JP3592287B2 - Structure of injection sleeve for die casting machine - Google Patents

Structure of injection sleeve for die casting machine Download PDF

Info

Publication number
JP3592287B2
JP3592287B2 JP2001335813A JP2001335813A JP3592287B2 JP 3592287 B2 JP3592287 B2 JP 3592287B2 JP 2001335813 A JP2001335813 A JP 2001335813A JP 2001335813 A JP2001335813 A JP 2001335813A JP 3592287 B2 JP3592287 B2 JP 3592287B2
Authority
JP
Japan
Prior art keywords
injection sleeve
pipe
cooling medium
molten metal
casting machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001335813A
Other languages
Japanese (ja)
Other versions
JP2003136213A (en
Inventor
正光 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2001335813A priority Critical patent/JP3592287B2/en
Publication of JP2003136213A publication Critical patent/JP2003136213A/en
Application granted granted Critical
Publication of JP3592287B2 publication Critical patent/JP3592287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は水平に配置されたダイカストマシン用射出スリーブに係わり、特に溶湯注湯口から落下された溶湯による同落下部分近傍における射出スリーブの熱変形を防止可能な射出スリーブの構造に関する。
【0002】
【従来の技術】
ダイカストマシンにおける真空鋳造においては、射出スリーブ内周面とプランジャチップ外周面の間の間隙が所定値を超えると溶湯の差し込みが発生することの他に、吸引力の効果を減殺する問題が生じる。図2(a)には、一対の金型1へ溶湯を射出充填するための射出スリーブ2と同射出スリーブ2内へ注湯口7を介して給湯された溶湯を左方へ押出すプランジャチップ3とこのプランジャチップ3と螺合・固着されたプランジャロッド4ならびにカップリング6を介して射出シリンダユニット8のロッド5がそれぞれ示されている。又、同図2(b)にはプランジャロッド4と射出スリーブ2の中心軸が一致しない、すなわち、芯ずれがあるときプランジャチップ3の外周の一部が射出スリーブ2の内周面を磨耗する状態を示す。本発明者は先に、特許第3180280号において上述の射出スリーブ2とプランジャチップ3およびプランジャロッド4の芯ずれのため結果として射出スリーブ内周面が初期磨耗により磨耗し、真空鋳造における吸引力を減殺するという問題点に対しプランジャチップとプランジャロッドを球面で支承し且つプランジャチップとプランジャロッドの螺合部にガタを持たせる方式を提案している。しかしながら、前記特許第3180280号においては射出スリーブ自体が熱変形することへの対応を特に提案しているものではなかった。一方、従来より射出スリーブを冷却することは図3に示すように行われているが、しかしこれは射出スリーブ9の左方先端部に残るビスケットBSQを冷却固化するために射出スリーブ先端部のみを冷却するものであって、金型を冷却するのと同じ考え方に基づくものである。図3の例では溶湯の落下部分の近傍Xにはショット毎溶湯が到来し、溶融状態のまま金型キャビティへ射出充填される必要があるため溶湯落下部分の近傍をさらに冷却しようとする技術思想はなかった。従って、溶湯の熱による射出スリーブの熱変形が落下部分の近傍Xと上方の注湯口近傍とでは異なるため結果として上方へ反るような熱変形dとなる。このような射出スリーブの熱変形は上述したように好ましいことではなくプランジャチップとの間に間隙を発生させることとなる。
【0003】
即ち、従来技術においては、射出スリーブ内に注湯された溶湯は重力下で射出スリーブ内周下面に位置するのでその部分での射出スリーブ本体の下側と上側とに大きな温度差が発生し、それに基づく熱膨張の差による熱変形のため弓形状となり、この現象によりプランジャチップの射出スリーブ内周面との摺動特性が悪化することとなる。この対策としては、射出スリーブとプランジャチップ間のクリアランスを予め大きくすることによりプランジャロッド接続部分の嵌合シロを大きくしてこれを吸収することも考えられるが、やはりプランジャチップの初期磨耗は不可避でありこのことがさらに間隙を大きくしこの間隙に溶湯が差し込んで射出スリーブ及びプランジャチップの寿命を著しく低下させることとなる。本発明者は上述した従来射出スリーブにおいては熱変形が不可避であり、そのことが射出スリーブ内周面の磨耗を引き起こす原因ともなっていることに鑑み、この点を改善するためには射出スリーブ自体の熱変形を低く抑えることがどうしても必要であるという考えに達した。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は射出スリーブ内に注湯される溶湯による熱変形を低く抑えることが可能なダイカストマシン用射出スリーブの構造を提供するものである。
【0005】
【課題を解決するための手段】
前記の課題を達成するため、本発明によるダイカストマシン用の射出スリーブの構造は、ダイカストマシンの固定ダイプレート内にて水平方向に配置された射出スリーブであって、その上部には溶湯注湯口が形成されると共に前記溶湯注湯口から給湯される溶湯の落下部近傍において前記射出スリーブの本体内の軸方向に冷却媒体流路用の孔を形成し、当該孔内に配設した温度調節用のパイプであって同パイプ外周面には螺旋状の溝が形成され同パイプ外周面と接する前記孔の内周面とで螺旋状の冷却媒体通路を形成すると共に、前記パイプ両端部にて前記パイプ内側と前記螺旋状の溝とをそれぞれ連通する溝を設け、前記パイプ内側を流れる冷却媒体の一部を前記螺旋状の冷却媒体通路に分流するように構成される。
【0007】
さらに、前記パイプは好適には射出スリーブ本体より熱伝導率の小さい材質で形成される。
【0008】
その場合、前記温度調節用のパイプは、前記射出スリーブ本体内に前記射出スリーブの中心軸を通る鉛直線に関しほぼ対称に一対が配設され、前記射出スリーブのプランジャロッド側端部には前記各パイプの一方の端部と連通する冷却媒体の供給及び排出用の開口部を形成し、さらに前記各パイプの他方の端部間に前記射出スリーブのビスケット部冷却用として形成されている環状路を接続して、射出スリーブ内での前記溶湯落下部及びビスケット部に対する冷却媒体循環流路を形成するように構成することができる。
【0009】
【作用】
本発明においては、射出スリーブ本体内の溶湯落下部分の近傍において、射出スリーブの軸方向に形成した流路を冷却媒体が流れるようにして射出スリーブの注湯口近傍と溶湯落下部分の近傍との温度差を少なくし、熱変形を低く抑えることが可能である。特に、前記流路を温度調節用のパイプで構成し、同パイプ外周面に螺旋状溝を形成して、冷却媒体の一部を主流路から分岐して螺旋状溝へ与えるようにし、そのパイプを射出スリーブ本体より熱伝導率の小さい材質とすることにより、主流路即ち、パイプ内部を流れる冷却媒体により射出スリーブの本体を直接冷却しない構造とするものである。
【0010】
又、前記射出スリーブ本体内に前記射出スリーブの中心軸を通る鉛直線に関しほぼ対称な一対の温度調節用のパイプを配設すると共に前記射出スリーブのプランジャロッド側端部には前記各パイプの一方の端部と連通する冷却媒体供給及び排出用の開口部を形成し、前記各パイプの他端部間に前記射出スリーブのビスケット部冷却用流路を接続しているので射出スリーブのビスケット部の冷却と溶湯落下部分近傍の冷却とを1つの循環流路として形成し、冷却媒体の流路を簡素化するものである。
【0011】
【発明の実施の形態】
以下、本発明の実施例を図1を参照して説明する。図1(a)は射出スリーブの軸方向に沿った断面を示す。同図1(a)において、参照番号10は射出スリーブである。参照番号12はダイカストマシンの固定ダイプレートであって、間隔部材14を介して射出スリーブ10を固着している。射出スリーブ10の上部には溶湯注湯用の開口16が形成されている。また一点鎖線で示す参照番号18、20はそれぞれプランジャチップ、プランジャロッドである。射出スリーブ10の下方即ち、前記開口16の下方には射出スリーブ本体内にあって、その軸方向に右端面即ち、プランジャロッド側の端面位置s1から左方に向かって位置s2まで伸びる冷却媒体供給側の流路21用の孔が前記右端面側から形成され、この孔内には温度調節用のパイプ22が配設されている。さらに、位置s2からs3まではパイプ22の内径を有する通路24用の孔が形成され、同通路24は射出スリーブ10外周面とスペーサ部材28内周面との間に形成される環状路26に通じている。この環状路26とビスケット部BSQの冷却用環状路30とは図示のように射出スリーブ10の上部で通じている。図示しないが、流路21の後方には同流路21と並行にもう1つの排出側流路が設けられそこにもパイプ22と同様なパイプが配設されている。参照番号32は、前記通路24に対応する後方側流路に通じている通路であって、破線で示すように、下方に位置している前記冷却用環状路30と通じている。即ち、図1(a)のZ方向から見た図1(b)に示すように射出スリーブ10の右側端面には射出スリーブ10の中心軸線を通る鉛直線1に関し左右対称位置に冷却媒体の供給、排出用の開口部34、36が形成されている。従って、前記図1(a)の流路32は開口部36の左端部と連通している。図1(c)は、前記パイプ22の構造を拡大して示す。同図1(c)において、パイプ22の内経部は冷却媒体の主流路である。パイプ22の外周面には螺旋状に溝22Aが刻設されており射出スリーブ10の内周面とにより螺旋状の流路が形成される。又、溝22Aの最右端溝23と最左端溝25はそれぞれパイプ22内側に通じており、従って、主流路を流れる冷却媒体の一部は図示のごとく最右端溝23へ分岐し螺旋状の流路を通って最左端溝25から再びパイプ内側の主流路へ戻るようになっている。なお、パイプ22の材質は射出スリーブの材質より熱伝導率が小さいステンレス系の材料を使用するのが好ましい。その理由としては、射出スリーブ10の内周面は螺旋状の溝22Aによる螺旋状の流路を流れる冷却媒体のみにより冷却され、主流路を流れる冷却媒体によって直接冷却されないからである。即ち、射出スリーブ10の溶湯落下部分の近傍を冷やし過ぎとならないようにするものである。又、パイプ22の溝形状、螺旋状の溝の数およびピッチを種々変更することにより、射出スリーブ10の内周面との接触面積、換言すれば熱交換率を可変とすることができるので種々のパイプ22を用意して図1(b)の開口部34、36を介して差し替えることが可能である。
【0012】
以上説明した図1に示す実施例においては、冷却媒体を供給する開口部34から供給された冷却媒体の一部がパイプ22の内側から最右端溝23へ到り螺旋状溝22Aを通って最左端溝25に到る間に射出スリーブ10の本体内周面を直接冷却するようになっており、溝25から再び主流路に戻った冷却媒体は通路24を経て環状路26を経由してビスケット部BSQ近傍の射出スリーブ本体を冷却し、さらに、通路32からもう一方の戻り用のパイプ(図示せず)を経て排出用の開口部36に到るようになっている。その場合、パイプ22の材質を射出スリーブ10本体より熱伝導率の小さい例えばステンレス系材質とすることにより、主流路を流れる冷却媒体が直接射出スリーブ10の本体を冷却しないようにしている。
【0013】
【発明の効果】
本発明の請求項1におけるダイカストマシン用の射出スリーブの構造は、ダイカストマシンの固定ダイプレート内にて水平方向に配置された射出スリーブであって、その上部には溶湯注湯口が形成されると共に前記溶湯注湯口から給湯される溶湯の落下部分近傍において前記射出スリーブの本体内に冷却媒体通路を形成したので射出スリーブの溶湯落下部分の近傍を適宜冷却してその熱変形を抑制し、プランジャチップと射出スリーブ内周面との磨耗を少なくして溶湯の差し込みを防止し、真空鋳造における真空吸引力の効果の減殺を防止可能とすると共に、さらに、前記冷却媒体通路として、前記射出スリーブ本体内の軸方向に形成された孔内に配設した温度調節用のパイプであって、同パイプ外周面には螺旋状の溝が形成され同パイプ外周面と接する前記孔の内周面とで螺旋状の冷却媒体通路を形成すると共に、前記パイプ両端部にて前記パイプ内側と前記螺旋状の溝とをそれぞれ連通する溝を設け、前記パイプ内側を流れる冷却媒体の一部を前記螺旋状の冷却媒体通路に分流するように構成したので冷却媒体による射出スリーブの溶湯落下部分の近傍が過度に冷却されないよう温度調節可能である。
【0015】
又、さらに、請求項2に記載した発明においては、前記パイプは射出スリーブ本体より熱伝導率の小さい材質で形成したので前記温度調節に際しては、主流路を流れる冷却媒体の流量に直接影響されず螺旋状の溝の数、ピッチ、溝の形状によって冷却の程度を調節可能とするものである。
【0016】
さらに、請求項3に記載の発明においては、前記射出スリーブ本体内に前記射出スリーブの中心軸を通る鉛直線に関しほぼ対称な一対の温度調節用のパイプを配設すると共に前記射出スリーブのプランジャロッド側端部には前記各パイプの一方の端部と連通する冷却媒体の供給及び排出用の開口部を形成し、前記各パイプの他方の端部間に前記射出スリーブのビスケット部冷却用の環状路を接続して冷却媒体の循環流路を形成したので従来行われていたビスケット部近傍の冷却と溶湯落下部分の近傍の冷却とを1つの循環流路で対応可能となり、特に冷却媒体の供給口、排出口を射出スリーブのプランジャロッド側端部に設けたので従来のようにビスケット部近傍に冷却媒体の供給口、排出口や管路を設ける必要がなくその周辺部の構造を簡素化できるという効果を奏する。
【図面の簡単な説明】
【図1】本願発明に係る実施例の射出スリーブの構造であって、(a)は射出スリーブのA−A線(図1(b))に沿った軸方向縦断面図を示し、(b)は(a)におけるZ矢視図を示し、さらに、(c)は温度調節用のパイプの詳細縦断面図である。
【図2】従来の射出スリーブを示し、(a)は射出スリーブとその周辺の構造を示す図、(b)は射出スリーブとプランジャチップ及びプランジャロッドの間に芯ずれがある場合を示す図である。
【図3】従来の射出スリーブにおける溶湯落下部分の近傍が落下した溶湯により熱変形を生ずることを説明する図である。
【符号の説明】
10 射出スリーブ
12 固定ダイプレート
16 溶湯の注湯口
18 プランジャチップ
20 プランジャロッド
22 温度調節用のパイプ
22A 螺旋状の溝
24、32 通路
26、30 環状路
34、36 開口部
[0001]
[Industrial applications]
The present invention relates to a horizontally arranged injection sleeve for a die casting machine, and more particularly to a structure of an injection sleeve capable of preventing the injection sleeve from being thermally deformed in the vicinity of the dropped portion by a molten metal dropped from a molten metal pouring port.
[0002]
[Prior art]
In vacuum casting in a die casting machine, when the gap between the inner peripheral surface of the injection sleeve and the outer peripheral surface of the plunger tip exceeds a predetermined value, there is a problem that the molten metal is inserted and the effect of the suction force is reduced. FIG. 2A shows an injection sleeve 2 for injecting and filling the molten metal into a pair of molds 1 and a plunger tip 3 for extruding the molten metal supplied into the injection sleeve 2 through a pouring port 7 to the left. The plunger rod 4 screwed and fixed to the plunger tip 3 and the rod 5 of the injection cylinder unit 8 via the coupling 6 are shown. 2B, the center axes of the plunger rod 4 and the injection sleeve 2 do not coincide with each other. That is, when there is misalignment, a part of the outer periphery of the plunger tip 3 wears the inner peripheral surface of the injection sleeve 2. Indicates the status. The inventor of the present invention previously described in Japanese Patent No. 3180280 that, due to the misalignment of the injection sleeve 2 and the plunger tip 3 and the plunger rod 4 as described above, the inner peripheral surface of the injection sleeve was worn by initial wear, and the suction force in vacuum casting was reduced. In order to solve the problem of reduction, a method has been proposed in which the plunger tip and the plunger rod are supported by a spherical surface and the screw portion of the plunger tip and the plunger rod has a play. However, Japanese Patent No. 3180280 does not specifically propose measures against thermal deformation of the injection sleeve itself. On the other hand, conventionally, the cooling of the injection sleeve is performed as shown in FIG. 3, but this is only performed by cooling the tip of the injection sleeve to cool and solidify the biscuit BSQ remaining at the left tip of the injection sleeve 9. Cooling is based on the same concept as cooling a mold. In the example of FIG. 3, the molten metal arrives in the vicinity X near the falling portion of the molten metal every shot, and it is necessary to inject and fill the molten metal into the mold cavity. There was no. Therefore, the thermal deformation of the injection sleeve due to the heat of the molten metal is different between the vicinity X of the falling portion and the vicinity of the upper pouring port, and as a result, the thermal deformation d warps upward. Such thermal deformation of the injection sleeve is not preferable as described above, and generates a gap between the injection sleeve and the plunger tip.
[0003]
That is, in the prior art, since the molten metal poured into the injection sleeve is located on the lower surface of the inner circumference of the injection sleeve under gravity, a large temperature difference occurs between the lower side and the upper side of the injection sleeve main body at that portion, Due to the thermal deformation due to the difference in thermal expansion based on this, it becomes a bow shape, and the sliding characteristic of the plunger tip with the inner peripheral surface of the injection sleeve deteriorates. As a countermeasure, it is conceivable that the clearance between the injection sleeve and the plunger tip is increased in advance to increase the fitting white at the connecting portion of the plunger rod to absorb this, but the initial wear of the plunger tip is inevitable. However, this further increases the gap, and the molten metal is inserted into the gap, which significantly reduces the life of the injection sleeve and the plunger tip. The present inventor considers that thermal deformation is unavoidable in the above-described conventional injection sleeve, which causes wear of the inner peripheral surface of the injection sleeve, and in order to improve this point, the injection sleeve itself has to be improved. He came to the idea that it was absolutely necessary to keep thermal deformation low.
[0004]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a structure of an injection sleeve for a die casting machine, which can suppress a thermal deformation due to a molten metal poured into the injection sleeve.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the structure of the injection sleeve for a die casting machine according to the present invention is an injection sleeve that is disposed horizontally in a fixed die plate of the die casting machine, and a molten metal pouring port is provided at an upper portion thereof. A hole for a cooling medium flow path is formed in the body of the injection sleeve in the axial direction in the vicinity of the dropping portion of the molten metal that is formed and supplied from the molten metal pouring port, and is provided in the hole for temperature control. A helical groove is formed on the outer peripheral surface of the pipe, and a helical cooling medium passage is formed with the inner peripheral surface of the hole in contact with the outer peripheral surface of the pipe, and the pipe is formed at both ends of the pipe. A groove is provided for communicating the inside with the spiral groove, and a part of the cooling medium flowing inside the pipe is diverted to the spiral cooling medium passage.
[0007]
Further, the pipe is preferably formed of a material having a lower thermal conductivity than the injection sleeve body.
[0008]
In that case, a pair of the temperature control pipes is disposed substantially symmetrically with respect to a vertical line passing through the central axis of the injection sleeve in the injection sleeve main body, and each of the pipes is provided at an end of the injection sleeve on the plunger rod side. An opening for supply and discharge of a cooling medium communicating with one end of the pipe is formed, and an annular path formed for cooling the biscuit portion of the injection sleeve is formed between the other ends of the pipes. It can be configured to be connected to form a coolant circulation channel for the molten metal falling portion and the biscuit portion in the injection sleeve.
[0009]
[Action]
In the present invention, the temperature of the vicinity of the pouring port of the injection sleeve and the vicinity of the molten metal dropping portion in the vicinity of the molten metal falling portion in the injection sleeve main body so that the cooling medium flows through the flow path formed in the axial direction of the injection sleeve. It is possible to reduce the difference and reduce the thermal deformation. In particular, the flow path is constituted by a pipe for temperature control, a spiral groove is formed on the outer peripheral surface of the pipe, and a part of the cooling medium is branched from the main flow path and supplied to the spiral groove. Is made of a material having a lower thermal conductivity than the injection sleeve main body, so that the main body of the injection sleeve is not directly cooled by the cooling medium flowing through the inside of the pipe.
[0010]
In addition, a pair of temperature control pipes, which are substantially symmetrical with respect to a vertical line passing through the central axis of the injection sleeve, are provided in the injection sleeve body, and one end of each of the pipes is provided at an end of the injection sleeve on a plunger rod side. An opening for cooling medium supply and discharge communicating with the end of the injection sleeve is formed, and the flow path for cooling the biscuit portion of the injection sleeve is connected between the other ends of the pipes. The cooling and the cooling in the vicinity of the molten metal falling portion are formed as one circulation flow path, thereby simplifying the flow path of the cooling medium.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1A shows a cross section along the axial direction of the injection sleeve. In FIG. 1A, reference numeral 10 denotes an injection sleeve. Reference numeral 12 denotes a fixed die plate of the die casting machine, to which the injection sleeve 10 is fixed via a spacing member 14. An opening 16 for pouring molten metal is formed in an upper portion of the injection sleeve 10. Reference numerals 18 and 20 indicated by alternate long and short dash lines indicate a plunger tip and a plunger rod, respectively. Below the injection sleeve 10, that is, below the opening 16, there is a coolant supply in the injection sleeve main body, which extends in the axial direction from the right end face, that is, the end face position s1 on the plunger rod side to the left position s2. A hole for the flow path 21 is formed from the right end face side, and a pipe 22 for temperature adjustment is disposed in this hole. Further, a hole for a passage 24 having an inner diameter of the pipe 22 is formed from the positions s2 to s3, and the passage 24 is formed in an annular passage 26 formed between the outer peripheral surface of the injection sleeve 10 and the inner peripheral surface of the spacer member 28. I understand. The annular passage 26 and the cooling annular passage 30 of the biscuit portion BSQ communicate with each other at the upper part of the injection sleeve 10 as shown in the figure. Although not shown, another discharge-side flow path is provided behind the flow path 21 in parallel with the flow path 21, and a pipe similar to the pipe 22 is provided there. Reference numeral 32 denotes a passage communicating with the rear passage corresponding to the passage 24, and communicates with the cooling annular passage 30 located below as shown by a broken line. That is, as shown in FIG. 1B viewed from the Z direction in FIG. 1A, the supply of the cooling medium is provided on the right end face of the injection sleeve 10 at a position symmetrical with respect to the vertical line 1 passing through the central axis of the injection sleeve 10. , Discharge openings 34 and 36 are formed. Therefore, the flow path 32 in FIG. 1A communicates with the left end of the opening 36. FIG. 1C shows the structure of the pipe 22 in an enlarged manner. In FIG. 1C, the inner portion of the pipe 22 is the main flow path of the cooling medium. A groove 22 </ b> A is spirally formed on the outer peripheral surface of the pipe 22, and a spiral flow path is formed by the inner peripheral surface of the injection sleeve 10. Further, the rightmost end groove 23 and the leftmost end groove 25 of the groove 22A communicate with the inside of the pipe 22, respectively. Therefore, a part of the cooling medium flowing through the main flow path branches to the rightmost end groove 23 as shown in FIG. Through the path, it returns from the leftmost groove 25 to the main flow path inside the pipe again. The material of the pipe 22 is preferably a stainless steel material having a lower thermal conductivity than the material of the injection sleeve. The reason is that the inner peripheral surface of the injection sleeve 10 is cooled only by the cooling medium flowing through the spiral flow path formed by the spiral grooves 22A, and is not directly cooled by the cooling medium flowing through the main flow path. That is, the vicinity of the molten metal falling portion of the injection sleeve 10 is not excessively cooled. Also, by variously changing the groove shape of the pipe 22, the number and the pitch of the spiral grooves, the contact area with the inner peripheral surface of the injection sleeve 10, in other words, the heat exchange rate can be made variable. 1 can be prepared and replaced via the openings 34 and 36 in FIG. 1B.
[0012]
In the embodiment shown in FIG. 1 described above, a part of the cooling medium supplied from the opening 34 for supplying the cooling medium reaches the rightmost groove 23 from the inside of the pipe 22 and passes through the spiral groove 22A. The inner peripheral surface of the main body of the injection sleeve 10 is directly cooled while reaching the left end groove 25, and the cooling medium returning to the main flow path from the groove 25 again passes through the annular path 26 via the passage 24 and the biscuit. The injection sleeve body in the vicinity of the portion BSQ is cooled, and reaches the discharge opening 36 from the passage 32 through the other return pipe (not shown). In this case, the pipe 22 is made of, for example, a stainless steel material having a lower thermal conductivity than the main body of the injection sleeve 10 so that the cooling medium flowing through the main flow path does not directly cool the main body of the injection sleeve 10.
[0013]
【The invention's effect】
The structure of the injection sleeve for a die casting machine according to claim 1 of the present invention is an injection sleeve which is disposed horizontally in a fixed die plate of the die casting machine, and has a molten metal pouring port formed on an upper portion thereof. Since a cooling medium passage is formed in the main body of the injection sleeve in the vicinity of the falling portion of the molten metal supplied from the molten metal pouring port, the vicinity of the molten metal falling portion of the injection sleeve is appropriately cooled to suppress thermal deformation thereof, and the plunger tip is provided. And the inner peripheral surface of the injection sleeve can be reduced to prevent the insertion of the molten metal, prevent the effect of the vacuum suction force in vacuum casting from being diminished, and further, as the cooling medium passage, the inside of the injection sleeve body A temperature adjusting pipe disposed in a hole formed in the axial direction of the pipe, wherein a spiral groove is formed on an outer peripheral surface of the pipe. A spiral cooling medium passage is formed with the inner peripheral surface of the hole in contact with a surface, and grooves are formed at both ends of the pipe to communicate the inside of the pipe and the spiral groove, respectively. Since a part of the flowing cooling medium is divided into the spiral cooling medium passage, the temperature can be adjusted so that the vicinity of the molten metal falling portion of the injection sleeve by the cooling medium is not excessively cooled.
[0015]
Further, in the invention described in claim 2, since the pipe is formed of a material having a lower thermal conductivity than the injection sleeve main body, the temperature adjustment is not directly affected by the flow rate of the cooling medium flowing through the main flow path. The degree of cooling can be adjusted by the number, pitch, and shape of the spiral grooves.
[0016]
Further, in the invention according to claim 3, a pair of temperature control pipes substantially symmetrical with respect to a vertical line passing through a central axis of the injection sleeve are disposed in the injection sleeve main body, and a plunger rod of the injection sleeve is provided. An opening for supplying and discharging a cooling medium communicating with one end of each pipe is formed at a side end , and an annular portion for cooling a biscuit portion of the injection sleeve is provided between the other ends of the pipes. Since the cooling medium circulation flow path is formed by connecting the passages, cooling in the vicinity of the biscuit portion and cooling in the vicinity of the molten metal falling portion, which are conventionally performed, can be handled by one circulation flow path. Since the port and discharge port are provided at the end of the injection sleeve on the plunger rod side, there is no need to provide a cooling medium supply port, discharge port, or pipe near the biscuit as in the conventional case, simplifying the structure of the surrounding area. An effect that can be of.
[Brief description of the drawings]
FIGS. 1A and 1B show the structure of an injection sleeve according to an embodiment of the present invention, in which FIG. 1A is an axial longitudinal sectional view taken along the line AA (FIG. 1B) of the injection sleeve, and FIG. () Shows a view on arrow Z in (a), and (c) is a detailed vertical sectional view of a pipe for temperature control.
2A and 2B show a conventional injection sleeve, in which FIG. 2A shows a structure of the injection sleeve and its surroundings, and FIG. 2B shows a case where there is misalignment between the injection sleeve, the plunger tip and the plunger rod. is there.
FIG. 3 is a view for explaining that the vicinity of a molten metal falling portion in a conventional injection sleeve causes thermal deformation due to the molten metal that has fallen.
[Explanation of symbols]
Reference Signs List 10 Injection sleeve 12 Fixed die plate 16 Melt pouring port 18 Plunger tip 20 Plunger rod 22 Pipe 22A for temperature adjustment Helical grooves 24, 32 Passages 26, 30 Annular paths 34, 36 Openings

Claims (3)

ダイカストマシンの固定ダイプレート内にて水平方向に配置された射出スリーブであって、その上部には溶湯注湯口が形成されると共に前記溶湯注湯口から給湯される溶湯の落下部近傍において前記射出スリーブの本体内の軸方向に冷却媒体流路用の孔を形成し、当該孔内に配設した温度調節用のパイプであって同パイプ外周面には螺旋状の溝が形成され同パイプ外周面と接する前記孔の内周面とで螺旋状の冷却媒体通路を形成すると共に、前記パイプ両端部にて前記パイプ内側と前記螺旋状の溝とをそれぞれ連通する溝を設け、前記パイプ内側を流れる冷却媒体の一部を前記螺旋状の冷却媒体通路に分流することを特徴とするダイカストマシン用射出スリーブの構造。An injection sleeve disposed horizontally in a fixed die plate of a die casting machine, the upper portion of which has a molten metal pouring port formed therein, and the injection sleeve is provided near a dropping portion of molten metal supplied from the molten metal pouring port. A hole for a cooling medium flow passage is formed in the body in the axial direction, and a temperature adjusting pipe is provided in the hole, and a spiral groove is formed on an outer peripheral surface of the pipe. A spiral cooling medium passage is formed with the inner peripheral surface of the hole in contact with the pipe, and grooves are formed at both ends of the pipe to communicate the inside of the pipe and the spiral groove, respectively, and flow inside the pipe. The injection sleeve for a die casting machine, wherein a part of the cooling medium is diverted to the spiral cooling medium passage. 請求項1において、前記パイプは射出スリーブ本体より熱伝導率の小さい材質で形成したことを特徴とするダイカストマシン用射出スリーブの構造。2. The structure of an injection sleeve for a die casting machine according to claim 1, wherein the pipe is formed of a material having a lower thermal conductivity than the injection sleeve body. 請求項1または2において、前記温度調節用のパイプは前記射出スリーブ本体内に前記射出スリーブの中心軸を通る鉛直線に関しほぼ対称に一対が配設され、前記射出スリーブのプランジャロッド側端部には前記各パイプの一方の端部と連通する冷却媒体の供給及び排出用の開口部を形成し、さらに前記各パイプの他方の端部間に前記射出スリーブのビスケット部冷却用として形成されている環状路を接続して、射出スリーブ内での前記溶湯落下部及びビスケット部に対する冷却媒体循環流路を形成したことを特徴とするダイカストマシン用射出スリーブの構造。3. The injection control device according to claim 1, wherein a pair of the temperature control pipes is disposed substantially symmetrically with respect to a vertical line passing through a central axis of the injection sleeve in the injection sleeve main body. Defines an opening for supplying and discharging a cooling medium communicating with one end of each pipe, and is formed between the other ends of the pipes for cooling the biscuit portion of the injection sleeve. A structure of an injection sleeve for a die casting machine, wherein an annular path is connected to form a cooling medium circulation flow path for the molten metal falling section and the biscuit section in the injection sleeve.
JP2001335813A 2001-10-31 2001-10-31 Structure of injection sleeve for die casting machine Expired - Lifetime JP3592287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001335813A JP3592287B2 (en) 2001-10-31 2001-10-31 Structure of injection sleeve for die casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001335813A JP3592287B2 (en) 2001-10-31 2001-10-31 Structure of injection sleeve for die casting machine

Publications (2)

Publication Number Publication Date
JP2003136213A JP2003136213A (en) 2003-05-14
JP3592287B2 true JP3592287B2 (en) 2004-11-24

Family

ID=19150748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001335813A Expired - Lifetime JP3592287B2 (en) 2001-10-31 2001-10-31 Structure of injection sleeve for die casting machine

Country Status (1)

Country Link
JP (1) JP3592287B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046910A2 (en) * 2003-11-06 2005-05-26 Metaldyne Compagny Llc Device and method for cooling a shot plug
JP4618539B2 (en) * 2003-12-19 2011-01-26 日立金属株式会社 Die casting sleeve
JP4675932B2 (en) * 2007-04-27 2011-04-27 株式会社東芝 Mold
JP5841197B1 (en) * 2014-06-24 2016-01-13 株式会社スグロ鉄工 Gate and casting mold having the same
CN109986045A (en) * 2017-12-29 2019-07-09 北京有色金属研究总院 Open charging barrel for semi-solid die-casting forming and heat balance temperature control method
ES2763861B2 (en) * 2018-11-29 2022-05-10 Alrotec Tecnology S L U INJECTION SYSTEM
CN111151726A (en) * 2019-12-29 2020-05-15 盐城泰欧昌机械有限公司 High-efficient refrigerated die casting machine melts cup
CN111644595A (en) * 2020-06-10 2020-09-11 盐城泰欧昌机械有限公司 Novel durable die-casting melting cup

Also Published As

Publication number Publication date
JP2003136213A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
KR20010101219A (en) Cooling panel for a furnace producing iron or steel
KR100520561B1 (en) A cooling device for die casting metallic pattern
JP3592287B2 (en) Structure of injection sleeve for die casting machine
JP4500537B2 (en) Horizontal gate type injection molding equipment
KR101175406B1 (en) Cooling Panel for Continuous Casting Mold and Apparatus of Continuous Casting Mold Therewith
CA2627144A1 (en) Hot runner nozzle having thermal insert at downstream end
CA2412202C (en) Chill tube for the continuous casting of metals
FI121429B (en) Heat sink and method for making the heat sink
US6945767B2 (en) Small pitch nozzle with a thermally conductive insert for an injection molding apparatus
KR20080114045A (en) Mold for air-slip type noncircular continuous casting and casting method of aluminum alloy thereof
EP1375107A1 (en) Nozzle tip for hot runners injection moulds
JP2011136343A (en) Die for die casting and die casting method
KR20180007800A (en) Chill Vent for Die Casting
KR100469700B1 (en) Die-cast Rotating Gate Mold Device
KR100594363B1 (en) Sleeve of die casting machine
JP3616616B2 (en) Bore pin for cylinder block casting
JP2003010953A (en) Spool bush for die casting machine
KR100510578B1 (en) Water type cooling device for injection mold cooling
SI24339A (en) Piston with optimum cooling effectiveness for cold-chamber die-casting systems
JP2010253792A (en) Mold for optical element
KR102662933B1 (en) Mold units and continuous casting equipment for continuous casting of metal products
JP2019098384A (en) Die cast sleeve
KR200363011Y1 (en) Sleeve for Die casting machine
JP4624300B2 (en) Mold cooling structure
US11052456B1 (en) Casting mold and manufacturing method of cast part

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040824

R150 Certificate of patent or registration of utility model

Ref document number: 3592287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term