でラック歯を形成すべき部分の幅を、このロッド部の軸方向残部の外径よりも大きくする事で図れる。又、強度及び剛性の確保は、このロッド部を中実材製とする事で図れる。即ち、上記ロッド部の軸方向の一部でラック歯を形成すべき部分は、素材を押し潰しつつ幅寸法を広げながら、このラック歯を形成すべき部分から周方向に外れた部分の断面形状の曲率半径を、上記素材の外周面の曲率半径よりも大きくする。この為、この素材の外径の割合に大きな幅寸法を有するラック歯を形成できる。このラック歯を形成した部分は、前述の特許文献4に記載された従来技術の様に、中空円管状の素材を幅方向に押し広げた部分に形成したラック歯とは異なり、十分に肉厚を確保できる。そして、幅寸法を大きくした分、更にはラック歯を形成した部分から周方向に外れた部分の断面形状の曲率半径を大きくした分、このラック歯部分の強度及び剛性を向上させる事ができる。
又、上記ラック歯を形成した部分以外の外径が必要以上に大きくならずに軽量なラックを得られる事は、このラック歯の幅寸法を確保する場合でも、上記ロッド部の軸方向残部の外径を小さく抑えられる事で図れる。
According to the rack manufacturing method of the present invention configured as described above, the rack teeth can have sufficient width dimensions, strength, and rigidity, and an outer diameter other than the portion where the rack teeth are formed is necessary. A lightweight rack that does not become larger than that can be obtained at low cost.
First, securing the width dimension of the rack teeth can be achieved by making the width of the portion where the rack teeth should be formed in a part of the rod portion in the axial direction larger than the outer diameter of the remaining axial portion of the rod portion. . In addition, the strength and rigidity can be ensured by making this rod part a solid material. That is, the portion where the rack teeth are to be formed in a part of the rod portion in the axial direction is a cross-sectional shape of the portion that is deviated in the circumferential direction from the portion where the rack teeth are to be formed while expanding the width while crushing the material. Is made larger than the curvature radius of the outer peripheral surface of the material. For this reason, the rack tooth | gear which has a large width dimension to the ratio of the outer diameter of this raw material can be formed. Unlike the rack teeth formed in the portion where the hollow circular tubular material is expanded in the width direction, the portion where the rack teeth are formed is sufficiently thick as in the prior art described in Patent Document 4 described above. Can be secured. The strength and rigidity of the rack tooth portion can be improved by increasing the width dimension and further by increasing the radius of curvature of the cross-sectional shape of the portion deviated in the circumferential direction from the portion where the rack teeth are formed.
Moreover, the fact that the outer diameter other than the portion where the rack teeth are formed does not become unnecessarily large and that a lightweight rack can be obtained is that even when the width of the rack teeth is secured, the axial remaining portion of the rod portion This can be achieved by keeping the outer diameter small.

更に、低コストで得られる(製造コストを抑えられる)事は、上記ラック歯を塑性加工により形成するに関し、簡単な前加工を行なうだけで、余肉がバリとなって径方向外方に突出する事を防止でき、加工荷重を抑えると共に、余肉除去の為の後処理を不要にする事で図れる。即ち、上記ラック歯を形成する、上記ロッド部の軸方向の一部で、このラック歯を形成する部分は、元々はこの軸方向残部と同じ断面積を有する断面円形の部分を押し潰し、上記ラック歯を形成すべき部分を平坦にする事で、幅寸法を、軸方向残部の外径よりも大きくしている。従って、上記ラック歯を形成する以前の状態で、上記ロッド部の軸方向の一部の断面積は、上記軸方向残部の断面積とほぼ等しい。従って、上記ラック歯を形成すべき、上記ロッド部の軸方向の一部に存在する素材の体積を適正に抑えられて、上記ラック歯の加工に伴って余肉が径方向に突出する事はない。上記ラック歯を形成する為の第二の塑性加工時に於ける金属材料の移動は、このラック歯の歯底部分から歯先部分への移動が主である。この為、このラック歯を形成する為の加工荷重を低く抑えられて、熱間加工や温間加工に比べて精度確保が容易な、冷間加工により、上記ラック歯を加工できる。   Furthermore, it can be obtained at a low cost (manufacturing cost can be reduced). With regard to forming the rack teeth by plastic processing, the excess wall becomes a burr and protrudes outward in the radial direction only by performing simple pre-processing. This can be prevented by reducing the processing load and eliminating the need for post-processing for removing excess material. That is, the portion of the rod portion that forms the rack tooth in the axial direction of the rod portion, and the portion that forms the rack tooth originally crushes a circular section having the same cross-sectional area as the axial remaining portion, By flattening the portion where the rack teeth are to be formed, the width dimension is made larger than the outer diameter of the remaining portion in the axial direction. Therefore, in a state before the rack teeth are formed, a partial cross-sectional area in the axial direction of the rod portion is substantially equal to the cross-sectional area of the remaining axial direction portion. Accordingly, the volume of the material existing in a part in the axial direction of the rod portion where the rack teeth should be formed can be appropriately suppressed, and the surplus wall protrudes in the radial direction as the rack teeth are processed. Absent. The movement of the metal material in the second plastic working for forming the rack teeth is mainly performed from the bottom portion of the rack teeth to the tip portion. For this reason, the processing load for forming the rack teeth can be suppressed to a low level, and the rack teeth can be processed by cold processing, which is easier to ensure accuracy than hot processing or warm processing.

又、本発明の製造方法の場合には、総ての加工工程を、金型内部が金属材料により完全に充満されない状態で行なえる。言い換えれば、全工程を、所謂密封成形とせずに実施でき、各工程で被加工物から各金型に加わる反力、延ては、これら各金型に生じる応力を低く抑えられて、これら各金型の耐久性を向上させ、この面からのコスト低減も図れる。又、これら各金型の構造を単純にでき、汎用的なプレス設備で成形する事ができる。しかも、上記各金型に生じる応力を低く抑えられる為、冷間鍛造で成形する事が可能となり、これら各金型の寸法変化を抑えられる為、熱間鍛造や温間鍛造により加工する場合に比べて、得られるラックの精度を向上する事ができる。特に、請求項1に記載した発明によれば、このラックを、十分に低コストで、しかも精度良く造れる。 In the manufacturing method of the present invention, all the processing steps can be performed in a state where the inside of the mold is not completely filled with the metal material. In other words, the entire process can be carried out without so-called hermetic molding, and the reaction force applied to each mold from the workpiece in each process, and thus, the stress generated in each of these molds can be kept low. The durability of the mold can be improved and the cost can be reduced from this aspect. Further, the structure of each mold can be simplified and can be formed by a general-purpose press facility. In addition, since the stress generated in each die can be kept low, it is possible to form by cold forging, and since the dimensional change of each die can be suppressed, when processing by hot forging or warm forging. In comparison, the accuracy of the obtained rack can be improved. In particular, according to the invention as set forth in claim 1, the rack, at a sufficiently low cost, yet accurately able to build.

又、請求項2、3に記載した発明の様に、サイジング或は複数段階成形によりラック歯の形状を整えれば、このラック歯をより高精度に加工できる。このうちの複数段成形を行なう場合に、請求項2に記載した発明の様に、素ラック歯をラック歯に加工する途中で、この素ラック歯の幅方向両端部の歯元部乃至歯先部の端縁部を塑性変形させれば、得られるラック歯の形状精度をより向上させられる他、各工程で必要になる加工荷重の低減を図れる。又、複数段成形或いはサイジングを行なう場合に、複数段成形或いはサイジングに伴って移動する金属材料を1対の逃げ平坦面部に止めれば、これら複数段成形或いはサイジングに関しても、密封成形とせずに実施できる。そして、これら複数段成形或いはサイジングに伴って金型に生じる応力を低く抑えられて、この金型の耐久性を向上させる事ができる。 Further, if the shape of the rack teeth is adjusted by sizing or multi-stage molding as in the inventions described in claims 2 and 3 , the rack teeth can be processed with higher accuracy. In the case of performing multi-stage molding of these, as in the invention described in claim 2 , during processing of the raw rack teeth into rack teeth, the root part or the tooth tip at both ends in the width direction of the raw rack teeth are processed. If the edge portion of the portion is plastically deformed, the shape accuracy of the rack teeth obtained can be further improved, and the processing load required in each step can be reduced. Also, when performing multi-stage molding or sizing, if the metal material that moves with multi-stage molding or sizing is stopped on a pair of relief flat surfaces, these multi-stage molding or sizing can be performed without sealing molding. it can. And the stress which arises in a metal mold | die with these multistage shaping | molding or sizing can be restrained low, and the durability of this metal mold | die can be improved.

[実施の形態の第1例]
図1〜9は、請求項3に対応する、本発明の実施の形態の第1例を示している。先ず、本例のラック8の構造に就いて、図1〜4により説明する。尚、以下の説明で、各面の曲率半径に就いては、特に断らない限り、各面の断面形状の曲率半径の事を指す。
上記ラック8は、炭素鋼、ステンレス鋼等の金属材製で、中実材である断面円形のロッド部9と、このロッド部9の軸方向一部(図1〜3の左部)の径方向片側面に、塑性加工により形成されたラック歯10とを備える。本例の場合、上記ロッド部9は、全長に亙り、外周面から中心部迄同種金属材により一体に造られている。又、このロッド部9のうちの上記軸方向一部で、上記ラック歯10を形成した部分から周方向に外れた背面部分11の断面形状の曲率半径R11(図4参照)が、上記ロッド部9の軸方向残部である、円杆部12の外周面の曲率半径r12(図4参照)よりも大きく(R11>r12)なっている。このうち、上記円杆部12の外周面の曲率半径r12が、元々の素材の外周面の曲率半径に一致している。従って、上記背面部分11の曲率半径R11は、この素材の外周面の曲率半径よりも大きくなっている。そして、その分、上記ラック歯10の幅寸法W10を(単に上記素材の外周面にラック歯を形成する場合に比べて)大きくしている。
[First example of embodiment]
1 to 9 show a first example of an embodiment of the present invention corresponding to claim 3 . First, the structure of the rack 8 of this example will be described with reference to FIGS. In the following description, the curvature radius of each surface refers to the curvature radius of the cross-sectional shape of each surface unless otherwise specified.
The rack 8 is made of a metal material such as carbon steel, stainless steel, etc., and is a rod member 9 having a circular cross section, which is a solid material, and a diameter of a part of the rod portion 9 in the axial direction (left portion in FIGS. 1 to 3). A rack tooth 10 formed by plastic working is provided on one side surface in the direction. In the case of this example, the rod portion 9 is integrally formed of the same kind of metal material from the outer peripheral surface to the center portion over the entire length. In addition, a radius of curvature R 11 (see FIG. 4) of the cross-sectional shape of the back surface portion 11 that is partly in the axial direction of the rod portion 9 and deviates in the circumferential direction from the portion where the rack teeth 10 are formed. It is larger than the radius of curvature r 12 (see FIG. 4) of the outer peripheral surface of the circular flange portion 12 which is the remaining portion in the axial direction of the portion 9 (R 11 > r 12 ). Among them, the curvature radius r 12 of the outer peripheral surface of the circular rod portion 12 coincides with the radius of curvature of the original outer peripheral surface of the material. Accordingly, the radius of curvature R 11 of the back surface portion 11 is larger than the radius of curvature of the outer peripheral surface of this material. Then, correspondingly, the width W 10 of the rack teeth 10 (simply compared with the case of forming the rack teeth on the outer peripheral surface of the material) is large.

次に、上述の様なラック8の製造方法に就いて、図5〜8により説明する。
先ず、図5の(A)に示す様に、炭素鋼、ステンレス鋼等の金属材製で円杆状の素材13を、受型14の上面に設けた、断面円弧形の凹溝部15内にセット(載置)する。この凹溝部15の内面の曲率半径R15は、上記背面部分11の曲率半径R11(図4参照)とほぼ(加工力解除に伴うスプリングバック分を除き)一致(R15≒R11)している。
Next, the manufacturing method of the rack 8 as described above will be described with reference to FIGS.
First, as shown in FIG. 5A, inside a concave groove portion 15 having a circular arc shape in section, in which a circular material 13 made of a metal material such as carbon steel or stainless steel is provided on the upper surface of a receiving die 14. Set (mount). Inner surface radius of curvature R 15 of the recessed groove portion 15, (except for the springback due to the processing force releasing) substantially with the radius of curvature R 11 (see FIG. 4) of the back part 11 match (R 15 ≒ R 11) ing.

次いで、図5の(B)に示す様に、上記凹溝部15に沿って長い押圧パンチ16の先端面(下端面)により上記素材13をこの凹溝部15に向けて強く押圧する、据え込み加工を行なう。上記押圧パンチ16の先端面の形状は、一般的には平坦面とする。但し、上記凹溝部15の幅方向(図5の左右方向)に関して、曲率半径が大きな凹曲面としたり、幅方向両端部が上記受型14に向けて直線的若しくは曲線的に突出する、(据え込み加工後の形状の上端部を抱き込む様な)凹形状とする事もできる。何れにしても、上記図5の(B)に示した据え込み加工では、上記素材13の軸方向一部でラック歯10(図1〜4参照)を形成すべき部分を、上下方向に押し潰すと共に、水平方向の幅寸法を拡げて、中間素材20とする。この中間素材20は、上記部分の外周面に、上記背面部分11(図1、3、4参照)となるべき部分円筒面部17と、断面の径方向に関してこの部分円筒面部17と反対側に存在する平坦面部18と、これら両面部17、18同士を連続させる、曲率半径が比較的小さい、1対の曲面部19、19とを備える。   Next, as shown in FIG. 5B, the upsetting process in which the material 13 is strongly pressed toward the concave groove portion 15 by the front end surface (lower end surface) of the long press punch 16 along the concave groove portion 15. To do. The shape of the tip surface of the pressing punch 16 is generally a flat surface. However, with respect to the width direction of the concave groove portion 15 (left and right direction in FIG. 5), the concave curved surface has a large curvature radius, or both end portions in the width direction protrude linearly or curvedly toward the receiving die 14 (stationary It can also be a concave shape (such as embrace the upper end of the shape after the embossing). In any case, in the upsetting process shown in FIG. 5B, the portion of the material 13 in the axial direction where the rack tooth 10 (see FIGS. 1 to 4) is to be formed is pushed up and down. In addition to crushing, the width in the horizontal direction is expanded to obtain an intermediate material 20. The intermediate material 20 is present on the outer peripheral surface of the portion, on the side of the partial cylindrical surface portion 17 to be the back portion 11 (see FIGS. 1, 3 and 4), and on the opposite side of the partial cylindrical surface portion 17 in the radial direction of the cross section. And a pair of curved surface portions 19 and 19 having a relatively small radius of curvature that makes these both surface portions 17 and 18 continuous.

次いで、この中間素材20を、上記受型14の凹溝部15から取り出して、図5の(C)に示す様に、ダイス21に設けた保持孔22の底部に挿入(セット)する。この保持孔22は、U字形の断面形状を有し、底部23の曲率半径は、前記受型14の凹溝部15の内面の曲率半径R15と、ほぼ一致している。又、両内側面24、24は、互いに平行な平面としている。更に、上端開口部には、上方に向かう程互いの間隔が拡がる方向に傾斜した、1対のガイド傾斜面部25、25を設けている。 Next, the intermediate material 20 is taken out from the concave groove portion 15 of the receiving die 14 and inserted (set) into the bottom portion of the holding hole 22 provided in the die 21 as shown in FIG. The holding hole 22 has a U-shaped cross-sectional shape, and the radius of curvature of the bottom portion 23 substantially coincides with the radius of curvature R 15 of the inner surface of the concave groove portion 15 of the receiving die 14. Further, the inner side surfaces 24, 24 are planes parallel to each other. Further, the upper end opening is provided with a pair of guide inclined surface portions 25 and 25 which are inclined in a direction in which the distance between the upper end openings increases toward the upper side.

上記中間素材20を、上記ダイス21の保持孔22にセットしたならば、次いで、図5の(C)→(D)に示す様に、この保持孔22内に歯成形用パンチ26を挿入し、この歯成形用パンチ26により、上記中間素材20を上記保持孔22内に強く押し込む。この歯成形用パンチ26の下面には、得るべきラック歯に見合う形状の、成形用の波形凹凸を設けている。又、上記中間素材20は、上記保持孔22の内面により、上記ラック歯を形成すべき上記平坦面部18を除き、拘束されている。この為、上記歯成形用パンチ26により上記中間素材20を上記保持孔22内に強く押し込む事で、この中間素材20のうちの平坦面部18が、上記波形凹凸に倣って塑性変形し、図5の(D)及び図6の(A)に示す様なラック歯10を有する、素ラック27に加工される。但し、この状態での素ラック27は、完成状態のラック8(図1〜4参照)に比べて、形状精度及び寸法精度が不十分であり、上記ラック歯10の端縁も尖ったままである。又、このラック歯10の加工に伴って(歯底となるべき部分から)押し出された余肉は、上記保持孔22の両内側面24、24に強く押し付けられる為、上記素ラック27の左右両側面には、互いに平行な逃げ平坦面部28、28が形成される。   When the intermediate material 20 is set in the holding hole 22 of the die 21, the tooth forming punch 26 is inserted into the holding hole 22 as shown in FIG. 5 (C) → (D). The intermediate material 20 is strongly pushed into the holding hole 22 by the tooth forming punch 26. On the lower surface of the tooth forming punch 26, there are provided corrugated irregularities for forming having a shape commensurate with the rack teeth to be obtained. The intermediate material 20 is constrained by the inner surface of the holding hole 22 except for the flat surface portion 18 where the rack teeth are to be formed. Therefore, when the intermediate material 20 is strongly pushed into the holding hole 22 by the tooth forming punch 26, the flat surface portion 18 of the intermediate material 20 is plastically deformed following the corrugated irregularities, and FIG. (D) and a rack rack 27 having rack teeth 10 as shown in FIG. 6 (A). However, the raw rack 27 in this state has insufficient shape accuracy and dimensional accuracy compared to the completed rack 8 (see FIGS. 1 to 4), and the edges of the rack teeth 10 remain sharp. . Further, since the surplus portion pushed out (from the portion that should become the tooth bottom) with the processing of the rack teeth 10 is strongly pressed against the inner side surfaces 24, 24 of the holding hole 22, the left and right sides of the base rack 27 are left and right. Relief flat surface portions 28, 28 parallel to each other are formed on both side surfaces.

そこで、上記歯成形用パンチ26を上昇させてから、上記素ラック27を上記保持孔22から取り出し、図5の(E)に示す様に、サイジング用ダイス29の上面に形成したサイジング用凹凸面部30に載置する。この際、上記素ラック27を上下反転させる。このサイジング用凹凸面部30は、歯の端縁の面取り部を含め、得るべきラック歯10の形状に見合う(完成後の形状に対して凹凸が反転した)形状を有する。そこで、押型31により、図5の(E)→(F)に示す様に、上記素ラック27のラック歯10を形成した部分を、上記サイジング用凹凸面部30に向け、強く押し付ける。   Therefore, after raising the tooth forming punch 26, the raw rack 27 is taken out from the holding hole 22, and as shown in FIG. 5E, a sizing uneven surface portion formed on the upper surface of the sizing die 29 is formed. 30. At this time, the raw rack 27 is turned upside down. The sizing uneven surface portion 30 has a shape that matches the shape of the rack tooth 10 to be obtained, including the chamfered portion of the edge of the tooth (the unevenness is inverted with respect to the completed shape). Therefore, as shown in FIGS. 5E to 5F, the pressing die 31 strongly presses the portion of the base rack 27 where the rack teeth 10 are formed toward the sizing uneven surface portion 30.

上記押型31の下面には、造るべきラック8の背面部分11の曲率半径R11(図4参照)に一致する曲率半径を有する押し凹溝32を形成しており、上記素ラック27は、上記背面部分11となるベき部分をこの押し凹溝32に嵌合させた状態で、上記サイジング用凹凸面部30に向け強く押圧される。この為、上記図5の(F)に示した、上記サイジング用ダイス29と上記押型31とを十分に近づけた状態で、上記ラック歯10が、図6の(B)に示した完成後の状態(形状及び寸法が適正になり、各歯の端縁に面取りが設けられた状態)になると同時に、上記背面部分11に関しても、形状及び寸法が適正になる。尚、この様にして行なうサイジングに伴って押し出された余肉は、上記両逃げ平坦面部28、28部分に集まる。従って、完成後のラック8には、これら両逃げ平坦面部28、28は、殆ど残らない。但し、余肉が上記サイジング用凹凸面部30や上記押し凹溝32の内面を、極端に強く押圧する事はないので、上記サイジングの加工荷重を低く抑えられるだけでなく、上記サイジング用ダイス29及び上記押型31の耐久性を確保し易い。 A pressing groove 32 having a radius of curvature corresponding to the radius of curvature R 11 (see FIG. 4) of the back surface portion 11 of the rack 8 to be manufactured is formed on the lower surface of the pressing die 31. In a state in which the bend portion that becomes the back surface portion 11 is fitted in the push groove 32, it is strongly pressed toward the sizing uneven surface portion 30. Therefore, with the sizing die 29 and the pressing die 31 shown in FIG. 5 (F) sufficiently close to each other, the rack teeth 10 are completed after the completion shown in FIG. 6 (B). At the same time as the state (the shape and dimensions are appropriate and chamfering is provided at the edge of each tooth), the shape and dimensions of the back surface portion 11 are also appropriate. The surplus extruded as a result of the sizing performed in this way gathers at the two relief flat surface portions 28 and 28. Accordingly, the flat surface portions 28 and 28 are hardly left in the completed rack 8. However, since the surplus does not press the sizing uneven surface portion 30 or the inner surface of the pressing groove 32 extremely strongly, not only the processing load of the sizing can be kept low, but also the sizing die 29 and It is easy to ensure the durability of the pressing die 31.

この様にして得られた、前述の図1〜4に示す様なラック8は、前述した様に、ラック歯10の幅寸法、強度、剛性を、何れも十分に確保でき、しかもこのラック歯10を形成した部分以外の外径が必要以上に大きくならずに軽量である。
尚、上述の実施の形態は、図5の(C)→(D)の過程で、ラック歯10の加工を一挙動で行なう場合に就いて説明したが、この加工を2段階に分けて行なう事もできる。即ち、先ず、得るべきラック歯の圧力角よりも小さな圧力角に見合う形状の歯成形用パンチにより、図7の(A)→(B)の加工を施し、この図7の(B)及び図8に鎖線で示した形状の、得るべきラック歯10よりも歯丈の短い素ラック歯を形成する。次いで、得るべきラック歯の圧力角に見合う形状の歯仕上用パンチをこのラック歯となるべき部分に押し付ける事により、図7の(C)及び図8に実線で示したラック歯10を形成する。図7の(B)→(C)の過程で、図8に斜格子で示した、各歯の側面に存在する金属材料を、これら各歯の先端に向けて移動させる。その後、前述したサイジングを施す。
上述の様にして、上記ラック歯10の加工を2段階に分けて行なえば、各工程で、ラック歯形成用の歯成形用パンチに加わる応力を小さく抑えて、この歯成形用パンチの耐久性を確保できる。又、得られるラック歯の精度を確保し易い。
The rack 8 obtained as described above as shown in FIGS. 1 to 4 can sufficiently secure the width dimension, strength, and rigidity of the rack teeth 10 as described above. The outer diameter of the portion other than the portion formed with 10 is not unnecessarily large and is lightweight.
In the above-described embodiment, the case where the rack teeth 10 are processed in one behavior in the process of (C) → (D) in FIG. 5 has been described. However, this process is performed in two stages. You can also do things. That is, first, the processing of (A) → (B) in FIG. 7 is performed with a tooth forming punch having a shape corresponding to a pressure angle smaller than the pressure angle of the rack tooth to be obtained. A base rack tooth having a shape shorter than the rack tooth 10 to be obtained and having a shape indicated by a chain line in FIG. Next, by pressing a tooth finishing punch having a shape corresponding to the pressure angle of the rack tooth to be obtained against the portion to be the rack tooth, the rack tooth 10 indicated by the solid line in FIG. 7C and FIG. 8 is formed. . In the process of (B) → (C) in FIG. 7, the metal material present on the side surface of each tooth, indicated by the oblique lattice in FIG. 8, is moved toward the tip of each tooth. Thereafter, the sizing described above is performed.
If the processing of the rack teeth 10 is performed in two steps as described above, the stress applied to the tooth forming punch for forming the rack teeth can be kept small in each step, and the durability of the tooth forming punch can be reduced. Can be secured. Moreover, it is easy to ensure the accuracy of the rack teeth obtained.

又、サイジングに関しても、図5の(E)→(F)に示す様に一挙動で行なわず、図9に示す様に、2段階で行なっても良い。この図9に示したサイジングでは、先ず、(A)に示す様に、素ラック27をサイジング用ダイス29aと押型31aとの間で強く挟持して、ラック歯10の形状を整える。その後、(B)に示す様に、上面にこのラック歯10と噛合する受凹凸部33を設けた受型34と押型35との間で、再び上記素ラック27を強く挟持して、背面部分11の形状及び寸法を整え、ラック8とする。サイジングに伴って移動する余肉を両逃げ平坦面部28、28部分に集める事は、一挙動に行なう場合と同様である。   Further, the sizing may be performed in two stages as shown in FIG. 9 instead of one behavior as shown in (E) → (F) of FIG. In the sizing shown in FIG. 9, first, as shown in FIG. 9A, the base rack 27 is strongly held between the sizing die 29a and the pressing die 31a, and the shape of the rack teeth 10 is adjusted. Thereafter, as shown in (B), the base rack 27 is strongly sandwiched again between the receiving die 34 and the pressing die 35 provided with the receiving concave and convex portion 33 meshing with the rack teeth 10 on the upper surface, and the rear portion The shape and dimensions of 11 are adjusted to form a rack 8. Collecting surplus material that moves with sizing in the two relief flat surface portions 28 and 28 is the same as in the case of one behavior.

[実施の形態の第2例]
図10〜11は、請求項1に対応する、本発明の実施の形態の第2例を示している。本例の場合には、図10の(A)→(B)に示した据え込み加工での加工量を、上述した実施の形態の第1例の場合よりも多くし、この据え込み加工により得られる中間素材20aの幅寸法を、この第1例の場合よりも広くしている。又、部分円筒面部17aの曲率半径に関しても、この第1例の場合よりも大きくしている。
[Second Example of Embodiment]
10 to 11 show a second example of an embodiment of the present invention corresponding to claim 1 . In the case of this example, the amount of processing in the upsetting process shown in FIGS. 10A to 10B is made larger than that in the first example of the above-described embodiment, and this upsetting process The width of the obtained intermediate material 20a is made wider than in the case of the first example. Further, the radius of curvature of the partial cylindrical surface portion 17a is also made larger than in the case of the first example.

本例の場合には、上述の様な中間素材20aを、図10の(C)→(D)に示す様に、幅方向両端部を塑性変形させつつ、ダイス21の保持孔22内に押し込む。このダイス21は、上記第1例に使用するものと同様のものである。但し、上記中間素材20aの幅寸法が大きい分、この中間素材20aを上記保持孔22内に押し込む際に、この中間素材20aの幅方向両端部が、この保持孔22の内側面24、24とガイド傾斜面部25、25との連続部で扱かれる。この結果、上記幅方向両端部に存在する、図11に斜格子で示した部分の金属材料を、同じく上部に斜格子で示した部分に向け、上方に移動させつつ、上記中間素材20aの断面が、図11の鎖線で表した形状から同じく実線で表した形状に変化する。そして、上記中間素材20aを上記保持孔22の奥端部にまで押し込んだ後、この中間素材20aにラック歯10を形成して、素ラック27aとする。   In the case of this example, the intermediate material 20a as described above is pushed into the holding hole 22 of the die 21 while plastically deforming both ends in the width direction as shown in FIG. 10 (C) → (D). . This die 21 is the same as that used in the first example. However, when the intermediate material 20a is pushed into the holding hole 22 because the width of the intermediate material 20a is large, both ends of the intermediate material 20a in the width direction are connected to the inner side surfaces 24, 24 of the holding hole 22. It is handled by a continuous part with the guide inclined surface parts 25, 25. As a result, the cross-section of the intermediate material 20a while the metal material of the portion indicated by the oblique lattice in FIG. 11 existing at both ends in the width direction is moved upward toward the portion indicated by the oblique lattice in the upper portion as well. However, it changes from the shape represented by the chain line in FIG. 11 to the shape represented by the solid line. Then, after the intermediate material 20a is pushed into the back end of the holding hole 22, the rack teeth 10 are formed on the intermediate material 20a to form the raw rack 27a.

前述の図5の(C)(D)と上記図10の(C)(D)との比較、或いは、上記図11の鎖線と実線との比較から明らかな通り、上記幅広の中間素材20aを、幅方向両端部を扱きつつ上記保持孔22内に押し込む事で、上記ラック歯10を形成すべき部分の幅寸法を大きくできる。この為、このラック歯10の幅寸法を確保できる。
その他の部分の構成及び作用は、前述した実施の形態の第1例と同様であるから、重複する図示並びに説明は省略する。
As is clear from the comparison between (C) and (D) in FIG. 5 and (C) and (D) in FIG. 10 described above, or the comparison between the chain line and the solid line in FIG. The width dimension of the portion where the rack tooth 10 is to be formed can be increased by pushing into the holding hole 22 while handling both ends in the width direction. For this reason, the width dimension of this rack tooth 10 is securable.
Since the configuration and operation of other parts are the same as those in the first example of the above-described embodiment, overlapping illustrations and descriptions are omitted.

[本発明に関連する参考例の第1例]
図12は、本発明に関連する参考例の第1例を示している。本参考例の場合には、図12の(A)→(B)に示す様に、素材13をダイス36に通過させる扱き加工を施す事により、この素材13の外径を、軸方向一部を除いて縮める。そして、軸方向一部の外径が軸方向残部の外径よりも大きな予備中間素材37とし、この予備中間素材37のうちの軸方向一部に、前述した実施の形態の第1例、又は、上述した実施の形態の第2例と同様の塑性加工を施して、図12の(C)に示す様なラック8aとする。この様な本参考例の場合には、このラック8aのうちで、ラック歯10を形成した部分から軸方向に外れた部分の直径をより小さくして、上記ラック8a全体をより軽量にできる。
[First example of reference example related to the present invention]
FIG. 12 shows a first example of a reference example related to the present invention. In the case of this reference example, as shown in FIGS. 12A to 12B, the outer diameter of the material 13 is partially reduced in the axial direction by performing a handling process that passes the material 13 through the die 36. Shrink except. And it is set as the preliminary intermediate material 37 whose outer diameter of a part of axial direction is larger than the outer diameter of the remainder of an axial direction, and in the axial direction part of this preliminary | backup intermediate material 37, the 1st example of embodiment mentioned above or Then, the same plastic working as in the second example of the embodiment described above is performed to obtain a rack 8a as shown in FIG. In the case of this reference example, the diameter of the portion of the rack 8a that is axially deviated from the portion where the rack teeth 10 are formed can be made smaller, and the entire rack 8a can be made lighter.

[本発明に関連する参考例の第2例]
図13は、本発明に関連する参考例の第2例を示している。本参考例の場合には、図13の(A)→(B)に示す様に、素材13に例えば前述の図5の(A)→(B)に示す様な据え込み加工を施して中間素材20とする。そして、この中間素材20に、図13の(C)に示す様に、ダイス36を通過させる扱き加工を施す事により、この中間素材20の外径を、軸方向一部を除いて縮める。そして、軸方向一部の外径が軸方向残部の外径よりも大きな第二の中間素材38とし、この第二の中間素材38に、前述した実施の形態の第1例、又は、上述した実施の形態の第2例と同様の塑性加工を施して、図13の(D)に示す様なラック8aとする。この様な本参考例の場合も、このラック8aのうちで、ラック歯10を形成した部分から軸方向に外れた部分の直径をより小さくして、上記ラック8a全体をより軽量にできる。
[Second example of reference example related to the present invention]
FIG. 13 shows a second example of a reference example related to the present invention. In the case of this reference example, as shown in FIGS. 13A to 13B, the material 13 is subjected to upsetting as shown in FIGS. 5A to 5B, for example. The material 20 is used. Then, as shown in FIG. 13C, the intermediate material 20 is subjected to a handling process through which the die 36 is passed, so that the outer diameter of the intermediate material 20 is reduced except for a part in the axial direction. And it is set as the 2nd intermediate material 38 whose outer diameter of a part of axial direction is larger than the outer diameter of the remainder of an axial direction, and this 2nd intermediate material 38 is the 1st example of the embodiment mentioned above, or mentioned above. The same plastic working as in the second example of the embodiment is performed to obtain a rack 8a as shown in FIG. Also in the case of this reference example, the diameter of the portion of the rack 8a that is axially deviated from the portion where the rack teeth 10 are formed can be made smaller to make the entire rack 8a lighter.

[実施の形態の第3例]
図14〜18は、請求項1、3に対応する、本発明の実施の形態の第3例を示している。
本例のラック8bの場合には、ロッド部9aが、外層体39と内層体40とを組み合わせて成る。このうちの外層体39は、炭素鋼、ステンレス鋼等の、優れた強度及び耐摩耗性を有する、第一種の金属材により、円管状に造られている。又、上記内層体40は、アルミニウム合金、マグネシウム合金等の、軽量な第二種の金属材により円杆状に造られている。又、上記外層体39と内層体40とのうち、外層体39は、造るべきラック8b分の長さ寸法を有するのに対して、内層体40は、外周面にラック歯10を形成すべき軸方向一部の長さ分の(余裕を持たせて、ラック歯10を形成した部分よりも少しだけ長い)寸法に抑えられている。この様な内層体40と上記外層体39とは、この内層体40をこの外層体39の軸方向一端寄り(図14〜16の左寄り)部分に、焼嵌め、冷やし嵌め等により密に内嵌固定する事で組み合わされている。
[Third example of embodiment]
14 to 18 show a third example of the embodiment of the invention corresponding to claims 1 and 3 .
In the case of the rack 8b of this example, the rod portion 9a is formed by combining the outer layer body 39 and the inner layer body 40. Of these, the outer layer body 39 is formed in a circular tube shape from a first type of metal material having excellent strength and wear resistance, such as carbon steel and stainless steel. Further, the inner layer body 40 is made in the shape of a circle from a lightweight second type metal material such as an aluminum alloy or a magnesium alloy. Of the outer layer body 39 and the inner layer body 40, the outer layer body 39 has a length dimension corresponding to the rack 8b to be manufactured, whereas the inner layer body 40 should form the rack teeth 10 on the outer peripheral surface. The length is limited to a length corresponding to a part of the length in the axial direction (a little longer than a portion where the rack teeth 10 are formed with a margin). Such an inner layer body 40 and the outer layer body 39 are tightly fitted into the inner layer body 40 close to one end of the outer layer body 39 in the axial direction (left side in FIGS. 14 to 16) by shrink fitting or cold fitting. It is combined by fixing.

上述の様な外層体39と内層体40とを組み合わせた、上記ロッド部9aを構成する素材13aには、例えば図18の(A)→(B)→(C)→(D)→(E)→(F)に示す様に、前述の図10に示した実施の形態の第2例(或いは、前述の図5に示した実施の形態の第1例)と同様の塑性加工を施して、上述の様なラック8bとする。
この様な本例の構造及び製造方法によれば、前述した理由により、上記ラック歯10の強度確保とラック8b全体の軽量化とを、より十分に図る事が可能になる。
For example, (A) → (B) → (C) → (D) → (E) in FIG. 18 is used as the material 13a constituting the rod portion 9a, which is a combination of the outer layer body 39 and the inner layer body 40 as described above. ) → (F), the same plastic working as in the second example of the embodiment shown in FIG. 10 (or the first example of the embodiment shown in FIG. 5) is performed. The rack 8b is as described above.
According to such a structure and manufacturing method of this example, it is possible to sufficiently ensure the strength of the rack teeth 10 and reduce the weight of the entire rack 8b for the reasons described above.

[実施の形態の第4例]
図19〜24は、請求項1〜3に対応する、本発明の実施の形態の第4例を示している。尚、前述の図10〜11に示した実施の形態の第2例と異なる点は、ラック歯を形成する過程で素ラック歯43の幅方向両端部の端縁の断面形状の曲率半径を大きくする塑性加工を行なう点、完成後のラック歯10の両側面に互いに平行な1対のガイド平面部41、41を残すべく、これら両ガイド平面部41、41に隣接して、これら両ガイド平面部41、41から離れるに従って互いに近づく方向に傾斜した、1対の逃げ平坦面部42、42を設けた点にある。その他の部分の構成及び作用・効果に就いては、上記実施の形態の第2例と同様であるから、同等部分に関する説明は、省略若しくは簡略にし、以下、この第2例と異なる点を中心に説明する。
[Fourth Example of Embodiment]
FIGS. 19-24 has shown the 4th example of embodiment of this invention corresponding to Claims 1-3 . The second example of the embodiment shown in FIGS. 10 to 11 is different from the second example of the embodiment shown in FIG. 10 in that the radius of curvature of the cross-sectional shape of the edge at both ends in the width direction of the raw rack teeth 43 is increased in the process of forming the rack teeth. In order to leave a pair of guide plane portions 41, 41 parallel to each other on both sides of the finished rack tooth 10, the guide planes 41 and 41 are adjacent to both guide planes 41 and 41. This is in that a pair of relief flat surface portions 42 and 42 that are inclined in a direction approaching each other as they are separated from the portions 41 and 41 are provided. Since the configuration, operation, and effects of the other parts are the same as those in the second example of the above embodiment, the explanation for the equivalent parts will be omitted or simplified, and the points different from the second example will be mainly described below. Explained.

本例の場合、図19の(C)→(D)の工程で中間素材20aを素ラック27bに加工する際に、互いに平行な1対のガイド平面部41、41と、これら両ガイド平面部41、41に隣接した、1対の逃げ平坦面部42、42とを形成する。これら両逃げ平坦面部42、42は、上記両ガイド平面部41、41を境として、上記中間素材20aの円周方向の一部に形成した素ラック歯43と反対側部分に設けられており、これら両ガイド平面部41、41から離れるに従って互いの間隔が狭くなる方向に傾斜している。   In the case of this example, when the intermediate material 20a is processed into the raw rack 27b in the process of (C) → (D) in FIG. 19, a pair of guide plane portions 41 and 41 parallel to each other, and both the guide plane portions. A pair of relief flat surface portions 42 and 42 adjacent to 41 and 41 are formed. Both of these relief flat surface portions 42, 42 are provided on the opposite side of the raw rack teeth 43 formed in a part of the intermediate material 20a in the circumferential direction with the both guide flat portions 41, 41 as a boundary, As the distance from both the guide flat portions 41 and 41 increases, the distance between the guide flat portions 41 and 41 decreases.

この様な両逃げ平坦面部42、42を形成する為に、ダイス21aに形成した、成形用凹溝である保持孔22aの両内側面の一部で、互いに平行な1対の成形用平坦面44、44の底部23a側に隣接する部分に、これら両成形用平坦面44、44から離れるに従って互いの間隔が狭くなる方向に傾斜した、1対の第二成形用平坦面45、45を設けている。そして、図19の(C)→(D)の工程で、上記中間素材20aを上記素ラック27bに加工する際に、上記両第二成形用平坦面45、45に対応する部分に上記両逃げ平坦面部42、42を形成して、図23の(A)に示す様な、上記素ラック27bとする。即ち、得るべきラック歯の圧力角よりも小さな圧力角に見合う形状の歯成形用パンチ26aにより、上記素ラック歯43を形成した、上記素ラック27bを得る。   A pair of molding flat surfaces parallel to each other on a part of both inner side surfaces of the holding hole 22a, which is a molding concave groove, formed in the die 21a in order to form such both relief flat surface portions 42, 42. 44 and 44 are provided with a pair of second molding flat surfaces 45 and 45 which are inclined in a direction in which the distance between the flat surfaces 44 and 44 becomes narrower as the distance from the molding flat surfaces 44 and 44 increases. ing. Then, in the process of (C) → (D) in FIG. 19, when the intermediate material 20a is processed into the raw rack 27b, both the reliefs are formed at portions corresponding to the second molding flat surfaces 45, 45. The flat surface portions 42 and 42 are formed to form the raw rack 27b as shown in FIG. That is, the raw rack 27b in which the raw rack teeth 43 are formed is obtained by the tooth forming punch 26a having a shape corresponding to a pressure angle smaller than the pressure angle of the rack teeth to be obtained.

その後、図20の(A)→(B)に示す様に、上記両逃げ平坦面部42、42を1対の金型である、押型46と受型47との間部分に位置させた状態で、上記素ラック歯43の幅方向両端部の歯元部乃至歯先部の断面形状の曲率半径を大きくする塑性加工を行なう。この塑性加工により、上記素ラック歯43の幅方向両端部の端縁部の、歯元部乃至歯先部の曲率半径を大きくし、この素ラック歯43の幅方向両端部の端縁部の歯元部乃至歯先部に、図23の(B)に示す様な曲面部48、48を形成する。この様な曲面部48、48は、完成後のラック歯10の幅方向両端部の端縁部が他の部材と干渉するのを防止する為と、この端縁部への応力集中を防止する為とに設ける。本例は、図23の(A)に示した素ラック歯43を同じく(C)に示したラック歯10に塑性加工する過程で、上記図23の(B)に示す様な曲面部48、48を形成する事により、このラック歯10を塑性加工する為の加工工程で使用する金型の負担を軽減すると共に、バリの発生を防止して得られるラック歯10の形状精度及び寸法精度を良好にできる様にしている。又、本例の場合には、上述の様な曲面部48、48の塑性加工に伴って移動する金属材料を、上記両逃げ平坦面部42、42に止めて、部分円筒面を延長した仮想円筒面よりも余肉が径方向外方に突出する事を防止する。   After that, as shown in FIGS. 20A to 20B, in a state where the both relief flat surface portions 42 and 42 are located between the pressing die 46 and the receiving die 47, which are a pair of molds. Then, plastic working is performed to increase the radius of curvature of the cross-sectional shape of the tooth root part or the tooth tip part at both ends in the width direction of the raw rack teeth 43. By this plastic working, the curvature radius of the tooth root part or the tooth tip part of the edge part of the width direction both ends of the raw rack tooth 43 is increased, and the edge part of the edge part of the width direction both ends of the raw rack tooth 43 is increased. Curved portions 48 and 48 as shown in FIG. 23B are formed in the tooth root portion or the tooth tip portion. Such curved surface portions 48 and 48 prevent the edge portions at both ends in the width direction of the completed rack tooth 10 from interfering with other members, and prevent stress concentration on the edge portions. It is provided for the purpose. This example is a process in which the raw rack teeth 43 shown in FIG. 23A are plastically processed into the rack teeth 10 shown in FIG. 23C, and the curved surface portion 48 as shown in FIG. By forming 48, the load on the mold used in the machining process for plastic processing of the rack teeth 10 is reduced, and the shape accuracy and dimensional accuracy of the rack teeth 10 obtained by preventing the occurrence of burrs are increased. I am trying to improve it. Further, in the case of this example, a virtual cylinder that extends the partial cylindrical surface by stopping the metal material that moves in accordance with the plastic working of the curved surface portions 48, 48 as described above, on the both escape flat surface portions 42, 42. Prevents excess wall from projecting radially outward than the surface.

尚、上記図20の(A)→(B)、及び、図23の(A)→(B)に示した工程で、上記素ラック歯43の幅方向両端部の端縁に形成する曲面部48、48の曲率半径は、完成後のラック歯10の幅方向両端部に残留する曲面部の曲率半径よりも大きめにしておく。この理由は、次述する図21又は図22の(A)→(B)、及び、図23の(B)→(C)に示した、上記素ラック歯43を上記ラック歯10に仕上げる工程で、上記幅方向両端部の端縁の歯元部乃至歯先部の曲面部48、48の曲率半径が小さくなる傾向になるので、完成後のラック歯10の幅方向両端部に残留する曲面部の曲率半径を確保する為である。   In addition, the curved surface part formed in the edge of the width direction both ends of the said bare rack tooth | gear 43 in the process shown to (A)-> (B) of said FIG. 20, and (A)-> (B) of FIG. The curvature radii of 48 and 48 are set larger than the curvature radii of the curved surface portions remaining at both ends in the width direction of the rack tooth 10 after completion. The reason for this is the step of finishing the raw rack teeth 43 into the rack teeth 10 shown in FIGS. 21 or 22 (A) → (B) and (B) → (C) of FIG. Thus, since the curvature radius of the curved surface portions 48, 48 of the edge portion or the tip portion of the edge portion in the width direction tends to be small, the curved surface remaining at both width direction ends of the rack tooth 10 after completion. This is to ensure the curvature radius of the part.

上述の様な曲面部48、48を形成した第二中間素材49は、その後、前述した実施の形態の第1例と同様、図21又は図22の(A)→(B)に示す様に、歯成形用パンチ26によりダイス21bの保持孔22b内に押し込んで、上記ラック歯10を形成する。この際、この保持孔22bの内寸は、図21に示す様に、上記第二中間素材49の幅寸法と同じでも良いし、図22に示す様に、この幅寸法よりも僅かに小さくしても良い。図22に示す様に、保持孔22bの内寸を上記第二中間素材49の幅寸法よりも小さくした場合には、上記ラック歯10を形成する過程で、この第二中間素材49の幅方向両端部に存在する、前記両ガイド平面部41、41を扱く。何れにしても、この第二中間素材49を、上記歯成形用パンチ26によりダイス21bの保持孔22b内に押し込む事で、円周方向片側面に上記ラック歯10を形成すると共に、上記両ガイド平面部41、41の性状を適正にした、ラック8aを得られる。   The second intermediate material 49 having the curved surfaces 48 and 48 as described above is thereafter as shown in (A) → (B) of FIG. 21 or FIG. 22 as in the first example of the embodiment described above. The rack teeth 10 are formed by being pushed into the holding hole 22b of the die 21b by the tooth forming punch 26. At this time, the inner dimension of the holding hole 22b may be the same as the width dimension of the second intermediate material 49 as shown in FIG. 21, or slightly smaller than this width dimension as shown in FIG. May be. As shown in FIG. 22, when the inner dimension of the holding hole 22 b is made smaller than the width dimension of the second intermediate material 49, the width direction of the second intermediate material 49 is formed in the process of forming the rack teeth 10. The both guide plane portions 41, 41 existing at both ends are handled. In any case, the second intermediate material 49 is pushed into the holding hole 22b of the die 21b by the tooth forming punch 26, thereby forming the rack teeth 10 on one side surface in the circumferential direction and the both guides. A rack 8a in which the properties of the flat portions 41 and 41 are appropriate can be obtained.

この様にして得られたラック8aは、そのまま使用する事もできるが、必要に応じて、上記ラック歯10の精度を向上させる為のサイジングを施す。このサイジングは、基本的には、前述した実施の形態の第1例と同様にして行なう。但し、上記両ガイド平面部41、41の精度を確保する必要がある場合には、図24の(A)に示す様に、これらガイド平面部41、41を1対の抑え面50、50により抑えつつ行なう。これに対して、これら両ガイド平面部41、41の精度を確保する必要がなければ、図24の(B)に示す様に、単にラック8aを受型34に押し付けるのみで良い。尚、上記両ガイド平面部41、41は、このラック8aをステアリングギヤに組み込んだ状態で、ガイドスリーブの直線部と係合し、このラック8aが回転方向に変位するのを防止する為に設けている。その他、基本的な構成及び作用・効果に就いては、前述した実施の形態の第1例の場合と同様である。   The rack 8a thus obtained can be used as it is, but sizing for improving the accuracy of the rack teeth 10 is performed as necessary. This sizing is basically performed in the same manner as in the first example of the embodiment described above. However, when it is necessary to ensure the accuracy of the two guide flat portions 41, 41, as shown in FIG. 24A, the guide flat portions 41, 41 are connected by a pair of holding surfaces 50, 50. Do it while holding down. On the other hand, if it is not necessary to ensure the accuracy of both guide flat portions 41, 41, the rack 8a may simply be pressed against the receiving die 34 as shown in FIG. The two guide flat portions 41, 41 are provided to prevent the rack 8a from being displaced in the rotational direction by engaging the linear portion of the guide sleeve with the rack 8a incorporated in the steering gear. ing. In addition, the basic configuration, operation, and effects are the same as those in the first example of the above-described embodiment.

[実施の形態の第5例]
図25〜29は、請求項1〜3に対応する、本発明の実施の形態の第5例を示している。本例は、前述の図14〜18に示した実施の形態の第3例の構造を、上述した実施の形態の第4例の製造方法により造る場合に就いて示している。本例を表す図25がこの実施の形態の第4例を表す図19に、同じく図26〜28が同じく図20〜22に、同じく図29が同じく図24に、それぞれ対応する。この様な本例の構造及び製造方法によれば、上記実施の形態の第3例の様に、ラック歯10の強度確保とラック8b全体の軽量化とをより十分に図れ、しかも金型の負担を軽減すると共に、得られるラック歯10の形状精度及び寸法精度を良好にできる。
[Fifth Example of Embodiment]
25 to 29 show a fifth example of the embodiment of the invention corresponding to claims 1 to 3 . This example shows a case where the structure of the third example of the embodiment shown in FIGS. 14 to 18 is manufactured by the manufacturing method of the fourth example of the embodiment described above. FIG. 25 showing this example corresponds to FIG. 19 showing the fourth example of this embodiment, FIG. 26 to FIG. 28 corresponding to FIG. 20 to 22 and FIG. 29 corresponding to FIG. According to such a structure and manufacturing method of this example, as in the third example of the above embodiment, the strength of the rack teeth 10 and the weight reduction of the entire rack 8b can be more sufficiently achieved, and the mold While reducing a burden, the shape accuracy and dimensional accuracy of the rack tooth 10 obtained can be made favorable.

本発明のラックは、前述の図30に示した様な、ステアリングギヤ5を構成するラックとして適用して、このステアリングギヤ5のコスト低減や軽量化を図れる。但し、本発明は、この様なステアリングギヤ5に限らず、各種機械装置に組み込むラックに適用して、当該機械装置のコスト低減や軽量化に寄与できる。   The rack of the present invention can be applied as a rack constituting the steering gear 5 as shown in FIG. 30 described above, and the cost and weight of the steering gear 5 can be reduced. However, the present invention is not limited to such a steering gear 5 but can be applied to racks incorporated in various mechanical devices, and can contribute to cost reduction and weight reduction of the mechanical devices.

本発明の実施の形態の第1例を示す、ラックの斜視図。The perspective view of the rack which shows the 1st example of embodiment of this invention. 図1のイ矢視図。FIG. 同ロ矢視図。The same arrow view. 図3の拡大ハ−ハ断面図。FIG. 4 is an enlarged cross-sectional view of FIG. 3. 第1例の構造の製造方法を工程順に示す、図4と同方向から見た断面図。Sectional drawing seen from the same direction as FIG. 4 which shows the manufacturing method of the structure of a 1st example in order of a process. サイジング前後のラック歯の形状を示す部分斜視図。The partial perspective view which shows the shape of the rack tooth before and behind sizing. ラック歯の加工を2段階に分けて行なう場合の形状変化を示す、図5の(D)のニ−ニ断面に相当する図。The figure corresponding to the knee cross section of (D) of FIG. 5 which shows the shape change at the time of processing rack teeth in two steps. 図7の(B)と(C)との間での歯の形状変化の状態を示す拡大断面図。The expanded sectional view which shows the state of the shape change of the tooth | gear between (B) and (C) of FIG. サイジングを2段階に分けて行なう場合を示す断面図。Sectional drawing which shows the case where sizing is divided into two steps. 本発明の実施の形態の第2例を示す、図5と同様の図。The figure similar to FIG. 5 which shows the 2nd example of embodiment of this invention. 図10の(C)と(D)との間での中間素材の形状変化の状態を示す断面図。Sectional drawing which shows the state of the shape change of the intermediate raw material between (C) and (D) of FIG. 本発明に関連する参考例の第1例を工程順に示す部分切断側面図。The partial cutting side view which shows the 1st example of the reference example relevant to this invention in process order. 同第2例を工程順に示す部分切断側面図。The partial cutting side view which shows the 2nd example in order of a process. 本発明の実施の形態の第3例を示す、ラックの斜視図。The perspective view of the rack which shows the 3rd example of embodiment of this invention. 図14のホ矢視図。FIG. 同ヘ矢視図。The same arrow view. 図16の拡大ト−ト断面図。FIG. 17 is an enlarged toe cross-sectional view of FIG. 16. 第3例の構造の製造方法の1例を工程順に示す、図17と同方向から見た断面図。Sectional drawing seen from the same direction as FIG. 17 which shows one example of the manufacturing method of the structure of a 3rd example in process order. 本発明の実施の形態の第4例に於ける、第一の塑性加工乃至は第二の塑性加工の前段階迄を工程順に示す、図4と同方向から見た断面図。Sectional drawing in the 4th example of an embodiment of the invention showing from the 1st plastic working thru / or the previous stage of the 2nd plastic working in order of a process as seen from the same direction as FIG. 同じく、第二の塑性加工の前段階で行なう、素ラック歯の幅方向両端部の歯元部乃至歯先部の断面形状の曲率半径を大きくする塑性加工を工程順に示す、図4と同方向から見た断面図。Similarly, in the same direction as FIG. 4, the plastic processing for increasing the radius of curvature of the cross-sectional shape of the tooth root part or the tooth tip part at both ends in the width direction of the raw rack tooth performed in the previous stage of the second plastic working is shown in the same direction as FIG. FIG. 同じく、第二の塑性加工の後段階で行なう、素ラック歯の形状を整えてラック歯とする塑性加工の第1例を工程順に示す、図4と同方向から見た断面図。FIG. 5 is a cross-sectional view seen from the same direction as in FIG. 4, showing a first example of plastic working in the order of the steps, in which the shape of the raw rack teeth is adjusted to form rack teeth after the second plastic working. 同第2例を工程順に示す、図4と同方向から見た断面図。Sectional drawing which looked at the 2nd example from the same direction as FIG. 4 which shows the 2nd example in process order. 加工の進行に伴う素ラック歯乃至ラック歯の形状を示す、(A)は第二の塑性加工の前段階終了時の素ラック歯を、(B)はこの素ラック歯の幅方向両端部の端縁の断面形状の曲率半径を大きくする塑性加工を行なった後の状態を、(C)はサイジング後のラック歯を、それぞれ示す部分斜視図。The shape of the raw rack teeth or rack teeth as the machining progresses is shown. (A) shows the raw rack teeth at the end of the previous stage of the second plastic working, and (B) shows the width direction ends of the raw rack teeth. (C) is a partial perspective view which shows the state after performing the plastic working which enlarges the curvature radius of the cross-sectional shape of an edge, respectively, and the rack tooth after sizing. サイジングの実施状況の2例を示す、図4と同方向から見た断面図。Sectional drawing seen from the same direction as FIG. 4 which shows two examples of the implementation state of sizing. 本発明の実施の形態の第5例に於ける、第一の塑性加工乃至は第二の塑性加工の前段階迄を工程順に示す、図4と同方向から見た断面図。Sectional drawing seen from the same direction as FIG. 4 which shows to the prior | preceding stage of 1st plastic processing thru | or 2nd plastic working in 5th example of embodiment of this invention. 同じく、第二の塑性加工の前段階で行なう、素ラック歯の幅方向両端部の端縁の断面形状の曲率半径を大きくする塑性加工を工程順に示す、図4と同方向から見た断面図。FIG. 4 is a cross-sectional view seen from the same direction as FIG. 4, showing the plastic processing for increasing the radius of curvature of the cross-sectional shape of the edge of both ends in the width direction of the raw rack teeth, performed in the same stage as the second plastic processing. . 同じく、第二の塑性加工の後段階で行なう、素ラック歯の形状を整えてラック歯とする塑性加工の第1例を工程順に示す、図4と同方向から見た断面図。FIG. 5 is a cross-sectional view seen from the same direction as in FIG. 4, showing a first example of plastic working in the order of the steps, in which the shape of the raw rack teeth is adjusted to form rack teeth after the second plastic working. 同第2例を工程順に示す、図4と同方向から見た断面図。Sectional drawing which looked at the 2nd example from the same direction as FIG. 4 which shows the 2nd example in process order. サイジングの実施状況の2例を示す、図4と同方向から見た断面図。Sectional drawing seen from the same direction as FIG. 4 which shows two examples of the implementation state of sizing. 本発明の対象となるラックを組み込んだステアリングギヤを備えた自動車用操舵装置の1例を示す側面図。The side view which shows an example of the steering device for motor vehicles provided with the steering gear incorporating the rack used as the object of this invention.

1 ステアリングホイール
2 ステアリングシャフト
3 自在継手
4 中間シャフト
5 ステアリングギヤ
6 入力軸
7 タイロッド
8、8a、8b ラック
9、9a ロッド部
10 ラック歯
11 背面部分
12 円杆部
13、13a 素材
14 受型
15 凹溝部
16 押圧パンチ
17、17a 部分円筒面部
18 平坦面部
19 曲面部
20、20a 中間素材
21、21a、21b ダイス
22、22a、22b 保持孔
23、23a 底部
24 内側面
25 ガイド傾斜面部
26、26a 歯成形用パンチ
27、27a、27b 素ラック
28 逃げ平坦面部
29、29a サイジング用ダイス
30 サイジング用凹凸面部
31、31a 押型
32 押し凹溝
33 受凹凸部
34 受型
35 押型
36 ダイス
37 予備中間素材
38 第二の中間素材
39 外層体
40 内層体
41 ガイド平坦面部
42 逃げ平面部
43 素ラック歯
44 成形用平坦面
45 第二成形用平坦面
46 押型
47 受型
48 曲面部
49 第二中間素材
50 抑え面
DESCRIPTION OF SYMBOLS 1 Steering wheel 2 Steering shaft 3 Universal joint 4 Intermediate shaft 5 Steering gear 6 Input shaft 7 Tie rod 8, 8a, 8b Rack 9, 9a Rod part 10 Rack tooth | gear 11 Back part 12 Circular collar part 13, 13a Material 14 Receiving type 15 Concave Groove portion 16 Press punch 17, 17a Partial cylindrical surface portion 18 Flat surface portion 19 Curved surface portion 20, 20a Intermediate material 21, 21a, 21b Die 22, 22a, 22b Holding hole 23, 23a Bottom portion 24 Inner side surface 25 Guide inclined surface portion 26, 26a Tooth molding Punch 27, 27a, 27b Raw rack 28 Escape flat surface portion 29, 29a Sizing die 30 Sizing uneven surface portion 31, 31a Stamping die 32 Pushing groove 33 Receiving recessing portion 34 Receiving die 35 Stamping die 36 Die 37 Preliminary intermediate material 38 Second Intermediate material of 39 Sotai 40 inner body 41 guide the flat surface portion 42 flank flat portion 43 containing the rack teeth 44 forming a flat surface 45 second moldable flat surface 46 pressing die 47 receiving die 48 curved portion 49 second intermediate material 50 clamping surfaces

Claims (3)

金属材製で、少なくとも軸方向の一部が中実材である断面円形のロッド部と、このロッド部の軸方向一部で中実材である部分の径方向片側面に塑性加工により形成されたラック歯とを備え、この軸方向一部で中実材である部分の外周面のうち、このラック歯を形成した部分から周方向に外れた部分の断面形状の曲率半径が、上記ロッド部の軸方向残部の外周面の断面形状の曲率半径よりも大きいラックの製造方法であって、
上記ロッド部となるべき円杆状の素材の軸方向の一部に、この軸方向の一部で且つ円周方向の一部を押し潰しつつ、この軸方向の一部で且つ円周方向の残部に、上記素材の外周面の曲率半径よりも大きな曲率半径を有する部分円筒面を形成する第一の塑性加工を施して中間素材とし、この中間素材のうちの上記軸方向一部で上記円周方向の一部に上記ラック歯を、第二の塑性加工により形成するものであり、
上記第一の塑性加工が、上記素材の軸方向一部を径方向に押し潰す事により、この軸方向一部の外周面のうちでラック歯を形成すべき部分を平面部とし、この平面部から外れた残り部分を、断面形状の曲率半径が上記素材の外周面の断面形状の曲率半径よりも大きい部分円筒面とする据え込み加工であり、
上記第二の塑性加工が、内面同士の間隔が上記平面部の幅方向に関する上記中間素材の外径よりも小さいダイスの保持孔により、この中間素材の軸方向一部で上記平面部から外れた残り部分を支承しつつ、形成すべきラック歯に見合う凹凸形状を有する歯成形用パンチを上記平面部に押圧し上記中間素材を上記保持孔に押し込む事により、この中間素材の幅方向両端部分の金属材料を上記平面部に移動させつつこの平面部にラック歯を形成するプレス加工である、ラックの製造方法。
It is made of a metal material and is formed by plastic working on a rod part with a circular cross section whose solid part is a solid material at least in the axial direction and one radial side surface of a part that is a solid material in a part of the axial direction of this rod part. The portion of the outer peripheral surface of the portion that is a solid material in a part in the axial direction has a radius of curvature of the cross-sectional shape of a portion that deviates in the circumferential direction from the portion in which the rack tooth is formed. A manufacturing method of a rack that is larger than the radius of curvature of the cross-sectional shape of the outer peripheral surface of the remaining axial direction,
While crushing a part in the axial direction and a part in the circumferential direction to a part in the axial direction of the rod-shaped material to be the rod part, a part in the axial direction and in the circumferential direction The remaining part is subjected to a first plastic working to form a partial cylindrical surface having a radius of curvature larger than the radius of curvature of the outer peripheral surface of the material to obtain an intermediate material, and the circle in a part of the intermediate material in the axial direction. The rack teeth are formed in a part of the circumferential direction by second plastic working,
In the first plastic working, a part of the axial direction of the material is crushed in the radial direction, so that a part of the outer peripheral surface of the part in the axial direction to form rack teeth is a flat part. Is the upsetting process in which the remaining part deviated from the above is a partial cylindrical surface in which the radius of curvature of the cross-sectional shape is larger than the radius of curvature of the cross-sectional shape of the outer peripheral surface of the material,
The second plastic working is deviated from the plane part at a part in the axial direction of the intermediate material by a holding hole of a die whose inner surface interval is smaller than the outer diameter of the intermediate material in the width direction of the plane part. While supporting the remaining portion, pressing the tooth forming punch having an uneven shape corresponding to the rack tooth to be formed against the flat surface portion and pushing the intermediate material into the holding hole, the width of both ends of the intermediate material is reduced. A method for manufacturing a rack, which is press working for forming rack teeth on a flat portion while moving a metal material to the flat portion.
金属材製で、少なくとも軸方向の一部が中実材である断面円形のロッド部と、このロッド部の軸方向一部で中実材である部分の径方向片側面に塑性加工により形成されたラック歯とを備え、この軸方向一部で中実材である部分の外周面のうち、このラック歯を形成した部分から周方向に外れた部分の断面形状の曲率半径が、上記ロッド部の軸方向残部の外周面の断面形状の曲率半径よりも大きいラックの製造方法であって、
上記ロッド部となるべき円杆状の素材の軸方向の一部に、この軸方向の一部で且つ円周方向の一部を押し潰しつつ、この軸方向の一部で且つ円周方向の残部に、上記素材の外周面の曲率半径よりも大きな曲率半径を有する部分円筒面を形成する第一の塑性加工を施して中間素材とし、この中間素材のうちの上記軸方向一部で上記円周方向の一部に上記ラック歯を形成する第二の塑性加工を複数段階に分けて行ない、得るべきラック歯の圧力角よりも小さな圧力角に見合う形状の歯成形用パンチにより素ラック歯を形成した後、少なくともこの素ラック歯の幅方向両端部の歯元部乃至歯先部の端縁部の断面形状の曲率半径を大きくする塑性加工を行ない、その後、得るべきラック歯の圧力角に見合う形状の歯仕上用パンチをこの素ラック歯に押し付けて、この素ラック歯をラック歯に加工する、ラックの製造方法。
It is made of a metal material and is formed by plastic working on a rod part with a circular cross section whose solid part is a solid material at least in the axial direction and one radial side surface of a part that is a solid material in a part of the axial direction of this rod part. The portion of the outer peripheral surface of the portion that is a solid material in a part in the axial direction has a radius of curvature of the cross-sectional shape of a portion that deviates in the circumferential direction from the portion in which the rack tooth is formed. A manufacturing method of a rack that is larger than the radius of curvature of the cross-sectional shape of the outer peripheral surface of the remaining axial direction,
While crushing a part in the axial direction and a part in the circumferential direction to a part in the axial direction of the rod-shaped material to be the rod part, a part in the axial direction and in the circumferential direction The remaining part is subjected to a first plastic working to form a partial cylindrical surface having a radius of curvature larger than the radius of curvature of the outer peripheral surface of the material to obtain an intermediate material, and the circle in a part of the intermediate material in the axial direction. The second plastic working for forming the rack teeth in a part of the circumferential direction is performed in a plurality of stages, and the raw rack teeth are formed by a tooth forming punch having a shape corresponding to a pressure angle smaller than the pressure angle of the rack teeth to be obtained. After forming, plastic processing is performed to increase the curvature radius of the cross-sectional shape of at least the tooth root part or the edge part of the tooth tip part at both ends in the width direction of the raw rack tooth, and then the pressure angle of the rack tooth to be obtained is obtained. A matching tooth finish punch is pushed onto this bare rack tooth. Put it, to process this element rack teeth on the rack teeth, the rack manufacturing method of.
金属材製で、少なくとも軸方向の一部が中実材である断面円形のロッド部と、このロッド部の軸方向一部で中実材である部分の径方向片側面に塑性加工により形成されたラック歯とを備え、この軸方向一部で中実材である部分の外周面のうち、このラック歯を形成した部分から周方向に外れた部分の断面形状の曲率半径が、上記ロッド部の軸方向残部の外周面の断面形状の曲率半径よりも大きいラックの製造方法であって、
上記ロッド部となるべき円杆状の素材の軸方向の一部に、この軸方向の一部で且つ円周方向の一部を押し潰しつつ、この軸方向の一部で且つ円周方向の残部に、上記素材の外周面の曲率半径よりも大きな曲率半径を有する部分円筒面を形成する第一の塑性加工を施して中間素材とし、第二の塑性加工により、この中間素材のうちの上記軸方向一部で上記円周方向の一部に上記ラック歯を形成すると共に、このラック歯の両側部分に1対の逃げ平坦面部を形成した後、このラック歯の精度を向上させる為のサイジングを行ない、このサイジングに伴って移動する金属材料を上記両逃げ平坦面部に止めて、部分円筒面を延長した仮想円筒面よりも余肉が径方向外方に突出する事を防止する、ラックの製造方法。
It is made of a metal material and is formed by plastic working on a rod part with a circular cross section whose solid part is a solid material at least in the axial direction and one radial side surface of a part that is a solid material in a part of the axial direction of this rod part. The portion of the outer peripheral surface of the portion that is a solid material in a part in the axial direction has a radius of curvature of the cross-sectional shape of a portion that deviates in the circumferential direction from the portion in which the rack tooth is formed. A manufacturing method of a rack that is larger than the radius of curvature of the cross-sectional shape of the outer peripheral surface of the remaining axial direction,
While crushing a part in the axial direction and a part in the circumferential direction to a part in the axial direction of the rod-shaped material to be the rod part, a part in the axial direction and in the circumferential direction The remaining part is subjected to a first plastic working to form a partial cylindrical surface having a radius of curvature larger than the radius of curvature of the outer peripheral surface of the material, thereby forming an intermediate material. Sizing for improving the accuracy of the rack teeth after forming the rack teeth on a part of the circumference in the axial direction and forming a pair of relief flat surface portions on both sides of the rack teeth. The metal material that moves along with this sizing is stopped at the two escape flat surfaces, and the excess wall is prevented from projecting radially outward from the virtual cylindrical surface extending the partial cylindrical surface. Production method.
JP2007132561A 2006-11-02 2007-05-18 Rack manufacturing method Active JP5352965B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007132561A JP5352965B2 (en) 2006-11-02 2007-05-18 Rack manufacturing method
EP07830874.9A EP2082818A4 (en) 2006-11-02 2007-10-30 Rack and production method thereof
PCT/JP2007/071140 WO2008053896A1 (en) 2006-11-02 2007-10-30 Rack and production method thereof
US12/447,785 US20100162843A1 (en) 2006-11-02 2007-10-30 Rack and manufacturing method thereof
CN2007800449663A CN101547759B (en) 2006-11-02 2007-10-30 Rack and production method thereof
US13/415,120 US20120186085A1 (en) 2006-11-02 2012-03-08 Rack and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006299437 2006-11-02
JP2006299437 2006-11-02
JP2007132561A JP5352965B2 (en) 2006-11-02 2007-05-18 Rack manufacturing method

Publications (3)

Publication Number Publication Date
JP2008138864A JP2008138864A (en) 2008-06-19
JP2008138864A5 JP2008138864A5 (en) 2010-10-07
JP5352965B2 true JP5352965B2 (en) 2013-11-27

Family

ID=39600540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007132561A Active JP5352965B2 (en) 2006-11-02 2007-05-18 Rack manufacturing method

Country Status (1)

Country Link
JP (1) JP5352965B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088783B2 (en) * 2012-10-15 2017-03-01 高周波熱錬株式会社 Manufacturing method of pipe member with rack
JP6085986B2 (en) * 2013-02-12 2017-03-01 日本精工株式会社 Method for manufacturing rack shaft of dual pinion type electric power steering apparatus
JP6233402B2 (en) * 2013-02-26 2017-11-22 日本精工株式会社 Rack manufacturing method and rack manufacturing apparatus
JP6343431B2 (en) * 2013-06-03 2018-06-13 高周波熱錬株式会社 Rack manufacturing method and hollow rack bar
JP6175940B2 (en) * 2013-07-01 2017-08-09 株式会社ジェイテクト Rack shaft manufacturing method
WO2015111595A1 (en) 2014-01-22 2015-07-30 日本精工株式会社 Steering rack and method for manufacturing same
JP6202061B2 (en) * 2015-08-25 2017-09-27 日本精工株式会社 Rack and manufacturing method thereof, steering apparatus and manufacturing method thereof, and automobile and manufacturing method thereof
WO2019049477A1 (en) 2017-09-07 2019-03-14 日本精工株式会社 Rack and manufacturing method for same, steering device, vehicle and preforming mold for rack

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813431A (en) * 1981-07-13 1983-01-25 Jidosha Kiki Co Ltd Manufacture of rack
JPS5881535A (en) * 1981-11-06 1983-05-16 Nissan Motor Co Ltd Manufacture of rack for rack and pinion steering device
JPS5890435A (en) * 1981-11-13 1983-05-30 Tsukiboshi Seisakusho:Kk Manufacture of operating rod for brake booster and device for it
JPH03243239A (en) * 1990-02-19 1991-10-30 Aida Eng Ltd Manufacture of pawl member
JPH0567575U (en) * 1992-02-26 1993-09-07 株式会社ユニシアジェックス Power steering device rack device
JPH1178914A (en) * 1997-08-29 1999-03-23 Nok Megurasutikku Kk Stopper
JP2001293618A (en) * 2000-04-17 2001-10-23 Nsk Ltd Rack molding method for hollow rack shaft, and die therefor
JP2002282991A (en) * 2001-03-22 2002-10-02 Uk:Kk Manufacturing method of stepped shaft

Also Published As

Publication number Publication date
JP2008138864A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5352965B2 (en) Rack manufacturing method
WO2008053896A1 (en) Rack and production method thereof
JP3772110B2 (en) Hollow steering rack shaft and manufacturing method thereof
EP3194093B1 (en) Method of manufacturing a hollow rack bar
US10562138B2 (en) Method for manufacturing rack bar
JP6233402B2 (en) Rack manufacturing method and rack manufacturing apparatus
JP5191613B2 (en) Manufacturing method of wheel rim for vehicle
JP5136998B2 (en) Hydraulic bulge method and hydraulic bulge product
EP3315225A1 (en) Rack shaft and method for producing same
US8176763B2 (en) Steering rack
JPH11247835A (en) Hollow steering shaft, its manufacture, and tool for manufacturing hollow steering shaft
JP2019072769A (en) Rack and method for manufacture thereof, and steering gear, vehicle and rack preliminary molding die
WO2004041458A1 (en) Deformed element pipe for hydraulic bulging, hydraulic bulging device using the element pipe, hydraulic bulging method using the element pipe, and hydraulic-bulged product
JP6087372B2 (en) Method for manufacturing a steering knuckle
JP4906849B2 (en) Steel pipe expansion forming method and steel pipe expansion forming apparatus
JP2009000734A (en) Rack and producing method therefor
JP5583490B2 (en) Forging punch
JP3982147B2 (en) Method for forming hollow rack shaft
JP2005247311A (en) Rack teeth forming method for hollow rack shaft and metal die therefor
US9283602B2 (en) Process and apparatus for producing a hollow body, and hollow body
JP4234224B2 (en) Groove machining method and manufacturing method for automobile steering main shaft
JP4319115B2 (en) Method for forming metal molded body
US9687901B2 (en) Method of hydroforming of hollow structural component
JP5564013B2 (en) Metal tube having joint seat surface and method of manufacturing metal tube having joint seat surface
JP2001219854A (en) Hollow rack shaft, and manufacturing method therefor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Ref document number: 5352965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250